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AN APPLICATION OF GRAND FURUTA INEQUALITY TO
KANTOROVICH TYPE INEQUALITIES

KEEEREMBERRIFRE  WRHE  (YUKI SEO)

ABSTRACT. As an application of the grand Furuta inequality, we shall show char-
acterizations of usual order and chaotic order associated with operator equation
and Kantorovich type order preserving operator inequalities by using essentially
the same idea of T.Furuta. Also, we present a Kantorovich type inequality which
is a parallel result with Yamazaki and Yanagida’s one.

1. Introduction. This note is based on a joint work [15] with T.Furuta and
[17]. |

In what follows, a capital letter means a bounded linear operator on a comple}i:
Hilbert space H. An operator T is said to be positive ( in symbol: T > 0) if
(T'z,z) > 0forall z € H. Also an operator T is strictly positive ( in symbol: 7" > 0)
if T is positive and invertible. We recall the celebrated Kantorovich inequality: Ifa
positive operator A on a Hilbert space H satisfies M > A > m > 0, then ‘Y

(M +m)?

YR
(A7) < =7

(Az,2)™"

for every unit vector z € H. The number %,’%ﬁ is called the Kantorovich constant.

The Lowner-Heinz theorem asserts that A > B > 0 ensures A? > B? (0 < p < 1).
However A > B does not always ensure A2 > B2 in general. As an application of the
Kantorovich inequality, Fujii, Izumino, Nakamoto and the author [5] showed that ¢

is order preserving in the following sense: If A> B> 0and M > A>m > 0, then
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Related to this, Furuta [13] showed the following order preserving operator inequal-
ity:
Theorem A. fA>B>0and M > A>m >0, then

p-1 '
(M) AP > K, (m,M,p)A° > B holds for all p > 1,

m

where

G-t -y
K+(m’ jwap) - PP (M — ’)’I’L)(’I’I’I,]\JiO - Mmp)p—l )

The order between positive invertible operators A and B defined by log A > log B
is said to be chaotic order A > B in [4] which is a weaker order than usual order
A > B. In [22], Yamazaki and Yanagida showed the following chaotic order version
of Theorem A:

Theorem B. IflogA >logB and M > A > m > 0, then
P
(—f;—[) AP > K, (m,M,p+1)AP > B®  holds for all p> 0.
In fact, log A > log B does not always ensure A > B in general. However, by
Theorem B, it follows that log A > log B implies %EA > B.

Moreover, Yamazaki and Yanagida gave a new characterization of chaotic order

by means of the Kantorovich constant.

Theorem C. Let A and B be invertible positive operators and M > A > m > Q.

Then the following properties are mutually equivalent:

(I) ’ A>B (i.e.,log A > log B).

(MP +mP)?

L AP > PP >
(IT) Tiioms A’ > B holds for all p > 0.

In this paper, as an application of the grand Furuta inequality, we shall show
characterizations of usual order and chaotic order associated with operat(;r equa-
tion and Kantorovich type order preserving operator inequalities which interpolates
Theorem A and Theorem B by using essentially the same idea of [12]. Also, we
present a Kantorovich type inequality which is a parallel result with Theorem C.
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2. Kantorovich type operator inequalities. Firstly we shall show the fol-

lowing characterization of chaotic order associated with operator equation.

Theorem 1. Let A and B be invertible positive operators. Then the Sollowing prop-

erties are mutually equivalent:
() A> B (ie,logA>logB).

(II) For each a € [0,1], p > 0 and u > 0, there exists the unique invertible positive

contraciion T such that
(A% BPA%)® = TAPTewsT
holds for any s > 1 and (p+ au)s > (1 — a)u.

(III) For each a € [0,1] and p > u > 0, there exists the unique invertible positive

contraction T such that
(AT BPAT)* = TAPrevsT
holds for any s > 1.

(IV) For each p > 0, there exists the unique invertible positive contraction T' such

that
BP = T APT.

As an application of Theorem 1, we obtain the following extension of Theorem C
on a Kantorovich type characterization of chaotic order.

Theorem 2. Let A and B be invertible positive operators and M > A > m > 0.
Then the following properties are mutually equivalent:

(I) A>B (ie,logA>logB).

(IT) For each « € [0,1], p >0 and u >0,

M(p+au)s (p+au)s\2
(MO § ity

) Qu au\ S8
ey AT > (4% BrAY)

holds for any s > 1 and (p+ au)s > (1 — a)u.
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(III) For each a € [0,1] and p > u >0,
( M(p+au)s + m(p+au)s)2
4 M (pt+au)syy, (p+ou)s

Arres > (4% B AT

holds for any s > 1.

(MP + mP)?

, P> Br ' > 0.
ANTomp AP > B holds for allp > 0

(IV)
Next, we shall show the following characterizations of usual order associated with
operator equation.

