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Free Boundary Problem for the Equation

of One-Dimensional Motion
of Compressible Viscous Gas

axk - T FEHEEHE (Mari Okada)

This is a joint work with Sérka MATUSU - NECASOVA and Tetu MAKINO.

1 Introduction
We investigate the equations

Op  O(pu) _
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5 (o0 + a_g(p“2 +p) = F (ua—Z) ~ pg,

where t > 0, 0 < € < y(t). The unknown functions p and u represent the density
and velocity, respectively; p = ap” and p = bpP are the pressure and the viscosity
coefficient , respectively, where a, b are positive constants and v > 1 and 0 < 8 <
4 — 1. The non-negative constant g is the gravitation constant; £ = 0 is the fixed
boundary

u(t,0) =0,

and £ = y(t) is the free boundary, i.e. the interface of the gas and the vacuum:

%’% = u(t,y(t)) and (p - u%g) (t,y(t)) =0.

We want to show the global existence of a weak solutions and uniqueness. To
prove it, we shall adopt the method of (1], [6] and use also some of the tools of paper

[5].

Here, the main point in order to show the existence and the uniqueness of the
solutions is the estimates to the solutions of the difference equations. Therefore we
will show it in the next section.

We rewrite the equations in the Lagrangean mass coordinate:

£
z= [ p(t,0)dc.
Assuming that

y(t)
| et =1,

the above problem is transformed to the following fixed boundary problem;

Op | ,0u _
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Oou Op 0 ou
(1.2) % 5 B (ﬂpa—x) -9,

int>0and 0<z< 1, where p= ap”, u = bp® with the boundary conditions

ou
1. t.0) = — p— = 0.
13) u(t,0) = 0, (p upax>(t,1) 0
and the initial condition

(1'4) (P, u)(07x) = (PO\, 'U.())(Qf), 0<z<1

In this paper we consider the following assumptions (A.1), (A.2) and (A.3) for the
initial data and

(A1) po € Lip[0,1] and po(z) > p (p is a positive constant),
1 dug .
(A.2) ug € C [0, 1] and dr S LZp[O, 1],
1
(A.3) 0<pB< 3
Definition :

A couple (p,u) is called a global weak solution for (1.1)-(1.4) if

(1.5) p,u € L=((0,T] x [0,1]) nC*([0, T}; L*(0, 1)),

(L6) p*ug € L2([0,7] x [0, 1)) N CA ([0, TT; L*(0, 1)),
for any T, and the following equations hold:
Op | ,0u

(1.7) 6t+p %—0,
for a.e. z € (0,1) and for any t > 0, and
. ,
(18) [ [ = 6alp — pous) + ¢ | da = 0,

for any test function ¢ € Cg°((0,1]) and for a.e. t € [0, T].

Remark 1 Physicists claim that the viscosity of gas is proportional to the square
root of the temperature (e.g. [2], vol.1, p.836). In this case, the temperature is
keeping with p'~', provided that the pressure p is proportional to the product of p

and the temperature, i.e., the perfect fluid. In this situation we have 8 = 7 and

1 5
B <3 saysy<3.
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Remark 2 The compressible and heat- conductive Navier-Stokes equations are ob-
tained as the second approzimation of the formal Chapman-Enskog expansion to the
nonlinear Boltzmann equations for a rarefied simple gas. Here we assume the cut-off
hard potentials (cf.[3]) and consider two important spacial cases: the hard sphere and
the cut-off inverse power forces. Then the coefficient of viscosity is given explicitly,

i.e. for the first case we have already mentioned in Remark 1, and for the second
' s+3

2(s—1
(e.g.[4] p.103). Therefore in the case of the cu(t-oﬁ i)nverse power forces, we have
B < v —1 says s > 5, provided that the equation of state is that of ideal and poly-
tropic gas. From the condition 8 <y —1 (i.e., s > 5) [4] deduced a plausible result
by a mathematical rigorous way.

