Continuous and Discrete Fourier Coefficients of Equi-distant Piecewise Linear Continuous Periodic Functions: Application to Mathematical Analysis of An FEM-CSM Combined Method for 2D Exterior Laplace Problems (Numerical Solution of Partial Differential Equations and Related Topics)

Author(s): Ushijima, Teruo

Citation: 数理解析研究所講究録 (2000), 1145: 238-246

URL: http://hdl.handle.net/2433/63928

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Continuous and Discrete Fourier Coefficients of Equi-distant Piecewise Linear Continuous Periodic Functions

- Application to Mathematical Analysis of An FEM-CSM Combined Method for 2D Exterior Laplace Problems -

USHIJIMA, Teruo (牛 島 照 夫)

Department of Computer Science
Faculty of Electro-Communications
The University of Electro-Communications
Chofu-shi, Tokyo 182-8585, Japan

Abstract

The author has investigated an FEM-CSM combined method for 2D exterior Laplace problems during these years ([2], [3]). Here the abbreviation of CSM is employed for the charge simulation method (See [1]). In the mathematical analysis for the method, especially in the proof of an a priori error estimate for the approximate solutions obtained by the method, a relation between continuous and discrete Fourier coefficients of equi-distant piecewise linear continuous 2\pi-periodic function plays a key role. In this paper, the relation is introduced with illustrative examples of application to the mathematical analysis mentioned above.

1. Relation between continuous and discrete Fourier coefficients for equi-distant piecewise linear continuous 2\pi-periodic functions

Let \(f(\theta) \) be a complex valued continuous \(2\pi \)-periodic function of \(\theta \). For \(n \in \mathbb{Z} \), a continuous Fourier coefficient \(f_n \) of the function \(f(\theta) \) is defined through

\[
 f_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(\theta) e^{-in\theta} d\theta.
\]

Fix a positive integer \(N \). Set

\[
 \theta_1 = \frac{2\pi}{N}, \quad \theta_j = j\theta_1 \quad \text{for} \quad j \in \mathbb{Z}.
\]

For \(n \in \mathbb{Z} \), a discrete Fourier coefficient \(f_n^{(N)} \) of the function \(f(\theta) \) is defined through

\[
 f_n^{(N)} = \frac{1}{N} \sum_{j=0}^{N-1} f(\theta_j) e^{-in\theta_j}.
\]
It is to be noted that we have for any continuous 2π-periodic function $f(\theta)$,

\begin{equation}
(1) \quad f_{n+Nr}^{(N)} = f_n^{(N)}, \quad n \in \mathbb{Z}, \quad r \in \mathbb{Z} - \{0\}.
\end{equation}

Let $\hat{w}(\theta)$ be the reference roof function defined through

\begin{equation}
\hat{w}(\theta) = \begin{cases}
1 - |\theta| : & |\theta| \leq 1, \\
0 : & |\theta| \geq 1.
\end{cases}
\end{equation}

For any $j \in \mathbb{Z}$, define a piecewise linear basis function $w_j^{(N)}(\theta)$ through the following formula:

\begin{equation}
w_j^{(N)}(\theta) = \hat{w}\left(\frac{\theta - \theta_j}{\theta_1}\right), \quad -\infty < \theta < \infty.
\end{equation}

A complex valued function $f(\theta)$ is said to be an **equi-distant piecewise linear continuous 2π-periodic function** (with N nodal points) in this paper if $f(\theta)$ is represented as

\begin{equation}
f(\theta) = \sum_{j=0}^{N} f(\theta_j)w_j^{(N)}(\theta), \quad 0 \leq \theta \leq 2\pi,
\end{equation}

with

\begin{equation}
f(2\pi) = f(0).
\end{equation}

Introduce a function $\alpha(\theta)$ through the formula:

\begin{equation}
\alpha(\theta) = \frac{2(1 - \cos \theta)}{\theta^2} \quad \text{for} \quad \theta \neq 0, \quad \text{with} \quad \alpha(0) = 1.
\end{equation}

Theorem 1 We have the following relation for any **equi-distant piecewise linear continuous 2π-periodic function** (with N nodal points) $f(\theta)$,

\begin{equation}
f_n = \alpha(\theta_n)f_n^{(N)}, \quad n \in \mathbb{Z}.
\end{equation}

Proof A straightforward calculus leads the relation. \(\square\)