Theorem 3. Let A and B be positive invertible operators. Then the following as-

sertions are mutually equivalent:

(D A > B.
(II) For eacht € [0,1], p > 1 and s > 1 such that (p —t)s > t, there exists a unique

invertible positive contraction T' such that

TAPDIT = (A"t/2B"A‘t/2)s .

(ITII) For all p > 2, there exists a unique invertible positive contraction T' such that
TAPIT = AV2BPATY2,

As an application of Theorem 3, we obtain the following Kantorovich type order

preserving operator inequality:

Theorem 4. Let A and B be positive and invertible operators on a Hilbert space H
satisfying M > A > m > 0. Then the following assertions are mutually equivalent:
40 A>B.

(IT) For each t € [0,1],

M(p—t)s (p—t)s)2
(MO—0% 1 mG0ey2

(p—t _t _Lt\S$
i AT 2 (a-2BrA73)

holds for any p > 1 and s > 1 such that (p —t)s > ¢.
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(LII)

1
(M(p——l)s + m(p—l)s)2 s
( e ) A 2B

holds for any s >1 andp > 1 +1.

My?! | |
(Iv) (E) AP>B?  holds for allp > 1.

By Theorem 4, we have the following corollary which is a parallel result with

Theorem C associated with usual order.

Corollary 5. fA>B>0and M > A>m >0, then

(Mp—-l + mp*l)2
4mp-1Mr-1

AP > BP holds for all p > 2.

Let A and B be positive invertible operators on a Hilbert space H. We consider
an order A% > B? for § € (0,1] which interpolates usual order A > B and chaotic

order A > B continuously. The following theorem is easily obtained by Theorem 4.

Theorem 6. Let A and B be positive and invertible operators on a Hilbert spacé H
satisfying A° > B® for § € (0,1] and M > A > m > 0, then

(M(p—é)s + m(p—&)s)Q
Am @808 [ 7—D)s

1
e 1
) AP > BP holds for all s > 1 and p > (g + 1)6.

Remark 1. Theorem 6 interpolates Theorem A and Theorem B by means of
the Kantorovich constant. Let A and B be positive invertible operators and M >
A > m > 0. Then the following assertions holds:

(i) A > B implies (%{—)p_lfﬂ’ > BP for all p > 1.

(M(p—é)s + m(p—-&)s)Q
4m(p—8)s pf(p—8)s

(i) A° > B® implies (
(1 +1)é.
p
(iii) logA > log B implies (%{—) AP > BP for all p > 0.

)SAPZB”forall521andp2

It follows that the Kantorovich constant of (ii) interpolates the scalar of (i) and
(iii) continuously. In fact, if we put § = 1 and s — 400 in (ii), then we have (i),

also if we put § — 0 and s — +o0 in (ii), then we have (iii).
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Moreover, Theorem 6 interpolates Theorem C and Corollary 5 by means of the
Kantorovich constant: »
. ‘ ) (M?—l +mp—l)2
(i) A > B implies s gy
M(p—5)3+m(p—6)s)2 s
P P
I D [T ) AP > PBP forall s > 1and p >

AP > BP for all p > 2.

(ii) A° > B® imples ((
(2 +1)8.

MPp :‘ p)2
(iii) log A > log B implies (M + mp)”

4mp M»
The Kantorovich constant of (ii) interpolates the scalar of (i) and (iii). In fact, if

AP > BP for all p > 0.

we put § = 1 and s = 1 in (ii), then we have (i), also if we put s =1 and § — 0 in

(ii), then we have (iii).

3. Proof of the results. Related to the extension of the Léwner-Heinz theo-
rem, Furuta established the following ingenious order preserving operator inequality

which is called the Furuta inequality.

Theorem F (Furuta inequality)([8]). D4 =1 4 (1 +r)q Pt
If A> B >0, then for each r > 0, \
r T l r r l \\\
@  (B%A?B%)* > (BiBPB})" \\\\
and \\\
r r i r r 1
(i)  (A54PA%)7 > (A3praAf)* 1R
hold for p > 0 and ¢ > 1 with
(1,0) k.
(I+r)g=p+r. |
(0’ —T)
Figure

Alternative proofs of Theorem F have been given in (3], [16], and one-page proof
in [9]. The domain drawn for p,q and r in Figure is the best possible one [18] for
Theorem F.

As a corollary of {11, Theorem 1.1}, Furuta established the following grand Furuta.
inequality which interpolates Theorem F itself and an inequality equivalent to main

theorem of log majorization by Ando-Hiai [2].

