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1 Introduction

In this paper, we consider the following moving boundary problems. Let { be a bounded
domain of R™ (m > 2) and let I'(¢) C © be a moving closed hypersurface which divides {2
into two open subset Q% (¢) and Q~(¢) as

Q\T@t) = uUQ~ (@), QTHONQ@)=0, Q- ()N - 0,

where t is a time variable. In this paper, we call I'(¢) a moving interface and, for our
convenience, we call Q% (¢) and Q7 (¢) the outer and inner domain of I'(¢) respectively. For
z € I'(t), v(x,t), k(x,t) and v(e,t) stand for the inward unit normal vector, the sum of
the principal curvatures and the inward normal velocity of I'(¢) at @, respectively, where
the signs of principal curvatures are nonnegative if {7 (¢) is convex.

The following problem is the object of our study.

Problem 1.1 Let T° C Q be a given initial interface. For given p > 0, u € C*(Q x
[0,T);R™) and g € C*((Q x [0, T];R) (T > 0), find ['(t) (0 <t < T) such that

{ v(e,t) = px(e,t)+u(e,t) viet)+g(e,t), (xel(t), 0<t<T)
ro) = re.

In the case that « = 0 and g = 0, Problem 1.1 is called the curve shortening problem for
m = 2 and the mean curvature flow problem for m > 3 ([1], [2], [3], [4], [5] etc.). Roughly
speaking, the coeflicient p corresponds to the surface tension of I'(¢) physically.

If 4 =0 and g = 0, this problem stands for the motion of a surface in the velocity field
u. The term g stands for some external forces. In particular, when g = 0, v = 0 and
g = 1, this is the equation of growth with constant speed.
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A lot of numerical methods for moving boundary problems including Problem 1.1 have
been proposed. We make mention of only a few of them here. In general, a numerical
method for a moving boundary problem incline to be complicated and to include some ad
hoc procedures. It means not only less applicability but also difficulty in mathematical
analysis of the method. It is usually not easy to show convergence of numerical interfaces
to exact one.

There are only a few mathematical results on convergence of interfaces, as far as the
author knows. A front tracking method using a special, but not ad hoc, finite difference
scheme for the curve shortening problem is proposed in [6], [7] by the author, and its
convergence is proved. This method can be applied other two dimensional moving boundary
problems. But it is not easy to apply it to three dimensional problems. In multi-dimensional
case, for Problem 1.1 without u, a finite element method using approximation by a reaction
diffusion equation is proposed by Nochetto and Verdi [11] and its convergence is also proved.
Their method has not only good theoretical background but also good practicality. But it
is difficult to apply their method to other moving boundary problems, because it is strongly
based on the nature of the problem.

We propose a finite difference-level set method using the signed distance function for
Problem 1.1. The aim of this paper is to give a convergence theorem for the case g = 0
(Theorem 4.2). The proof is based on the Lipschitz continuity of the signed distance
function (Proposition 2.2) and on the discrete maximum principle (Lemma 3.2). The basic
lemmas and propositions are valid for 4 > 0. Because of the restriction of pages, almost of
the proofs of lemmas and propositions are omitted in this article. The complete proofs are
found in [8].

We briefly mention the other sides of this method which can not be discussed in this
paper. For the case p > 0, we have no convergence theorem but numerical convergence
is observed in [9] and [10]. An effective algorithm to realize our discretized problem in
practical numerical computation is also proposed in [9] and [10]. In addition to these
reliability and practicality, we can expect wide applicability of this method because of the
use of the signed distance function. For instance, the signed distance function does not
depend on the problem but is defined only by the shape of the moving boundary.

The paper is organized as follows. In the next section, we introduce the signed distance
function and state some its properties. A level set formulation of Problem 1.1 is also given
in § 2. In § 3, its finite difference approximation is considered and its basic properties and
some lemmas are given. In the last section, we give a convergence theorem for the case
g = 0. This is the main result of this paper.

2 Signed distance function

For a moving interface I'(¢) (0 < ¢t < T) as in § 1, we define the signed distance function
as follows.
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Definition 2.1 (signed distance function)

+dist(z,['(2)), (z € Q*(t), 0<t<T),
d(@,t) := { —dist(z,I'(¢)), (z€Q(t), 0<t<T).
We define :
M:= [J T(@t)x{t} CR™ xR, (2.1)

0<t<T

and assume that the following conditions:

M is a C'-class hypersurface of R™ x R. I'(¢) is of C?-class and its
principal curvatures and principal directions are continuous on M.

(2.2)

For ¢ > 0, the e-neighborhood of I'(¢) and M are denoted by
NeE(D(2)) :={z € Q; dist(z,['()) < e}, N(M):={(z,t); z € N(T'(t)), t € [0,T]}.

