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1 Motivation and results

Let WyP(Q),1 < p < oo, be the Sobolev space over a bounded polygon or
polyhedron Q with boundary in 40 in R?¢,d > 2. Then we have a compact
injection Wy™(Q) < L1(Q) for

1 _1_1 1_1
D 3<q§1 for 1< o
O<l<1 for L_1

q = d~ P

(the Kondrasov theorem in the case d > 2). Let 7, be a triangulation of O
and Wy be the space of non conforming finite element space of degree one
with seminorm |vi|1,, defined by

onll o = 2 IVORllLoy.s
KE€Th

where the precise definition of V is given in Crouzeix and Raviart [3]. Note
that the seminorm |vs|; s is considered as the norm for the space Wy,
denoted by Wolyf. Then we see that there exists a discrete compact injenction

WoP < L(Q), where the relation between p and ¢ is described as in (1) (cf.
R. Temam [8], for example). We can regard h as the value of the maximum
of elements K € 7,. Now we recall an external approximation of normed
spaces mentioned in section 3.1 of Chapter 1 of the book R. Temam [8] and
shall modify it slightly.
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Let F = {LP(Q)}¢*! and wy : WP(Q) 3 v = wo(vp) = (v, Vv) € F be an
isomorphism from Wy*(Q) into the space F. Since W, is not included in
the space W, ?(Q) and Ov,/dz; is the sum of Dirac distribution on the faces

of elements K € T, and of a step function D;,vy defined almost everywhere
by

Dipvy, = ;8% Vz € K,YK € T.

We set Vo, = (Dihvh)K,(d and wy, : Wol,’,f S VR = WRUE = (vh,@vh) e F.

As mentioned we have a discrete compact injection from WOI,’: into L?(£2)
for each positive number h. Let H = {h,}, be a sequence of positive numbers
decreasing to zero, and let WOI, = U;”=1W01,’,’;n. For each h,, there exists an
injection : W&’fﬂ — L)) under the same relation (1) between p and ¢
by the discrete Sobolev imbedding theorem (cf. [8]). Then our problem is
described as follows.

Is it true that the injenction Woh, < L1(R) is compact ?

Let 7, = Th,. We show that the question above is solved affirmatively
under two conditions on the sequence Ty = {7, }oo , that is, (1) Ty is quast
uniform, and (2) Ty is quasi uniform in any direction. We shall fixed these
two ideas below.

Let hx and hox be the maximum of K € 7, and also the maximum
of the spheres included in the same K, respectively, let ox = hx/hox and
0, = MmaXgeT, 0n. Before describing the quasi uniformity and the quasi
uniformity in any direction on 73, we recall that Ty is regular if T3 satisfies

limsup o, = ¢ < oo0. (2)
n—00

Let hmaz,n = maxg hx, hm,‘n,n = ming hg and 0, = hmaz,n/hm,‘n’n.
Definition 1 If

limsup 6, = 0y < oo, (3)

n—00

then we say that Ty is quasi uniform.

Let us introduce another notion. For arbitrary n €N, K, € Ty, zo €R¢
we set

}\/:([(0,20) = {[\’ € 7:1

Ew € [(0, Et & [0, 1]/ w + tZ() & [X’ }

and let # (Ko, zo) be the number of elements K € K(Kj, 2zp)-
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Definition 2 If there exist constants cy 1, cy 2, independent of n €N, K, €
Tn, z0 €ER?, such that

i 2
- #(Ko, 20) < C’H,l%(‘)‘l‘ + ¢y 2,
n

then we say that Ty is quast uniform in any direction.

The lemma below is essential in this paper.

Lemma 1 If Ty is regular and quasi uniform, then it is quasi uniform in
any direction.

My main theorem is described as follows.
Theofem 1 If Ty is reqular and quasi uniform, then the injection :
Wit < 19(9)
is compact where p and q satisfies (1).

Let t € (0,T) be a time variable and v(¢) be the time derivative of a
function v(t). For 1 < r < co, we introduce a space by

24 (0,T; Wag) = {ve I (0,75W2p) |0 e I (0,73 27(2) }

Then applying Theorem 2.1 in Chapter III, section 2 in [8] to the above
Theorem 1 we directly get

Corollary 1 For a regular and quasi uniform family Ty we have a compact
injection
2V (0,T; Woky) = L7(0,T; LP(Q)).

Further we show an application of Corollary 1 for a finite element scheme
approximating the convection problem (P)q: find p such that

% 1 @-Vp=0 inQ=0x(0,T), (4)

p(z,0) = p°(z) 9Q, (5)

where p° is an initial data satisfying 0 < M; < p® < M, < oo, with some
positive constants M; and M, and u is a known velocity field satisfying

i e L (0,75 {22 (0)}) n L2 (0, T; {HE ()}) (6)

V-i=0 mQ (7)
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in the sense of distribution.