Theorem G (The grand Furuta inequality) ([11]). If A > B > 0 and A is
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invertible, then for eacht € [0,1],

-t

{AS(A 3 APA-E) AS}e > {AF (A5 BPA-3) AT}
holds for any s >0,p>0,q9g>1 andr >t with (s— 1)(p—1) > 0 and
(1—t+r)g>(p—t)s+r. | -

An alternative proof of Theorem G in [6] and one-page proof in [14] and the best
possibility of Theorem G is shown in [19], and two very simple proofs of the best

possibiiity of Theorem G are in [21] and [7].

We need the following lemmas in order to give proofs of our results.

Lemma 7. Let T be a nonsingular positive operator. If XTX = YTY holds for
some X >0 andY >0, then X =Y.

Proof. If XTX = YTY holds for some X,Y > 0, then we have (T2 XT3)% =
(T3YT?)?, so that T3 XT3 = T2YT% holds and the nonsingularity of T’ ensures
X=Y.

Lemma 8. If A is a positive operator such that M > A > m > 0 and B is a positive

contraction, then
(M +m)
4Mm

A > BAB.

Proof. By the Kantorovich inequality, we have (ABz, Ba:)(A"le, Bz) < K||Bz|)*
for any unit vector z € H, where K = %J;—T:;E. Hence it follows that |
(ABz, Bx)(A™ !Bz, Bx) < K(B%z,z)?
< K(Bz,z)? byI>B>0
= K(A™2 Bz, Aig)?
< K(A™'Bz, Bz)(Az, ),
so the proof is complete.

Remark 2. (1) In Lemma 8, one might conjecture the following (x)
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- (*¥) A > BAB holds for any positive operator A and any positive contraction
B

instead of (—A;’II—;—J%ZEA > BAB. But we can give a counterexample to this conjecture
as follows. Take A and B as follows:

2 0 1 /11
A‘(o 1) and B—§<1 1)'

Then A >0 and I > B > 0, but we have

5 _3
A—BAB=(__4§ 14)20.

4 4
(2) Moreover, one might conjecture the following (*¥)

(**) QZ%KA > B*AB holds for any positive operator A and any contraction B

instead of the positive contractivity of B. But we can give a counterexample to this

conjecture as follows. Take A and B as follows:

2 1 01
1= (01w o=0)

Then A >0 and [ > B*B, but we have
) Z 0.

(M +m)?
The following characterization of chaotic order is shown in [4] and [10].

9
A—B*AB = (g
4

W O

AdMm

Theorem D. Let A and B be invertible positive operators. Then the following
properties are mutually equivalent:

(I) A>B (ie,logA>logB).

(1) AP > (AEBPA‘%)% holds for all p > 0.

() A*> (A$BPA%)™  holds for allp >0 and u > 0.

(I) <=>(11) is shown in [1]. Recently a simple and excellent proof of (I) ==(III)
is shown in [20] by only applying Theorem F. Here we cite the following simplifed

implication since (III) =>(II) is trivial.
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Simplified proof of (II) =>(I) of Theorem D. (II) yields
-1 (ABBPA%): — ]

P p
B (A%(BP —~ 1A% N AP — ]
p p

and tending p | 0, so we have log A > %(log B +log A), that is , log A > log B.

) {(A BrA%): + I}!

Lemma 9. If M > m > 0, then
. ((M3+m3)2)% M
lim |—F+%] =—.
s—+00 4ms M m
Proof. Put z = % > 1, then it follows from L’Hospital’s theorem that
$\2 3
- log(1+z°)* lim 2z°logz _

li =
8—+00 s s—+oo 1 4 3

Therefore we have .
1 1 2 '
. (Ms + ms)2 s L (1 + Z.s)2 s.-— ) (1 +$3); o M
8113100 < 4msM* o 8—132190 43 - SEIJPOO 43y =rE m

- Now, we start with the proofs of our theorems.
Proof of Theorem 1.
(I) =>(II). For each p > 0 and w > 0, put A; = A® and B, = (A%BT’A%)F%
in (III) of Theorem D. Then we have A; > B; > 0. By Theorem A, it follows that
for each t € [0, 1], |

(p1—t)str

@ A 2 {AF (A B ATy Al
holds for any s > 1, p; > 1, ¢ > 1, and the following conditions (2) and (3)

(2) T >,

3) ' (L=t47)g> (pr—t)s+.

Putplz% Zlincaseu>0,q=2,r= (pl—t‘)sandalsoputazl—t'in
(2) and (3). Then (3) is satisfied, so the only required condition (2) is equivalent to
the following o o .