case, the viscosity is proportional to the power (s > 5) of the temperature

2 Difference Scheme and Estimates
Discretizing the derivaties with respect to = of the equations (1.1) and (1.2), we
have the following scheme:

d Up — Up—1
2.1 Lo, 2Un T Uno1
(2.1) i R A 0,
d pn — Pn-1 1 Up+1 — Un Up — Up-1

2‘2 T Y9n — T — A nfFn=—" A n— n—1"—~ - b
(2.2) e + A A |PnP A Fn-1Pn-1—""x g
forn=1,2,...,N, where A = %, N being a large natural number which divides
the interval [0,1] into N intervals with length A. We set
(23) Pn—1—= apn—177
(2.4) . Hn-1= bpn—1”.
The boundary conditions are

UNL1 — U
(25) Ug(t) = 0, (pN - ,uNpN—%A—’) (t) =0.
and the initial conditions are
(2.6) prn-1(0) = po((n —1)A) > p >0, up(0) = ug(nA).

By the elementary theory of the ordinary differential equations, the Cauchy prob-
lem (2.1)-(2.6) admits a temporarily local solution in the domain R*N = {(pn_1, tn)

n=1,..n} - Let [0,T.) be the right maximal interval of existence of this solution.
By the equation (2.1) and the initial condition (2.6), we see p,_1(t) >0for 0 <t <
T. We will prove that T, = +o00 after getting some a priori estimates.

First, we will show that the solution satisfies a priori estimates independent of
A.

We set

(2.7) Yn(t) = i

We get
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Proposition 1 Let (A1)-(A3) be satisfied then

Zn(0) = vl

holds.

Proof. From the equation (2.1) and the boundary condition (2.5), we get

ZMA Z(uk—uk 1

1Pk 1

Next, we show the energy inequality.

Proposition 2 There exists a constant C independent of t and A such that

N 2
1 5 a _1 Up — Up-1
3 (5% -+ mpn_ﬂ +gyn) )A + / Zl [un-lpn_l (T) ] (T)Adr

n=1

N
_ L2 a y-1 <

Proof. Multiplying the equation (2.2) by u,A, summing fromn = 1 ton = N,
using the boundary condition (2.5) and Proposition 1 and integrating with re-
spect to 7 from 0 to ¢, we have the required expression. Applying (2.6) and since
po" Y, up € C[0, 1] we obtain the bound of the right hand side. (2.7) is obtained by
the theory of Riemann integral.

From the above a priori estimates we have the following.
Lemma T,, = +o00, that is, the solution of (2.1), (2.2) and (2.6) exists for
0<t<+oocand p,1>0for0 <t < +o0. :

Hereafter we consider estimates in an interval 0 < ¢t < T, where T is an arbi-
trarily fixed large number, and C(T') denotes various constants depending on the

parameters v, 3, g, a, b and the initial conditions py and ug, which does not depend
on A.

Proposition 3 The following inequality
pn1 < C(T)
is satisfied.

Proof.
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Multiplying the equation (2.2) by A, summing over k = n,..., N and using the
boundary condition (2.5), the equation (2.1) and the relation (2.4), we get

N Uy — Uy d (b
(2.8) I;lukA — Pn1+9(1 —nA) = _unvlpn—lTl = (,6'0" 1ﬁ>

Integrating (2.8) with respect to 7 from 0 to ¢, we have

L u 0 = 20~ [ pusdr+ S an) ~ wl0)A + 901 ~nA).

k=n

Applying the assumption (A.1), using the positiveness of the density and Proposition
2, we obtain the required estimate.
Also we have the following Proposition

Proposition 4 Under the assumptions (A.1)-(A.3) the inequality

S e SIDA < COT)

n=1

holds.

Proof.
Dividing the relation (2.8) by p,_1, integrating with respect to 7 from 0 to ¢,
multiplying by A, summing from n = 1 to n = N and using (2.3), we get

- 1 b 1
o0 = 1_—[32%_# oa-[ an I(T)Zum )Adr

tN
+a/ an1 (r)AdT — g/ 1—na

=1 Pn-1(T)

From (2.6) and Proposition 3 follow that the first term and the third one of
the right hand side are bounded . Applying (2.7) we obtain that the forth one is
negative .