Since we only assume (6) and (7), the velocity @ is not smooth in the
classical sense, we can not know generally how regular a solution p of the
problem (P), is. Besides we should choose an approximation of the known
velocity u to construct approximations of p. Actually, by our finite ele-
ment scheme (8), under the conditions (6) and (7), we have a weak solution
p € L=(0,T;L=(Q)) of the problem (P)o such that j € L2 (0,75 M) (cf.
Theorem 2). Thus our weak solution p is not smooth enough, however ap-
plying Corollary 1 obtains a more regularity than as in Theorem 2. Under
smooth velocities we can see methods to construct solutions in C. Bardos [1].

More minutely, we shall consider our scheme (8) and the solutions of
(P)o as follows. As mentioned previously, we do not know how to construct
the classcial solution p by a finite element scheme under the conditions (6)
and (7), although it is possible to get a weak solution of (P), in the sense
described below, as a limit of discrete solutions r™ of the problem (P) : find
r™* € Gy, (cf. Theorem 2) such that

5 n
(__r,—cy)_l_ Z/U”-up{r”]gado':() Va € G, (8)
T Fca’f

where G}, is a function space of the totality of functions constant on each
trianlge K € 7,. Further F(C 0K) is a d — 1 dimensional simplex, &
=t —rnl " = (U )1<i<d, UT € Won and Wy is the space of the totality
of non-conforming finite elements of degree one (cf. [4]). Besides see [6], [5]
and [3]. Let vp be the normal unit vector to F' such that U™ - vz > 0 and
for K; € Tp,t = 1,2. Then either of K; and K, is called to be the upwind
element and the other is said to be the downwixbd element associated with

F, where FF = 0K; N 0K,. Besides we set [r"}U_ = r“‘K — r"lK , where
D U

Kp and Ky are the downwind and the upwind elements assoociated with F,

respectively. We assume

ap {0+ 3 (o[ 4o )} <o @

m=1,2, N

where [|U"||, = Z /K

KeTh

rL(t) = ((t — tn_l)r" + (tn — t)r"“) /T

for t,-1 <t <t,. We further assume

VU['dz. Let U(t) = U (1) and

HUA — U

LTy 0 as7—0,h—0. (10)

Then we can show the follwoing theorem (see [4]).
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Theorem 2 We assume (6), (7), (9) and (10). Then the sequences {r*}
and {rL} are bounded in the space L*® (O,T; L*> (Q))) and L* (0, T, M*) with
M = HY(Q), respectively. Further, there exist subsequences, still denoted
by {r} and {rL} convergent to p and p in L* (O,T; L* (Q)) x—weakly and
L2 (O,T; M*) weakly, respectively. Here p is a weak solution of the problem
(P)o associated with the space M in the sense below.

In the above theorem we have adopted the notion of weak solutions of
(P)o described below.

Let M = W'P(Q) with some 1 < p < co and M* be the dual space of
the space M. Then p is called a weak solution of (P)y associated with M,
provided that p is a solution of the problem (P);: find p € L* (O, T; L (Q))
and p € L?(0,T; M*) such that

/ "< B> ((t)dt— / (o @ VBt =0 VB e M, (e C0.T),

T .

/OT <p, B> ((t)dt + (0°,8) = —/0 (p,B)C(t)dt VB € M,¢ € C[0,T]

with {(T') = 0. Here we write yu = p.

Recall that M} # Mj and My C M; for My = Wh4'(Q), M, = Wha"(Q),
oo > ¢" > ¢ > 1. It would be said that g € M; is smoother than f €
(M;\ M) and G € M{ is smoother than F' € (Mj\ M;). Thus, for p; € M;
and M; = W' (Q), p; € M} is smoother than p, € M; . This means
that a weak solution associated with M, is smoother than a weak solution
associated with M. ‘

Under these preparation combinig with Corollary 1 and Theorem 2 we get
as an application of Theoem 1 that the weak solution satisfies more regularity
than as described in Theorem 2.

Theorem 3 The weak solution p of the problem (P)y gotten in Theorem 2
is a weak solution associated with W'1(Q) provided 2 > q > qo = 2d/(d + 2)
ford>3 and2>qg>1 ford =2.

2 Proof

Once we have obtained Theorem 2, then Theorem 3 is implied by Theorem 2
and Corollary 1 together with the Holder inequality. Therefore, it is essential
to prove Lemma 1 and Theorem 1.

Proof of Lemma 1 For a set G CR? and y €R? we denote d(y,G) the
metric between y and G. Let U(2h, Ky) ={y € R? |d(y, Ky) < 2h }. We
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can assume that 0 € Kp and 2z = (0',&),0' €R*"!. Further we can take a
positive constant ¢, independent of h € H, such that

Ko C U(2h, Ko) C [=c)h, ¢y h]".

Let Q(Ko;20) = U{ K | K € Kk, }- Then we have Q(Ko;20) C
U(h,Q(KO;zo)) and

U (h, (Ko; 20)) C [—chh, yhl*™ x [—ciih, cih + do] = S(Ko; o).

