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Theoretical and numerical analysis of
fracture phenomena under dynamic loading
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1 Introduction

Let us consider the linear elasticity in the state of plate stress regarding (z1,z2) € s =
Q\ . Here (2 is the bounded domain in IR? with a smooth boundary containing the crack
whose undeformed shape is a piecewise smooth curve ¥ = Ele ¥, in IR? with the two
edges 7o, v, which is given by

o= {(3717332)] T = ¢1(8), Tg = ¢2(8), 0<s< a}
EJ = {(‘Tl’xz)lxl :¢1(S)7 $2:¢2(8), a/] SSSGJ—-}—I} a:aJ+1
with the length parameter s. The functions ¢;(s), I = 1,2 are C? functions in the interval

(a’jaa’j+1)v .7 = 17 Ty J and the edges are given bY Yo = (d)l(o)ﬂ ¢2(0))7 Y= (¢1(a)a ¢2(a’))
We assume X C (2. ' :

Figure 1: The elastic plate with the crack X(t).

The crack extension process is considered to occur in a quasi-static manner such that
inertial effects may be neglected. Therefore, when we refer to time ¢, we use it as a
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parameter that delineates the history of the sequence of events such as in loading or crack
propagation.

Assume that the part T'y of the boundary 9 is fixed and loads ¢ +— f(t) € C?([0,T), L*(IR?)?)
and t — g(t) € C%([0,T), L?(T'x)?) are given. In this situation (see Figure 1), we consider
the virtual crack extension {X(¢)}o<i<r

S(T) = SUSS(T), SS(T)CQ, S(t)=N6S(t),0<t<T,
02(t) = {(z1,32) 21 =¢1(s), 22 = ¢2(s), a < s <a+1,

where ¢;(t), i = 1,2 are C? class in (0,7). For simplify, we assume the parameter ¢ also
express the length of crack extension. Throughout this paper the unit vector v(s), s €
(0,T) denotes the normal direction from the minus side to the plus side; ie., v(s) =

(—¢g(s),¢’l(s))/\/¢§(s)2 + ¢4(s)? when = approaches to (¢1(s), ¢2(s)) from above X(T)
(denoted by %(T)*) and —w(s) is the interior normal direction from below ¥(T) (denoted
by 3(T)7).

Let u(t) = (u;(t)), € = (€45(t)) and o = (0;;(t)) denote that displacement vector, the
strain tensor and the stress tensor, respectively. The strain-displacement relation is given
by

eij(t) = eij(u(t)) = (uiy(t) +usa(t) /2, wi;(t) = Oui(t)/Ox;
and the stress and the strain is connected by Hooke’s tensor whose components ¢ (2, 7, k,1 =
1,2) are the C? functions defined on IR? satisfying the conditions; ¢;jx = Cjiux = Cpuj, i-€.

035(t) = 033(u(t)) = cimen (u(t)).

For each load L£(t) = (£(¢),g9(t)), 0 <t < T, the displacement u(t) satisfy the following

oy = ) o 50
oij(u(t)) vy = oi;(u(t))"v; =0 on X(t
u(t) =0 onI'p

where ;;(u(t))* are the value of o;;(u(t)) on the plus/minus side of £(t), n = (n1,n2)
denote the outward unit normal of 0€0.

In next section, for virtual crack extensions, we will show what’s the crack extension
force which motivate and control the deformations associated with crack extension based
on the concept written in [3] from mathematical viewpoint. In section 3, we will consider
how to select the real crack extension from virtual crack extensions, especially the direction
of the crack extension.

2 The crack extension force in brittle fracture

The weak solution u(t) of problem P, x4 is given as the element of V(€5 (;)) minimizing
the potential energy functional

(v £(t) Do) = [, {wla0) = ) -w}da — [ gl0)-va
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over v € V(Qls(y). Here w(z, v) = ¢;jp(2)ei(v)ern(v)/2,
V(Qg(t)) = {’U S Hl(Qg(t))Q; v=0 on FD}.