Therefore if the second term of the right hand side can be estimated, we will
obtain the required estimate. By (2.1), (2.5), (2.6) and Proposition 2, we have

/n D Zuk(T)Ad'r

21 (éipf o)

Adr.

N
Z:: Pn 1T k—n
N N N
= £(0)A
nX—:UOn 1( Z ;pn 1(0) Z:: ©

— A Z:l(un — Up_1)(7) kZ: ur(T)AdT
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N A N
— ng <pn NG pn#1(0 ) Zuk A+ an 1(0 Z (ug(t) — ux(0))A
_ tiunz(’r)AdT
0 =1
t g NooA 1[/E 5
< 2:1/ - (Pn X )dTZUk ;pn_1(0)§ K’;(u,f(t) + Up (0))A> + 1]
< [ t 3~ (= t00) 7 Z_;uk(t)AdT + Gy
_ /t S (P un () Ad +
0 n=1 X
. /N 3 N 2
< [) (; u,f(r)A) dr (Z:lunz(t)A) +0
< o).

Proposition 5 Assuming (A.1)-(A.3)

> (o) wa<om

n=1
it satisfied.

Proof.
Denoting

B _ ﬁ'
Valt) = (%f’—"———%l—— + u) () + gt,

we can rewrite the equation (2.2) as

Ly @) = __(%;_%tﬂ.

Multiplying the previous relation by V,(t)A, summing over n = 1,..., N and
integrating with respect to 7 from 0 to ¢, we obtain:

1 N 1 N + N D — Pn-1
5 DVl HA =5 S VH0A - / > Va(r) o=t (r) Adr
n=1 n=1 0 =1

The first term of the right hand side is bounded by (A.1) and (A.2). Using Propo-
sitions 2, 3 and the mean value theorem the second one is estimated as follows,

b n n— n—bn*ﬂ )
_E/Zp “Pn1p A” L Adr

2 _ P — O B\ 2
- —F{/o Z(pn‘1+9"(9n—9n~1))7 g (,0__[_&/3_1) Adr,
n=1
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where 0 < 0, < 1,

- /an Pnt Adr

a 'nﬂ - MPn— A
- _—/81/0 Z(pnvl + Hn(Pn - pnal))q—ﬁ%u"AdT
n=1

VAN

2 A nZ::l(pn—l + On(pn — pn-1)) ) AdT+ c(T),

——g/ p“ p" Pn = Pnl Agr— -—g/ (px — po)rdr <g/ pordr < O(T).

Thus we get

N t+ N 8 _ J¢] 2
Z Vn2<t)A + -/0 Z [(Pn—l + H-n(Pn - pn—l))q_ﬂ <Pn—_A0n—_1_> } (T)Ad’r S C(T)

From this and Proposition 2 we obtain the required estimate.

We are interested in the bound of the density from below.

Proposition 6 Let (A.1)-(A.3) be satisfied then

pn-1(t) 2 p(T),

where p(T) is a positive constant depending on T.

Proof. Putting
PK-1= mr?'xpn—la (1 S K S N)a

and applying the Proposition 4 and since 8 — 1 < 0 we get

N N
pr’ = pr PTTYA LY pa P TIA S O(D).
n=1 n=1

We have also
n-1 _ -1 _ g-1
i = e 3
k=K
. n-1 B—1 _1Pk ——,019-1/3
— o Pl (Ph—1 + Onp = pra)) T A
k=K ﬁ

1

A N AN
e (i a) (£ () )

n=1

IA
2
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Further, we would like to estimate the second term of the previous inequality. So,

N
Z(pn—l + 0a(pn — pu1)) A

n=1
N

= Z(Pn—l +0n(pn = pu1)) " (pno1 + On(pn — pn-1))" 1A

n=1

max [(pa-1 + 0a(pn = pn-1)) 7| (-1 + alpn — pu-1))’ A0

n=1

IA

< max [pp 1777 -2 % pn1’TIA
n=1
< O(T) max [y ™77

From the previous estimates and applying the Proposition 5 it follows that
- _ g+l
pn_1’71 < O(T) (1 + max [pn-l 2 ]> ,

From the assumption £ < %, we have % < 1— . And then there is a positive
constant p(7') depending on T such that p,_1(t) > p(T).