Corollary We have the following identity for any **equi-distant piecewise linear continuous 2π-periodic function** (with N nodal points) $f(\theta)$,

\begin{equation}
f_{n+Nr} = \left(\frac{n}{n+Nr}\right)^2 f_n, \quad n \in \mathbb{Z}, \quad r \in \mathbb{Z} - \{0\}.
\end{equation}

Proof Since we have

\begin{equation}
\alpha(\theta_{n+Nr}) = \left(\frac{n}{n+Nr}\right)^2 \alpha(\theta_n), \quad n \in \mathbb{Z}, \quad r \in \mathbb{Z} - \{0\},
\end{equation}

Theorem 1 together with Equality (1) implies Equality (3). \(\square\)

2. Boundary bilinear forms of Steklov type for exterior Laplace problems and its CSM-approximation forms
Let \(D_a \) be the interior of the disc with radius \(a \) being the origin as its center, and let \(\Gamma_a \) be the boundary of \(D_a \). Let \(\Omega_e = (D_a \cup \Gamma_a)^{C} \), which is said to be the exterior domain. We use the notation \(\mathbf{r} = r(\theta) \) for the point in the plane corresponding to the complex number \(re^{i\theta} \) with \(r = |\mathbf{r}| \) being the origin as its center, and \(\mathbf{a} = a(\theta) \), and \(\vec{\rho} = \vec{\rho}(\theta) \), corresponding to \(ae^{i\theta} \) with \(a = |\mathbf{a}| \), and \(\rho e^{i\theta} \) with \(\rho = |\vec{\rho}| \), respectively.

For functions \(u(a(\theta)) \) and \(v(a(\theta)) \) of \(H^{1/2}(\Gamma_a) \), let us introduce the boundary bilinear form of Steklov type for exterior Laplace problem through the following formula:

\[
 b(u, v) = 2\pi \sum_{n=-\infty}^{\infty} |n| f_n \overline{g_n},
\]

where \(f_n \), and \(g_n \), are continuous Fourier coefficients of \(u(a(\theta)) \), and \(v(a(\theta)) \), respectively.

It is to be noted that the following fact:

If \(u(a(\theta)) \) is the boundary value on \(\Gamma_a \) of the function \(u(\mathbf{r}) \) satisfying the following boundary value problem (E):

\[
 \begin{cases}
 -\Delta u = 0 & \text{in } \Omega_e, \\
 u = \varphi & \text{on } \Gamma_a, \\
 \sup_{\Omega_e} |u| < \infty,
\end{cases}
\]

with

\[\varphi = u(a(\theta)), \]

then

\[
 b(u, v) = -\int_{\Gamma_a} \frac{\partial u}{\partial r} v d\Gamma.
\]

The CSM approximate form for \(b(u, v) \) of the first type, which is denoted by \(b^{(N)}(u, v) \), is represented through the following formula (6):

\[
 b^{(N)}(u, v) = -\int_{\Gamma_a} \frac{\partial u^{(N)}}{\partial r} v^{(N)} d\Gamma,
\]

where \(u^{(N)}(\mathbf{r}) \) is a CSM-approximate solution for \(u(\mathbf{r}) \) satisfying (E) with \(\varphi = u(a(\theta)) \). Namely \(u^{(N)}(\mathbf{r}) \) is determined through the following problem (E\(^{(N)}\)):

\[
 \begin{cases}
 u^{(N)}(\mathbf{r}) = \sum_{j=0}^{N-1} q_j G_j(\mathbf{r}) + q_N, \\
 u^{(N)}(a_j) = u(a_j), \quad 0 \leq j \leq N - 1, \\
 \sum_{j=0}^{N-1} q_j = 0,
\end{cases}
\]

where

\[a_j = a(\theta_j), \quad \vec{\rho}_j = \vec{\rho}(\theta_j) \quad \text{with} \quad 0 < \rho < a, \]
\[G_j(r) = E(r - \bar{\rho}_j) - E(r), \quad E(r) = -\frac{1}{2\pi} \log r. \]

Problem \((E^{(N)}) \) is to find \(N + 1 \) unknowns \(q_j, \ 0 \leq j \leq N \), and it is uniquely solvable for any fixed \(\rho \in (0, a) \).

The CSM approximate form for \(b(u, v) \) of the second type, which is denoted by \(\overline{b}^{(N)}(u, v) \), is represented through the following formula \((7)\):

\[\overline{b}^{(N)}(u, v) = -\frac{2\pi a}{N} \sum_{j=0}^{N-1} \frac{\partial u^{(N)}(a_j)}{\partial r} v^{(N)}(a_j), \]

which is the quadrature formula for \(b^{(N)}(u, v) \) with the use of trapezoidal rule.