4) (p+ au)s > (1 — a)u.
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Therefore, (1) implies that for each a € [0,1], p > 0 and u > 0,

(ptau)s

(5) 1> A5 {A

(ptau)s (P+0‘u)-’ 1 (ptau)s
2 2

(AT BPAT ) A5 )3 4~

holds for s > 1 and the condition (4). Let T be defined by the right hand side of
(5)- Then it turns out that 7" is an invertible positive contraction by (5), so that we

have

p+om 8 +au. K]

(A% BPAY )’A }

(ptau)s (ptau)s

(6) AR A o g

Taking square both sides of (6), we obtain

p+om 38

AT R prau)s g 2R 4

+au 8 (ptau)s (p+au)a (

A% BPAT )SA
That is, we have the following equation
(7) TA®r)T = (AF BPA%)’
holds for s > 1 and (p+au)s > (1 — a)u in case u > 0. Next we check (7) in case
u = 0. In fact (II) of Theorem D ensures I > T = A7 (AzBpA ) A7 for all
p >0, s0 TAPT = BP* holds for p > 0, s > 1 and this equation is just (7) in case
u = 0. The uniqueness of T in (7) follows by Lemma 7.

(II)==(III). Put p > u > 0 in (II). Then the required condition (p + au)s >
(1 — a)u is satisfied, so we have (III).

(III)=(IV). Put u =0 or @ = 0 and s = 1 in (III).

(IV)==(I). Assume (IV). Then we have

(ABTAR)" = ABTAPT A% = ABBPAS by (IV).

By raising each sides to power %—, it follows from Lowner-Heinz inequality that

D=

(8) AP > ASTAS > (ATBPA%)3,

and the first inequality holds since / > T > 0 and we have (I) by Thereom D.

Whence the proof of Theorem 1 is complete.

Proof of Theorem 2.
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(I)==(II). The hypothesis M > A > m > 0 ensures MP+ows > Alptou)s >
m®Pteu)s 5 0 for the hypothesis on a, p,u and s, so the proof is complete by (II) of
Theorem 1 and Lemma 8.

(II)==(I1I). Put p > uw > 0 in (II). Then the required condition (p + au)s >
(1 — a)u is satisfied, so we have (III).

(IIT)==>(IV). We have only to put u - Oora=0and s=1in (IID).

(IV)==(1) is shown by Theorem C.

Whence the proof of Theorem 2 is complete.

Proof of Theorem 3.

(I) =(II). Since A > B > 0 and A > 0, if we put ¢ = 2 in the grand Furuta
inequality, then for p > 1, s > 1 and t € (0,1]
9) ATFE > (43 (AiBrAE) Ab M
holds under the following conditions (10) and (11)

(10) r >t

(11) 21—t+r)>(p—t)s+r.

If we moreover put 7 = (p — t)s, then (11) is satisfied and (10) is equivalent to the

following
(12) (p—t)s>t.

Therefore, (9) implies that for ¢ € (0,1],p>1and s> 1

(13) - I> AT p;”{A(p—_zt'E (A'éB”A“}z‘)sA("E’)S}%A‘W;)s

holds for the condition (12). Let T be defined by the right hand side of (13). Then

it turns out that 7" is an invertible positive contraction by (13), so that we have

(p—t)s

ATz

(p—t)s t
)

= {Af (A3 BPA7E)" AB}E.

N

TA



Taking square both sides, we obtain
ATTETACDTAS™ = A% (A-5BPAS
That is, we have the following equation
TA®=9T = (A2 BPA?)".

(II) =>(III). Put ¢t =1and s=11in (II).
(III) =>(I) If we put p =2 in (III), then we have

TAT = A"Y/2B24-1/2,

so that it follows that

22

(AVPTAV2)? = AVPTATAY? = B2,

By raising each sides to power %, it follows that
A> AV2TAYV2 = B,

and the first inequality holds since I > T > 0.

Whence the proof of Theorem 3 is complete.

Proof of Theofem 4.

(I) =(II). The hypothesis M > A > m > 0 ensures MP~ts > Al-t)s >

m®~9% > 0 for the hypothesis on t,p and s, so the proof is complete by (I1) of

Theorem 3 é.nd Lemma 8.

(IT) ==(III). If we put ¢ = 1 in (II), then we have (III) by the L&wner-Heinz

theorem.

(II1) #(IV). If we put s — oo, then we have (IV) by Lemma 9.

(IV) ==(I). If we put p =1, then we have (I).

Proof of Corollary 5. Put s =1 in (III) of Theorem 4.
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Proof of Theorem 6. Put A; = A® and B; = B?, then A; > B; > 0 and

M?® > A® > m®. By applying (I1I) of Theorem 4 to A; and B, it follows that

(M6(p1—1)3 + m&(p1—1)8)2
( 4mbP1—1)s pfé(p1—-1)s

s 1 .
) APt > B holds for p; > S+ 1.

Put py =2 > % + 1, then we have the desired inequality

(M(p—6)s + m(p—6)3)2
( 4mp—86)s Mf(p—6)s

) AP > BP holdsfora]llea.nde(%—f—l)é.
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