The uniqueness of the solution can be prooved by the same manner to [6] . We
omit the details.

3 Asymptotic Behavior

We have not yet obtained the result about the asymptotic behavior in the case of
the density dependent viscosity. But we have the asymptotic behavior of the density
p at the free boundary. Let us show that. We consider the difference equation (2.1)
atn=N+41,

d 2UN{1 —UN
an ey Ty Y
and the boundary condition (2.5). Then we obtain the following equation,
d PNPN
— —— =0.
PN + .
Therefore we get
1
. b(y — 5. 7P
on(t) = pw(@) |1+ 2 ope]

Next, we consider the case of the constant viscosity. This problem was solved under
severe assumptions for po(z) by M.Okada [1], 1989. Here, we will show the another
proof of the asymptotic behavior under less severe assuptions.

We consider the initial boundary problem (1.1)-(1.4) with p = constant and
assumptions (A.1)" and (A.2), where
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(A1) po € Lip[0,1] and po(z) = A(z)
1 d
(A(z) is monotone decreasing and / < +00),
0o A(z)
We obtain the existence and the uniqueness of the global weak solution to the
above problem by the same method as [1].
By using the same way as getting Proposition 2, we have the following energy
estimate, that is, the limit version of Proposition 2.

Proposition 7

1/1 t 1
/ —u? + Lp“’_l + gy | (H)dx + / / ppug dzdT
0 \2 v—1 0 Jo
- /1 S + 2 gy ) (0dz = B
0o \2 v—1 ’

_ [T oy _
where y(t,z) = [) m and T

Using Proposition 7 and the method by I. Straskraba [7], we have the following
a priori estimates.

u.

Proposition 8 There ezists a constant C independent of t and such that
p(t,z) <C  for z€[0,1] and t=>0.

Proof. Rewriting the equation (1.1), we get

(3.1) (log p): = % = —pUy.

Integrating (1.2) with respect to = from z to 1, we have

1
(32) Lwdﬁ—p:—upuz—g(l—x)-
Then we obtain 1 A a )
P—g\l—7=
o :—/ wde — P72

(logp): A +d§ p

Integrating the above with respect to t from #; to ¢z, we get the following equation,

to 1 1 to 1
logp(tz) = logp(tl)—|—[1 EL utdde—/t1 p(p—g(l—:c))dr

= togp(t) + [ (u(tn, &) —u(tn, ) ~ [ ~(p—g(1 =)
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1
Ifp—g(l—2z)<0fort>0,p< %(1—:1:) " If not, there is a t; > 0 such

that p(t2) — g(1 — ) > 0. Then there exists a #; € [0,%;) such that #; > 0 and
p(t1) — g(1 —z) = 0 and either p(t) — g(1 —z) >0 for all t € (t1,1;), or t; = 0 and
p(t) —g(l —z) >0 for all t € (0, tp).

Therefore we are done with the required estimate.

Proposition 9 There exists a constant C independent of t and such that

1 dz
— < > 0.
y(t, 1) AP(M)_C for t>0

Proof. From (3.1) and (3.2), we have

1 1 - —
(1) R N S A Gk}
P pp Jo 1o

Integrating the above with respect to ¢ from ¢; to ¢, we obtain the following
equation, '

. 1 1 — —
L:L_/z_l___/ wpdEdT + 2p__g£_x)d7_.
p(tz)  p(t1) Ju pp(7,z) Jo t pp

Now, let z € [0, 1] be arbitrary but fixed. If p(t,z) —g(1 —z) > 0for all ¢ >0
1
then we have that p(¢,z) > %(1 — x)] " If that is not held, there is a , > 0 such

that p(t,z) — g(1 — z) < 0. Then there exists a ¢t; € [0,%;) such that t; > 0 and
p(t1,z) —g(1 —z) = 0 and either p(t,z) — g(1 —z) < 0 for all £ € (¢1,t2), or 1 =0
and p(t,z) —g(1 —z) <0 for all ¢t € (0,%2). Therefore we have that

L [g(l_x)]—ﬁ+_1__/t2~1_L1w(T,g)d§dr.