Theorem 2.1 If the line measure of I'y is not zero and there is a constant cg > 0 such
that

Cijri&ij€r > o&i&i;  forall & € R 4,5 =1, 2,

then the only one solution u(t) erists and satisfy
anym(u(t),v) = / -vdz —l—/ ~vdl  for all v € V(Qx(t)) (1)
QE(t)

by aa (u(t), v) = / 033 (w(t) e (v) da,

Qs

and satisfy the conditions in Pry s(y. Here the boundary conditions in Pr(t),s(t) has the
meaning on $(t) by o;;(u(t))v; belonging in the dual space of H&ég(z(t)) with the norm

1/2
lelly2,0050 = (/ Pos ()P d€> ,

where pas)(z) is the distance between x € ¥(t) and (t).
Proof. Refer to [8; 9, 11] for the proof.

Theorem 2.2 (see e.g. [5, 13, 4]) At each crack tip v(t), let us consider the local polar
coordinates (r,,0;) that are oriented in such a way that the tangent half-line on the side of
crack surfaces correspond to the angles {—m,+m}, that is, the plus side is on +7 and the
minus side s on —m. If the elasticity is homogeneous isotropic, then we get the expansion
on the neighborhood U((t)) of the crack tip v(t), t > 0,

2 Ko (y(t
ui(z,t) = Y ——;—Zf—)—) SLCm(Ht) + u; g(x,1)
m=1

for x = (r,0,) € U(y(t)), where u;(x,t) are the components of the displacement u(t) and
uir(t) € H*(U(y(1))).

In the case of the constant load £ = (f, g), the most important parameter in fracture
mechanics is the energy release rate

g(ﬁ, Qz()) = Itlftl)l tvl [5(U(0) E, Qz(o)) — g(’l,t(t), ,C, Qg(t))] y

which is the derivative —d&(u(t); L£(t), Qx)/dt|i=1+0 with respect to the crack extension.
Under the constant loading, we have the followmg



182

2.1 Generalized J-integral

Let w be a bounded domain in IR?2. We call the domain w “regular relative to Q5" if the
identity

/ vwdr = ~/ vﬂ-wd:p-l—/ vw n;ds (2)
wNils wN$ HwN)

+ vtwt v, — v w™ I/i) ds

(
wn
holds for all v, w € H'(Qyx) and each i = 1,2. If w Ny has the local Lipschitz property,
then (2) holds (see e.g. [6, p.121]). Therefore wNQy is regular relative to £, if wN €y can
be decomposed into two disjoint domains (wNQyx)* such that wNE C (w N Q)TN(w N Q).

For each solution u of P, 5, we define the G J-integral by

Jo(u, X) = P,(u, X) + R,(u, X)

as a functional depending on the domain w and a vector field X € W*°(IR?)?, where

P X) = [ {w(w)(¥ ) = oyu)ns(X - i)}t (3)
wnN2

Ro(u,X) = f (03 (w) 2 KOs — F(X - V) — X - Vou(z, uw) — w(z, w)divk} de,
wﬂQE

are well-defined. Here n = (ny,ny) is the outward unit normal on d(w N ) and d¢ the
line element of 3(w N ). The integral R,(u, X') is well-defined for all solution u of P 5,
but P, (u,X) needs the regularity of w. We notice that P,(u,X’) contains no integral

over wX.

Theorem 2.3 (refer to [7, 8, 10]) If the virtual crack extension {X(t)}o<i<r is smooth
at y, ,i.e.