We use the following notations:

\[b(v) = b(v, v)^{1/2}, \quad b^{(N)}(v) = b(v, v)^{1/2}, \quad \overline{b}^{(N)}(v) = \overline{b}(N)(v, v)^{1/2}. \]

Denote the totality of equi-distant piecewise linear continuous \(2\pi \)-periodic functions (with \(N \) nodal points) \(v(a(\theta)) \) by \(V_N \):

\[V_N = \{v(a(\theta)) = \sum_{j=0}^{N} v(a_j) w^{(j)}(N) \theta\}. \]

Let

\[N(\gamma) = \frac{\log 2}{-\log \gamma} \quad \text{with} \quad \gamma = \frac{\rho}{a}. \]

Theorem 2 We have the following inequalities for any \(v \in V_N \).

\[\frac{1}{4\sqrt{1 + 2\zeta(3)}} b(v) \leq b^{(N)}(v) \leq \frac{\pi^2}{2} b(v) \]

provided that \(N \geq N(\gamma) \), where

\[\zeta(3) = \sum_{r=1}^{\infty} \frac{1}{r^3}. \]

Theorem 3 For \(u, v \in V_N \), we have

\[|b^{(N)}(u, v) - \overline{b}^{(N)}(u, v)| \leq 8\gamma^{2N} b^{(N)}(u) b^{(N)}(v) \]

provided that \(N \geq N(\gamma) \).

3. Proof of Theorem 2
For a fixed positive integer N, introduce sets of integers \mathcal{N}_r through
\[\mathcal{N}_r = \{ n : -\frac{N}{2} \leq n - Nr < \frac{N}{2}, \ n \neq Nr \} \]
with
\[r = 0, \pm 1, \pm 2, \cdots. \]

For any integer $n \in [1, N-1]$, define a function $s_n^{(N)}(\gamma)$ of $\gamma \in (0,1)$, numbers $\Lambda_n^{(N)}$ and $\overline{\Lambda}_n^{(N)}$ as follows.
\[s_n^{(N)}(\gamma) = \int_{0}^{\gamma} \frac{x^{n-1} + x^N - n - 1}{1 - x^N} dx, \]
\[\Lambda_n^{(N)} = \frac{s_n^{(N)}(\gamma)^2}{\{s_n^{(N)}(\gamma)\}^2}, \quad \overline{\Lambda}_n^{(N)} = \frac{\gamma \frac{d}{d\gamma} s_n^{(N)}(\gamma)}{s_n^{(N)}(\gamma)}. \]

We admit the validity of the following Proposition 1 without proof.

Proposition 1 For $u, v \in V_N$, we have
\[b^{(N)}(u, v) = 2\pi \sum_{n \in \mathcal{N}_0} \Lambda_n^{(N)} f_n^{(N)} g_n^{(N)} \]
and
\[\overline{b}^{(N)}(u, v) = 2\pi \sum_{n \in \mathcal{N}_0} \overline{\Lambda}_n^{(N)} f_n^{(N)} g_n^{(N)}, \]
where $f_n^{(N)}$ and $g_n^{(N)}$ are discrete Fourier coefficients of $u(a(\theta))$ and $v(a(\theta))$, respectively.

Using the representation of $\Lambda_n^{(N)}$, we obtain

Proposition 2 If $N \geq N(\gamma)$, then
\[\frac{n}{16} \leq \Lambda_n^{(N)} \leq 4n, \quad 1 \leq n \leq \frac{N}{2}. \]

An elemental calculus leads

Proposition 3 It holds
\[\frac{4}{\pi^2} \leq \alpha(\theta) \leq 1, \quad -\pi \leq \theta \leq \pi. \]

Proposition 4 For $v \in V_N$, we have
\[\frac{1}{16} \left\{ 2\pi \sum_{n \in \mathcal{N}_0} |n||g_n|^2 \right\} \leq b^{(N)}(v, v) \leq \frac{\pi^4}{4} \left\{ 2\pi \sum_{n \in \mathcal{N}_0} |n||g_n|^2 \right\} \]
provided that $N \geq N(\gamma)$.