There exists a positive constant e* such that the map: (z,p) — @ — pr(z) is a C*-
diffeomorphism from I'(t) x [—&*,&*] to N=*(T'(¢)) C Q for 0 <t < T. Let & € I'(t) be the
foot of the perpendicular to I'(¢) from @ € N*'(I'(¢)). Under the assumptions (2.2), it is

known that d, dg;, dy;z; and d; are continuous in N¢*(M), and

&= —de)Vde,t), Vdet) =—vzt), dzt) =@t (&) ecN=(M)),

k(y,t) = Ad(y,t)  ((y,t) € M).

We give some propositions for a fixed surface I', where the signed distance function of I
is defined similarly. ’

Proposition 2.2 Fora closed hypersurface I' in R™ and its signed distance function d(-),
the following inequality holds: . : .

d(=) —d(y)| < |z —y| (x, y €R™).

For two compact subset K; and K, in R™, dy(Kj, K;) stands for the Hausdorff distance
between K; and Kj:

du(Ki, K3) := max { max dist(x, K3), ?1}1&)5 dist(y, Kl)} .

LKy

We remark the following equality which is one of well-known properties of the Hausdorff

distance:

du(Ky, K;) = sup |dist(e, K;) — dist(z, K,)| (2.3)
TecRm

For a fixed compact hypersurface I' of C?-class, we define v(z), d(x), c* etc. as for a
moving interface.
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Proposition 2.3 Let I' be a compact hypersurface of C?-class in R™. If a closed subset

K C N¥(T) satisfies T = {& — d(2)Vd(z); ® € K}, then dg(K,T) = maxgex |d(z)|.
Under the condition (2.2), we define C, := max(e yem |[v(x,1)], and give the following
proposition:

Proposition 2.4
|d(z,t,) —d(z,t)] < Cy(t— 1) (2€Q, 0<t; <t, <T).

Let T'(t) (0 < ¢ < T) be a sufficiently smooth solution of Problem 1.1 and let d(z,t) be
the signed distance function of I'(¢). They satisfy the following equalities:

I'(t)={z € d(z,t) = 0}, (0<t<T),
di(z,t) = pld(z,t) —u(e,t) Vd(e,t)+g(z,t) (d(e,t)=0, 2€Q, 0<t<T),

d(z,t) = Lmin{le—y|; d(y,t) =0} (£d(z,t) >0, 2€Q, 0<t<T),

d(z,0) = d°%ae) (x €Q),
(2.4)
where d° is the signed distance function of I'°. For small ¢ > 0, (2.4) is formally approxi-
mated by the following problem:

d&(z,t) = pldi(z,t) —u(z,t)- Vd(z,t) + g(z,t) (|d°(z,t)] <e, z€Q, 0<t <T),
d&*(e,t) = zmin{le —y|; &(y,t) =0} (d(z,t) > e,z e, 0<t<T),

d*(=,0) = do(m) (z € ),
(2.5)
We expect that T'°(t) := {& € Q; d°(x,t) = 0} approximates I'(t) as ¢ tends to zero.
Although any mathematical result for the problem (2.5) has not been obtained yet, in the
next section, we proceed to the next step: discretization of (2.5).

3 Finite difference approximation

In this section, we consider a finite difference approximation of the problem (2.5). Although
we consider two dimensional problem in the following sections for simplicity, all arguments
are valid in the three dimensional case.

We consider a uniformly divided finite difference mesh on the @ = (z,z;)-plane. We
assume the following assumptions just for simplicity again, but they are not essential. We
assume that Q@ = (0,1) x (0,1), and that z; and z, directions are both divided by a same
mesh size h = 1/n (n € N). We define Q := (h,1 — k) x (h,1 — h).

The nodal points and sets of nodal points are denoted by §;; := (:h, jh) and

Wy = {€Zj7 i=0,1,---,n,j=0,1,---,n}, (f:}h:: {Elj, 1= 1727"'an_17j: 172a"'an_1}'
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For each closed square [ih, (i + 1)k] x [jk, (j + 1)}] contained in 2, we divide it into two
right triangles of three sides (%, h,+/2h). (There are two way to divide a square into two
right triangle. We fix one of them for each square.) Let 7, = {e} be the set of all such
closed right triangles, and, for a set K C Q, we define

Su(K):={p € wy; p€e €T enK # 0},

in particular, we define S?(K) := Sy(Sx(K)) and Sp(x) := Sp({x}) for @ € . For P C wy,
we also define
T(P):={x € Q; ¢ € €T, (eNwy) CP}L

We define the following spaces of piecewise linear functions on 7j:
Vi, := {wy € C°(Q); wy, is linear function on each e € Tj.}, X}h:z {w”m; wy, € Vi }.