#i(s),i=1,2 are C* class ona; <s<a+T (a=ay41),
then we have

where w stands for an arbitrary small domain containing the crack tip v and X the
vector field obtained from parallel extension of X, = (d¢(s)/ds,dpo(s)/ds)s=q over @.
Moreover, we have

G(L,0s)) = Xy-Jy(u) (5)
J'Y(u) = <lhlm0 Pw(u7 61), Ihlnl[) Pw(“’v 62)) 3

where |w| means the measure of w.
If the virtual crack extension {3(t)}o<i<r is non-smooth at v and limy o J ¢ (u(t))

exrists , then we have
G(L, sy) = i Xy - T (ult). (6)
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Proof. The mathematical proof of (4) is given in [7] in 2D-case, and the 3D-version of
(4) is proved in [8]. Here we notice that J,(u, X)) are independent of w, and lim,o Ry, (u, &) =
0 for arbitrary vector field X € W1*°(IR?)2. Then (5) holds. From (5) and by the mean
value theorem, we obtain

t! [5(’(&(0); L, QE(O)) — E(u(t); L, Qg(t))] = X7(gt) . J-y(()t) (u(0t)) with 0 < 6 < 1.

Since the existence of limit limy o J ., (u(t)) is assumed, we can derive (6). This completes
the proof of Theorem 2.3.

Theorem 2.4 Under the constant loading, if the elasticity is homogeneous isotropic and
the crack extension is smooth at vy, then the derivative —d€(u(t); L(t), Us))/dt]i=vo de-
pends only on the singularity at the crack tip v as follows

_dE(u(t); £(2), Qs))
dt

= = (K0 + K2(7)°). (7)

t=+0

If the crack extension is non-smooth at vy and limo K;(y(t)), ¢ = 1,2 exists, then

d€ (u(t); L), L))
dt

— lim = (Ky(/(8)? + Ka(3(1))?) (®)

t=r0 0 E

However, under the varying load £(t), the derivative —d€(u(t); L(t), Qs))/dt|i=0 does
not depend only on the crack extension. By this reason, we introduce another definition
of energy release rate

g(ﬁ(), QE()) = 1}\]%1 —2];1;<O'ij(u)l/j, [[’U,i(t) — UZ]DE(t)

where (-, )5 is the bilinear between the dual space (H /2 (2(1)) )I and Hyl*(2(t))?,
u = u(0) and [v] = v+ —v~. Since oy;(u)rv; =0 on ¥ and [u;] = 0 on X(¢) \ ¥, we think
the following formulas will be valid,

(oij(w)vy, [u)sy =0, {ow(w)ysls, [wi(®)]ls)se = 0.
This will derive the integral expression

o1 .1
lim — {oi (), [ui(t) — uil)ne = lim o . oy (w)v;[ui(t)]de. 9)
Theorem 2.5 If the elasticity is homogeneous isotropic and the crack extension is smooth

at vy, then
1

lim — (W)Y, dl == (K Ky (7)?) . 1

i SO TIO) = (K1) + Ko )?) (10)
Proof. It will be sufficient to prove in the case when the straight crack extend straight-
forward near . Using the localization technique by the cut-off function and the coor-
dinate transform, we can reduce this problem to the case when the crack lie on the line

{(21,0); —o0 <z < 0}.
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By the Heaviside function H(z), we obtain the expression

_022(.1?1,:f20) 1 3 Ki(7) H(J,l) Ka(v) 0 s |

0

| —

—Ul(t;l‘l,O) | B (/i—f—l) [t — xq 0
| uz(t; 21, 0) ] o on (Kl(y(t)) [ H(t — )
+0(\/t - .’E1)H(t — 331),

where £ = (3 — v)/(1 + v) by Poisson’s ratio v. Because

H(t—x;
+K2<~/<t>)[ . )D

./E(t)\z O'z](’l,l,)l/]ﬂuz(t)]]dfzfo {UQQ(.Il,O)[[UQ(t;fEl,O)H +0'21(1'1,0)Hul(t;.%’l,())]]}dl'l

=L )R (0 + Kl Kol (6) (=20 + o)
= KQZ; gt (f\ (1) + K2(7)2) + o(t).

From this we can derive (10).

But (10) does not hold, if the virtual crack extension is non-smooth at 7.