Notice that any element K € K(Ko;2o) belongs to S(Ko; 2o).
On the other hand the Lebesgue measure |K| of any K is estimated by
ke, . < |K]|, because Ty is regular. Thus, for small h, = Apqpn, We get

|S(I{Oa zﬂ)l < hfnaﬁ: n(50 + Zc'l}{hmaﬂ;,n)
hd - hd

mzn n mzn n

/ - /
<2(%) » (%)
Cy hmin,n Cy
< (C”a‘)) o (—29050 + 2f#> .
C’H hmax,n C’H
|
Proof of Theorem 1 First notice that we have a discrete version for the

Sobolev imbedding theorem as follows: there exists a positive constant Cy;,
independent of v, € W(i 4 and of h, € H, such that

#(Ko; 20) <

[vallze < Cu (lvalvp + llvnllp) (11)

provided that H is regular, where g is given by 1/g = 1/p—1/d for 1/p > 1/d,
or otherwise q is an arbitrary number such that 1 < § < oo.

This is proved on each estimate on each elements K € T, ,h, € H by
the standard method in the interpolation theory described in [2], then these
estimates are summarized to the domain Q by using the Holder inequality.

Thus, we get (11).
' To prove Theorem 1 in a short form, we show only the major part of
the proof and the remaining part is refered to the proof of the Kondrasov
theorem.

First, for an arbitrary small positive number ¢ there exists a subset 2*
such that 0* € O € Q and |Q\ ] < (¢/(3C%))7 /"~ where ¢* is the
dual exponent of q.

We assume that [vn)ipn < 1,n = 1,2,3,--, for {v,}, C Wyh. To
conclude the proof it is sufficient to show for p = 1 (cf. [7]) that there exist
positive numbers &y and kg such that, for any z €R?, |z| < & and

/Q vn(z + 2) — vp(z ld:v<2/

1\0

vn(z + 2) — vp(2 ld:L
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=1(z) < %lvnh,l,ﬂ

for v, € Wy y,, where Ho = {h, € H | h, < ho } . For z € Ko(€ Ty,) we
show that there exists a constant such that cg,, independent of € K, but
dependent on v and |z|, such that |v.(z + z) — va(2)| < ¢k, for all z € K.
Then

I(z) < > cx,lKol.

Ko€Thy,

For simplicity w = v,, and for an arbitrary z € Ky let
K(z;2) = {K € Tp, | It € [0,1] such that z +tz € K }

Precisely the family K(z;z) is different from other points 2z’ € K, and
K, are decomposed into several equivalents family by the class of M =
{K(z;z) | Vz € Ky }. However, for the sake of simplicity, we assume that M
contains a sigle element family K(z; z) for z € K.

Let ng be the number of elements belonging to X(z;z). We can choose
numbers 0 = to < t; < tp < -+ < t,, = 1 such that z; = = + ¢,z for
1= 0,1,2,---,110, z; € 0K;_; N 0K;,1 = 1,2,3,---,no — 1 and K(z;2) =
{K; ng—1}. Let w; = wlI, 1 =0, 1,2 ,ng — 1. Generally
we have w;_1(z;) # wi(z;) for ¢« = 1,2,3,---,n9 — 1. Since w € Wy, is
nonconforming element of degree one, there exists a point y; € JK;_; N
0K;,1=1,2,3,---,no—1such that w;_;(v;) = w;(y;) fori = 1,2,3,---,ne—1,
because w € Wy, made of nonconforming elements of degree one. Thus

P ]

Iw(:v +2z) — w(x)| < two(ifo) - wo(l"l)l + lwﬂ(xl) - wO(yl)i

no—1

+Z’(

+

wi(y;) — w;(x;) wi(z;) — wi($i+1)l + |wi(zig1) — wi(yi+1)D

wno(xno—l) — Wnp, (mno)

+'wno(yno—1) - w""(xﬁo"l)‘ +

= CK,-

0,00,K;

Let wy = le. Then, therefore

I(z) <3h Y |Kol Y erad wg
Ko€eTy, KeK(Ko;z)

Doo,I\".

In the last summation, each summand lgrad Wg

_is added many times
0,00,K

at most the number n; of elements belonging to K(Ix —z). Further we can



replace |Ko| with ¢j| K|, where ¢ is independent of ~ € H and K € T;.
Recall that ny < ¢;x|2|/h + co,u, because {7 }ren is normal. Thus,

3h 3 Kol Y |erad wi

Ko€Th KeK(Ko;z)

0,00,K

< 3h | K| (cwlhﬂ + Cz,y) Y lgrad wlo e x| K|
KeTy

< 3| K| (cm{]z| + con ho) |wl1,1,h’

So we can choose &y and hq to get I(z) < ¢/3 and the proof is concluded. =
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