The function space Vj, is the same one which is known as the Pl-element space in the finite
element methods. An interpolation operator from C°(Q) to V} is defined as

Muw(p) :=w(p) (w€CQ), p € wp).
We fix a time increment At > 0. For brief description, we write
I*:=T(kAt), vF(x):=v(x,kAt), d*=):=d(z, kAt),

ut(@) =(ub(), ub(2)) = u(@, kAL, ¢¥() = g(e, kA),

for k=0,1,2,---. We consider df € V}, which is a finite difference approximation of dF for
k=0,1,---,[T/At]. Approximations of T'¥ and Q*(t) are defined by

Ifi={z e dix)=0}, Q*:={zecQ; Ldi(z)>0},

where we remark that I'f is a linear segment on each triangle. For ¢ > 0, we define a
discretized e-neighborhood wf of I'f as follows: '

Wi == {p €w; tdi(q) 2 ¢ (g € Si(p)},  wp i=wn \ (wh UWE).
We remark that wf has the following characterization:
wg = Sh(N; (k) UT"), (3-1)

where N (k) := {p € wn; |di(p)| < €} (see [9] and [10]).
Using the standard five points finite difference formula, a discrete Laplacian A, as a

linear operator from V} to X;h is defined as:

(Apwp)(&y;) = %(wh(€i+l,j) + wp(€iy ;) + wi(&s 1) + wa(€s 1) — 4wn(€y;))
(wp € Vi, 2, 3 =1,2,---,n—1).
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For a given vector field u(®,t) and a time increment At > 0, we also define an up-wind

‘gradient operator from V}, to ({;h)2 as follows. For wy, € V,,

(wa(&;; + her) —wi(€y;)) (uf(€;;) < 0)

1=1,2,
Z.aj:]-aza"'vn—l ’

(Vhwn) (&) =1 (65 1wn) (&), (8F yw0n)(€)) (G G=1,2,--,n— 1),

where e; :=%1,0) and e, :=%0,1).
As a numerical scheme for Problem 1.1, we propose the following fully discretized prob-
lem.

(52,1’%)(5@) =

> >

(wr(&;;) — wa(&;; — her)) (uf(&;) > 0)

Problem 3.1 Fiz parameters h > 0, At > 0 and € > 0. For given u > 0, u € C°() x

[0,T])? and g € C°(Q x [0,T)), find df € Vi (k = 0,1,---,[T/At]) and dt eV (k =

1,2,---,[T/At]) which satisfy the following equations:

([ di*(p) — di(p)
At

IA
|
SN——

= uladi(p) - wH(p) - Vidi(p) +9"p) (P D, 05k

. T
it (p) (pewé“, 0<k< Kt)’
diti(p) =

& = M,

It is obvious that this problem is explicitly solvable. More practical numerical algorithm
for this problem can be found in [9] and [10].
We define the following constants and give a simple but important lemma.

Cu:= max (Jui(e,t)|+ |uw(2,t)]), Cp:= max |g(z,t)|.
TeQ,0<t<T Ten,o0<t<T

Lemma 3.2 We suppose that At > 0, h > 0 and € > 0 satisfy the following inequalities:

(4u+ C,h)At < B, C,At <e. (3.3)

For p Equh, if
tdi(q)>e (g€wn [p—q|<h), (3.4)

then we have £d:™(p) > 0.
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Proof. This is just an application of the discrete maximum principle as follows:

+dit(p) = =+ [df(p) + Atulndi(p) — Atut(p) - Vid}(p) + Atg*(p)]
> min{+d}(q); ¢ € wp, |p— q| < b} — Atlg¥(p)| > ¢ — AtC, > 0.

]

Since p € Sp(wh) or p € Si(w*) satisfies (3.4), we have the following corollary.

Corollary 3.3 Under the assumption (3.3), for all k =0,1,---,[T/At] — 1, we have

{;B € Jﬁ“(a:) = 0} = l‘ﬁ“ C Th(wg), Th(Sh(wi)) C Qz+l’i.

Let h and h denote the maximum diameter of the triangular elements and the maximum
radius of the circumscribed circles of the trlangular elements. In our case, b = V2h and
h= h/\/_ We define

ef = II,d* — df,

and & := max{e, h}, then we have the following lemmas. For their proofs, see [8]. |
Lemma 3.4 We fiz k (k=0,1,---,[T/At]). For p € wf, we have
[4*(p)] < lleklloo + 2R + & (35)

Lemma 3.5 We suppose (2.2) and (3 3). We assume that the following inequality holds
for some k,
||eh|[oo+h+2h+s+CvAt§5 , (3.6)
then we have ‘ ‘ -
Th(ws) CNi,  du(P*, T3 = max |d(2)),
. wGFk+1

where
Ny = N N (T(¢)).
EA<t< (k+1)At
Lemma 3.6 We assume (2.2), (3.8) and (3.6), then we have the following estimate:

leit ()] < du(T*H, T3 (p e wh UWE).
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4 Convergence theorem

In this section, we assume the following conditions:
p=0, CyAt<h<hy, CjAL<E, (4.1)
where
ho :=inf{|le —y|; = € N*(I'(t)), y € 89, 0 <t <T}.
We have the following lemma.