,O(t, 113) po(.'IC) t [.LP(T, .’E)
As (1 - x)_%,po(x) € L}(0,1) , we may estimate

J(t) = — /0 ' A t - (i, 3 L L, €)dedrds.

Now, by the equation (1.1), the boundary condition (1.3) and Proposition 7, we get
the following estimate.

J@) = —Al [f [up(lr,x) AIU(T,ﬁ)dﬁ}Tdex—{—Ll [ [W(i,x)L[clu(r,g)dngdx
_ Ll — é,x) mlu(t,é)dgdx+ A l upol(x) L ' wo(&)déds

-+ Aliﬁt Ug (T, T) [Dl u(T, £)dédrdz
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- [ i ) [ e oaste— [ [l —uo@dsas
+ 01 /()t;l; [u (1,z) Llu (T f)dﬁ]deder /; At iuQ(T,x)dea:

< — A ;At (p('r,x))TdT[n u(t,ﬁ)dﬁdx—i—C-FAl /Ot ;;u2(7',.7:)d7'd:v

= —[)1 [: ug(T, .’D)d’i’Ll u(t,§)dédz + C + /01 /Ot £u2(r, z)drdz

= = Ot %Al [’U,(T, z) /zl u(t,f)dg]wdxd’r — [: % Al u(T, z)u(t, z)dzdr

1t
+ C+ / / —u*(r,z)drdz
0 Jo p

= _At %Al [u(r, r)u(t, ) — u?(r, a:)] dzdr + C.

0 1
Here by using gy = u, /0 gydzr < Ey, we have
t]
—/ / 7, 2)u(t, z)dzdr = ——/ [y(t, z) — yo(z)| u(t, z)dz
SIJ'A y(t, z)|u(t, :c)|dac+Cl<eA 2(¢, a:)d:z:+C/ (t,z)dz + Cy

1 E
< ey(t,1) /0 y(t,z)dz + Cy < e-gﬂy(t, 1) + Ch.

Now, we get

(1, 7) = (Am%(t,g)dgf < E %Llupumzdm < i-y(t,x) [)l ypuglde

Then we have

1 tlzdd ‘L d 1 dzd d Fo
A[)ﬂu T:C_Alﬂ/oy(,:c) :c[)‘upu rdr < //,upu rdr < 2g°

Therefore we obtain

1
a\" vy Ey Ey?
y(t,1) <= | ——=+u(0,1)+e—y(t, 1)+ Co+ ——.
1< (2) S5 u0n ¢ ) + Gt
Here, we choose the value of € such that

‘ 2€E0
g

<1,

we have the required estimate.
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1
/ u?(t, z)de — 0 as t — +oo0.
0

Proof. We set
€(t) = / / ppugdzdr.

From Proposition 7, €(t) — 0 ast¢ — -+oco. Multiplying the equation (1.2) by u,
and integrating with respect to z and ¢ from 0 to 1 and s to ¢ (s <t), respectlvely,
we have

/ 2(t)dx_/1 Eu dx+/ f (Pt — ppus” — gu)dzdr.

Moreover integrating with respect to s from ¢ — 1 to ¢, we get

1
/ %u dz = s)dz + / / / (puy — ppus® — gu)dzdrds.
0 -1

t-1J0

t
/ / —l-uz(s)dxds < / / s)da:/ ppugid
t-1Jo 2 t—1

< Ce(t) — O as  t— 4oo.

Here

t et ol
/ / / purdzdrds
t—1Js JO

< on () ([ )
Clil(T —(t-1)) ([) upuzzdx) : dr

C </L1(7’ —(t— 1))2dr>% (/:1 /01 ,upuﬁda:dT)%
o

€t) — 0 as t— +4oo.