3 The direction of crack extension

If we apply (10) to the straight initial crack ¥ with v = (0,0) and the virtual kinky crack
extension

Yo(t) = {(z,y); z =lcosa, y =Isina, 0 <1 <t}

we then have

/Z e 01 = /0 {os(ull, o) [tan(t: t — 1,00 + cro(ull, ) [uay (t: 1 — LO)]} dL(11)

where
oo(u(l,0)) = oy1(u(z))sin® o+ og(u(z)) cos® a — opz(u(z)) sin 20 (12)
= (2r) V2 (FR K () + FipKa (7)) + 07 (2),
oro(u(l,0)) = (09(u(z)) — o (u(z)))sinbcos b + oip(u(z)) cos 20
(2ml) ™2 ( %(ﬁ) %m) +ofy(x),

o = 3cos(a/2) + } cos(3a/2), Fiy = —3sin(a/2) - 3 $in(30r/2),
% n{a/2) + —5m(304/2) = cos(a/?) - —c09(3(x/2),

Ugr (57, 01 ), Uase(t; rt,Ht) the compornent of u(t) in the polar coordinate (r;,0;) of the
center v4(t) and off,0% € H'(near 7). The jumps [ua(t; 7, 0)], [tax(t; 71, 0)] express
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the opening and sliding displacements of the crack surface, respectively. Then, near the
crack tip v, (t) = (¢ cos o, t sin &), we have the expression

[wan(t:t =10 = Ki(ya(®)(2) "/ (t = 1)/(27) + o(VE = 1), (13)
[war(t:t =1,0)] = Ka(va(®)(2u) "/t = 1)/2m) +o(VE - 1)

on Xy (t). If Ko (7y) = limyyo K;(7a(¢)) exist for i = 1,2, then by the mean value theorem,
we obtain

Ki(7a(t)) = Kio(7) + K (7a(7))t, for 0 <7 <t (14)
Combining (11)—(14), we can derive that the left-hand side of (11) is
1 Y. (87 (87 (43 4
B {(FLE() + FE K (1) K (1) + (F Ko (9) + Fou Ko (7)) Kaa(7)} - (15)
On the other hand, the left-hand side of (11) becomes by (8)
1 . .
'E (KLa(’Y)Q + I‘Q,a (7)2) : (16)

Therefore, it is possible that
Kio(v) = FiKi(7) + FRa(v) (17)

for ¢ = 1,2. However, (17) is not valid by the papers [14, 12, 1] they have been shown
in engineering general stuations e

Kia(v) = FiKi(y)+ F3Ke(y) fori=1,2, - (18)
o 3t s ot m  1lrt 1197%\ g
Fy = 1—?m +<7T “ g™ + T +15360 m® + O(m°),
N 3 100 73 . 13373 597°
Fy = — 5 ™ + <—73~ + TG_) m"‘ + (—‘27- ~ 80 + 1280) m® + O(m7),

4 3 , 2 1373 597° 5
= Im, — (j—r— + W—) m?® + (—% + Sg - ;820) m® + O(m"),

32 ) 8 292 =4
Fy = 1_<4+%)m%+(~+—l~ﬂ t

32 4x? 11597 . 11976
15 9 7200 15360

) m® 4+ O(m?),

with m = «o/n. The taylor’s expansions of Fi(i,5 =1,2) are

3m?27?  Tmtxt 61mbx®

a _ 7
i g8 T Tim 15360 T O
—3m7m  Tmirt  61lmdrd
Fe = . 7 .
21 SRR 1280+ O,
mm  Tm*wd  61mPad
Fo o - - O 7
R B T )
Foo— 1o 7Tm? n? N 61m*n? B 547 m® 76 o),

8 384 46080
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This leads the following modification of (17)
Kia(y) = FK(7) + F5K(7) + O(?). (19)

There are many criterions which determine the crack direction a*. We only show the
famous three criterions in homogeneous isotropic elastic plate.