Lemma 4.1 We assume the condition (4.1). Let T'(t) (0 < t < T) be a solution of
Problem 1.1 and we define M by (2.1). If M is a C*-class hypersurface of R™ x R, then
there exist positive constants My, My, M3z which are independent of At, h, k and p such
that

lef+1 (p)] < (1+ALMy)| ek |loo+ A2 My + AtEMy+Ath(2V2My+ M) (p € wENN}). (4.2)

Proof. For k =0,1,---,[T/At] — 1, we define

MH@) = ﬁ (*1(2) — d*(2) — Atd(=,kAY), (2 €N)

M) = @{—(uk@)—u’“<w>)~w'“<w>+(gk@)—gk(w))}, (2 € Wi\ T%)

where & := @ — d*(2)Vd*(x). By the Taylor expansion, we have
1
M (z) = §dn(m, (k + 6(z))At),

for some #(x) € (0,1) because d € C*(N<*(M)). The value of M§(z) for & € I'* is not
defined, but it is possible to define it as My € C°(NV}). Hence, there exist constants M; and
M, which are independent of At, k and @ such that |Mf(z)| < M; (I = 1,2) for z € N,
k=0,1,---,[T/At] — 1. Using these functions, for # € N, we have

& (2) = df(x) + Atdi(x, kAt) + AL’ M ()
= d°(x) + Atv(z, kAt) + A M ()
Kx) — Atuf(Z) - Vd*(x) + Atg*(2) + A’ Mf ()
Fe) — AtuF(2) - Vd¥(x) + Atg*(x) + A2 MF () + AtdF (=) My ().

i
o a

z
Furthermore, for p €w;, NN, we have
d*(p) = d*(p)—Atu*(p)-ViIL,d" (p)+Atg" (p)+At* My (p)+Atd* (p) My (p)+ Ath M (p),

where
ME(p) := zu(p) - (Vi (p) — Vi (p)).
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There exists a constant M; which is independent of At, h, k and p such that
IM5(p)| < M;  (p €wn NN, k=0,1,-,[T/At] - 1).
For p € wf NN}, we obtain

eit'(p) = d(p) - di*(p)
en(p) — Atu'(p) - Viiej(p) + At My (p) + Atd" (p) M5 (p) + AthM; (p).

From this equality, Lemma 3.4 and the discrete maximum principle (similar as in Lemma 3.2),
(4.2) is obtained as follows:

|51 (D)] < |l€F]|oo + ALZM + At(||eF||oo + 2V2R + &) My + AthMs.

We define Cy := ko/(1 — £*ko), where K¢ := maxz yem |£(2,t)|. We have
jd(@,t) — Myd(=, 1) < Cgh? (@ € Th(wn N N=(T(2)),
from a well-known interpolation estimate. The following theorem is the main result of this
paper. '
Theorem 4.2 Under the same assumption of Lemma 4.1, in addition, we suppose that

2
“62”00 — 0, e=¢(h) =0, %t— — 0 as h — 0. (4.3)

Then, for sufficiently small h, we have

6M2 T _

du(T*,T}) < T led ]l + L

h
(AtM1 + EM, + h(2V2M, + M3) + Cy t) + Czh%.

A
(4.4)
In particular, suppose that there are constants Co > 0, X € (0,C;'] and 0 > Cy\ such that

lea]l < Cok,  At=Ah, e=o0h,
then we have dy(T*,T%) = O(h) as h — 0.

Proof. We suppose (3.6). From Corollary 3.3 and Lemma 3.5, we have

dg(T*F1,T3) = max |d"™*!(z)|
Ter;t?
< max | (z) — ILd* ()| + max et ()]
Terkt xery*!

< Cqh* 4+ meax leF1(p)].
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Combining this inequality and Lemma 3.6 and 4.1, provided (3.6), we obtain
ekt |0 < (1 + AtM,)|ef||oo + A2 My + Ate M, + Ath(2V2M, + Ms) + Czh*.

Solving this recursive inequality, we have the result (4.4), where the condition (3.6) is sat-
isfied by each step k =0,1,---,[T/At] — 1. The last assertion is clear from (4.4). O
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