Proof Due to Theorem 1 and Proposition 1, we have

$$b^{(N)}(v, v) = 2\pi \sum_{n \in N_0} \Lambda^{(N)}_{|n|} \frac{1}{|\alpha(\theta_n)|^2} |g_n|^2.$$

Propositions 2 and 3 imply the conclusion of Proposition 4. □

Proposition 5 For $v \in V_N$, we have

$$\left\{ 2\pi \sum_{n \in N_0} |n| |g_n|^2 \right\} \leq b(v, v) \leq (1 + 2\zeta(3)) \left\{ 2\pi \sum_{n \in N_0} |n| |g_n|^2 \right\}.$$

Proof Due to Corollary of Theorem 1, we have

$$\frac{1}{2\pi} b(v, v) = \sum_{r \in \mathbb{Z}} \sum_{n \in N_0} |n| |g_n|^2.$$

For $r \in \mathbb{Z} - \{0\}$, we have

$$\left| \frac{n}{n + Nr} \right| \leq \frac{1}{|r|}, \quad n \in N_0.$$

Therefore

$$b(v, v) \leq \left(1 + 2 \sum_{r=1}^{\infty} \frac{1}{r^3} \right) \left\{ 2\pi \sum_{n \in N_0} |n| |g_n|^2 \right\}.$$

Hence the second inequality of the conclusion is valid, while the first one is trivial by definition of $b(u, v)$. □

Propositions 4 and 5 complete the proof of Theorem 2.

4. Proof of Theorem 3

Proposition 6 For an integer $n \in [1, N - 1]$, define B_n through the following formula:

$$B_n = \sum_{p \in \mathbb{Z}} \sum_{q \in \mathbb{Z}} \left\{ \gamma^{n+Np} \frac{\gamma^{n+Nq}}{|n + Nq|} \right\}.$$

Then we have

$$s_n^{(N)}(\gamma^2) \leq B_n \leq (1 + 8\gamma^2)s_n^{(N)}(\gamma^2)$$

provided that $N \geq N(\gamma)$.

Proof A lengthy but straightforward calculus leads the conclusion. □

Proposition 7 For $N \geq N(\gamma)$, we have

$$\Lambda_n^{(N)} \leq \Lambda_n^{(N)} \leq (1 + 8\gamma^2)\Lambda_n^{(N)}.$$
Proof Let

\[\Gamma_n = s_n^{(N)}(\gamma). \]

Then we have

\[\Lambda_n^{(N)} = \frac{s_n^{(N)}(\gamma^2)}{\Gamma_n^2}, \]

and

\[\overline{\Lambda}_n^{(N)} = \frac{B_n}{\Gamma_n^2}. \]

Hence Proposition 6 implies the conclusion. \(\square\)

The proof of Theorem 3 is now straightforward. In fact, we have

\[b^{(N)}(u, v) - \overline{b}^{(N)}(u, v) = 2\pi \sum_{n \in N_0} (\Lambda_n^{(N)} - |n|\overline{\Lambda}_n^{(N)}) f_n^{(N)} g_n^{(N)}. \]

Hence it holds

\[|b^{(N)}(u, v) - \overline{b}^{(N)}(u, v)| \leq 2\pi \left\{ \sum_{n \in N_0} |\Lambda_n^{(N)} - \overline{\Lambda}_n^{(N)}||f_n^{(N)}|^2 \right\}^{1/2} \times \left\{ \sum_{n \in N_0} |\Lambda_n^{(N)} - \overline{\Lambda}_n^{(N)}||g_n^{(N)}|^2 \right\}^{1/2}. \]

Let \(N \geq N(\gamma). \) Proposition 7 implies

\[0 \leq |\Lambda_n^{(N)} - \overline{\Lambda}_n^{(N)}| \leq 8\gamma^2\Lambda_n^{(N)}, \quad n \in N_0. \]

Therefore we get

\[|b^{(N)}(u, v) - \overline{b}^{(N)}(u, v)| \leq 8\gamma^2 \times \left\{ 2\pi \sum_{n \in N_0} \Lambda_n^{(N)} |f_n^{(N)}|^2 \right\}^{1/2} \times \left\{ 2\pi \sum_{n \in N_0} \Lambda_n^{(N)} |g_n^{(N)}|^2 \right\}^{1/2}, \]

provided that \(N \geq N(\gamma). \) Due to Proposition 1 we have the conclusion of Theorem 3.

5. Application to mathematical analysis of an FEM-CSM combined method for exterior Laplace problems

Fix a simply connected bounded domain \(\mathcal{O} \) in the plane. Assume that the boundary \(\mathcal{C} \) of \(\mathcal{O} \) is sufficiently smooth. The exterior domain of \(\mathcal{C} \) is denoted by \(\Omega. \)

Fix a function \(f \in L^2(\Omega). \) Assume that the support of \(f, \text{supp}(f), \) is compact.