Definition 3.1 (maximun stress criterion [2]) Find the angle o™ that is the mazi-
mum value of FE K (y) + FLKa(y) over —m < a < 7.
Also o satisfy F Ki(7) + F$ Kao(y) = 0.

Definition 3.2 (maximun energy release rate (see for example [14, 1])) Find the
angle o* that is the mazimum value of the energy release rate equivalent to 713— (K1a(7)* + Ko n(7)?).

Definition 3.3 (local symmetry (see for example [14, 12, 1])) Find the angle o*
that satisfy the condition Ks 4 (y) = 0.

If (17) is true, we can prove the following; If the crack extends smoothly, then a* =0
and all criterions are valid. But each criterions make the difference when o* far from 0
(see Figure 2).

We now apply the various criterions of the direction for an infinite body loaded by
uniform forces at infinity with the angle 5. By the experiment, the crack extends straight-
forward at 8 = 7/2 ~ 1.57. The Figure 2 indicates that all criterions give the similar
angles near 8 = m/2, but they differ near 3 = 0. The curve with the label J2(v) is
the same one by the maximum energy release rate criterion, and the curve with J1(7) is
obtained by the formal application of J-integral for non-smooth crack extension. In the
calculation, we used (18).

Acknowledgment
This research is supported from Grants-in-Aid (B)(1)#10440035 for Scientific Research.

References

1] M. Amestoy and J.B. Leblond. Crack paths in plane situation — II. Detailed form
of the expansion of the stress intensity factors, Int. J. Solids Structures, 29(1992),
465-501.

[2] F. Erdogan, and G. E. Sih, On the crack extension in plates under plane loading and
transverse shear, J. Basic Engng, 85(1963) 519-527.

[3] G. R. Irwin, Fracture mechanics, in the book “Structural mechanics”, Pergamon
Press, 1958, 557-594.

[4] A. Friedman, B. Hu, J. J. L. Velazquez, Asymptotics for the biharmonic equation
near the tip of a crack, Indiana Univ. Math. J., 47(1998), 1327-1395.

[5] V. A. Kondrat’ev, Boundary problems for elliptic equations in domains with conical
or angular points. Transactions Moscow Mathematical Society 16(1967), 227-313.

[6] J. Necas, Méthodes directes en théorie des équations elliptiques, Masson Editeur,
Paris, 1967



187

[7] K. Ohtsuka, J-integral and two-dimensional fracture mechanics, RIMS Kokyuroku,
Kyoto Univ., 386(1980), 231-248.

[8] K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I, Hi-
roshima Math. J., 11(1981), 21-52. '

[9] K. Ohtsuka, Generalized J-integral and three-dimensional fracture mechanics. II.
Surface crack problems, Hiroshima Math. J., 16(1986), 327-352.

[10] K. Ohtsuka, Mathematical aspects of fracture mechanics, Lecture Notes in Num.
Appl. Anal., 13, 39-59, 1994.

[11] K. Ohtsuka, What’s the crack extension force in three-dimensional quasi-static brittle
fracture, to appear.

[12] Y. Sumi, A note on the first order perturbation solution of a straight crack with
slightly branched and curved extension under a general geometric and loading con-
dition, Engineering Fracture Mechanics 24 (1986), 479-481.

[13] W.L.Wendland, E.P.Stephan, A hypersingular boundary integral method for two-
dimensional screen and crack problems, Arch. Rational Mech. Anal. 112 (1990) 363-
390.

[14] Chien H. Wu, Maximum-energy-release-rate criterion applied to a tension-
compression specimen with crack, J. Elasticity, 8(1978), 235-257.

[/ AN

(TT77

. ‘Ji(Yz)

vJ;('Yz)
To25 0.5 0.5 L 125 ° 1.5 B
J () = Jo,(u,er)cosa+ Jo (u,es)sina,
J2(y) = lim lim [Jo,(u(T),e1)cosa+ Jeo,(u(T), €2) sina] .
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Figure 2: The direction of crack extension by various criterion.