< gﬁlf/ \/7” upuﬁdxd:vdes

< g[lf (/ ) (/ upu;’) drds
< Cfelt) — 0 as t —+co.

t ot ol t 1
/ / / ppug dedrds = / (r—(t-1)) / pougtdzdr
t-1Js Jo t—1 0

< €t) — 0 as t— +too.

IA

A

t ot ol
/ / / gudzdrds
t-1Js JO
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Therefore we obtain the required estimate.

We set

_ f@(t,@ — pa(2)) (p(t, 7) — ps(2))

where ps(z) and ps(z) are the stationary solutions, that is,

p(t,z)’

1
Y

p() =g(1-2),  pu@) = [£01-2)

We have

Proposition 11
Qi) — O as t — +oo.

Proof. First, we set

z dr
I(t,z) = t.2) — p ,
(t2) = [ (6lt:2) = pu(@) 5
Then, from
ol . P — Ps Ps : _ T
5=t G [ Bede= [ piuede = —put [[(pu)suds,

we obtain the following.

1 4 1 )
%A uIda::/O (utl+UIf)d$:/(—P+Ps+upuz)mldx—[) psuddz + U (1),

where

1 T
U@ = [ ut,2) [ (pe)ault, E)de.
By using the integration by part and I(,0) = 0, we get

d/1 Idz /1( +py + ppu) o /1 wrdz + U (1)
N u = - s T - s
A | (=P st pp . P
1 1
= —Q(t)+[) uux(p—ps)dx—[) psuldz + U ().

Integrating with respect to ¢ from ¢ — 1 to t, we have

Llul(t)da: - AluI(t —1)dz

= —lil Q(T)dT+Ai1 [)l p,ua,(p—ps)da:dr——/ / psuzd:chl 1U(T)dT.

194
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Here, as ¢ — +o00, we have

uI(t)dx‘< sup I(t,z) / luldz — 0,
0

0<z<1

t 1 1
< C'/ \// d_:c\// ppug2dr dr
t-1\{Jo p YJo

< ChJe(t) — 0,

t
/ pg(p — ps)dzdr
t—1

¢l 1
/ psuldrdr| < C sup v (ryde — 0,
-1Jo t—1<r<t Jo
t 1
/ U(T)dTI < C’/ / |u|/ |(ps) = / pouLdr dédzdr
t—1 t 1 0
< —s 0. :

Hence

¢
/ Q(r)dr — 0 as t — +oo.
t-1

Next, differentiating Q(¢) with respect to ¢t and using (1.1), we get

aQ _ pspt
= —/ptp Ps)— +/(p

= _/0 ‘17,07—1@ — ps)puz + (p — ps)psuz]d:r.

1
< C’/ |ug|dz < C"\// ppuztde,
0

and integrating the above equation with respect to ¢ from s to t, we have

Q) <Q(s) + Cﬂt ﬂ[)l ppuzide dr < Q(s) + Cvit — s\/—eﬁ)—.

Moreover integrating the above inequality with respect to s from ¢ — 1 to ¢, we get

Noticing that
G

Q1) </ ds+C'\/— — 0 as t — +oo.

This completes the proof.

Thus we rearch the following.
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Proposition 12 We have
1
](p(t,x)—-ps(a:))zd:c — 0 as t — +oo.
0

Proof. From Proposition 8 , we get

1 2P —Ps1 2 |1 1 1 2
—p)(p—ps)==P—ps) ——=2—ps) —gm— = 5—ps)"
w ( )P )P—Psp ( )supglgsupp C(p )

Then

/Ol(p—ps)zdeCQ(t) — 0 as t — +oo.

This completes the proof.

Remark 3 For the sequence {t,}, that t, — +oo, there exrists a subsequence
{tar} such that p(tny,z) — ps(z) ae. z as ty, — -+oco. However because
ps(z) is unique, p(t,,z) — ps(z) as t, — +oo, really. Therefore p(tn,z) —
ps(z) ae. xz as t, — +oo. Asp is bounded, we have also

1
/O|p——ps]‘1da: — 0 as t — +4oo, for 1<Vq<+oo.
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