Choose a so large that the open disc \(D_a \) may contain the union \(\mathcal{O} \cup \text{supp}(f) \) in its interior.

As a model problem the following Poisson equation (E) is employed.

\[
\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \mathcal{C}, \\
\sup_{|r| > a} |u| < \infty.
\end{cases}
\]
The intersection of the domain Ω and the disc D_a is said to be the interior domain, denoted by Ω_i:

$$\Omega_i = \Omega \cap D_a.$$

Consider the Dirichlet inner product $a(u,v)$ for $u,v \in H^1(\Omega_i)$:

$$a(u,v) = \int_{\Omega_i} \text{grad}u \cdot \text{grad}v \, d\Omega.$$

Since the trace $\gamma_a v$ on Γ_a is an element of $H^{1/2}(\Gamma_a)$ for any $v \in H^1(\Omega_i)$, the boundary bilinear form of Steklov type $b(u,v)$ is well defined for $u,v \in H^1(\Omega_i)$. Therefore we can define a continuous symmetric bilinear form:

$$t(u,v) = a(u,v) + b(u,v)$$

for $u,v \in H^1(\Omega_i)$.

Let $F(v)$ be a continuous linear functional on $H^1(\Omega_i)$ defined through the following formula:

$$F(v) = \int_{\Omega_i} fv \, d\Omega.$$

A function space V is defined as follows:

$$V = \{v \in H^1(\Omega_i) : v = 0 \text{ on } C \}. $$

Using these notations, the following weak formulation problem (Π) is defined.

$$(\Pi) \quad \begin{align*}
 t(u,v) &= F(v), \quad v \in V, \\
 u &\in V.
\end{align*}$$

Admitting the equivalence between the equation (E) and the problem (Π), we consider the problem (Π) and its approximate ones.

Fix a positive number ρ so as to satisfy $0 < \rho < a$. For a fixed positive integer N, set the points $\bar{\rho}_j, a_j, 0 \leq j \leq N - 1$, as is defined in Section 2.

A family of finite dimensional subspaces of V:

$$\{V_N : N = N_0, N_0 + 1, \ldots \}$$

is supposed to have the following properties:

$$(V_N - 1) \quad V_N \subset C(\overline{\Omega_i}).$$

$$(V_N - 2) \quad \begin{align*}
 \{ &\text{For any } v \in V_N, \ v(a(\theta)) \text{ is an equi–distant piecewise linear} \\
 &\text{continuous } 2\pi–\text{periodic function with respect to } \theta. \}
\end{align*}$$

$$(V_N - 3) \quad \min_{v \in V_N} a(v - v_N) \leq \frac{C}{N} \|v\|_{H^2(\Omega_i)}, \quad v \in V \cap H^2(\Omega_i). $$
In the property \((V_N - 3)\), \(C\) is a constant independent of \(N\) and \(v\), and
\[
a(v) = a(v, v)^{1/2}, \quad v \in V.
\]

For \(u, v \in H^1(\Omega_i) \cap C(\Omega_i)\), we define bilinear forms \(t^{(N)}(u, v)\) and \(\overline{t}^{(N)}(u, v)\) as follows.
\[
t^{(N)}(u, v) = a(u, v) + b^{(N)}(u, v),
\]
and
\[
\overline{t}^{(N)}(u, v) = a(u, v) + \overline{b}^{(N)}(u, v).
\]

Now two approximate problems (\(\Pi^{(N)}\)) and (\(\overline{\Pi}^{(N)}\)) are stated as follows.

(\(\Pi^{(N)}\))
\[
\begin{cases}
t^{(N)}(u_N, v) = F(v), & v \in V_N, \\
u_N \in V_N.
\end{cases}
\]

(\(\overline{\Pi}^{(N)}\))
\[
\begin{cases}
\overline{t}^{(N)}(\overline{u}_N, v) = F(v), & v \in V_N, \\
\overline{u}_N \in V_N.
\end{cases}
\]

With the aide of Theorems 2 and 3 and other necessary discussions, we can show the following error estimate.

Theorem 4 For a constant \(C\), we have the following estimate.
\[
\frac{||u - u_N||_{H^1(\Omega_i)}}{||u - \overline{u}_N||_{H^1(\Omega_i)}} \leq \frac{C}{N} ||u||_{H^2(\Omega_i)}.
\]

In the above, the constant \(C\) is independent of the solution \(u\) of \((\Pi)\) and \(N\).

References

