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Semigroup for linearized free surface problem of viscous fluid

Y 0SHIAKI TERAMOTO

1. Problem and result

We consider the free surface problem of viscous incompressible fluid lowing down an
inclined plane under the effect of gravity. Our main concern is the two dimensional
disturbances from the laminar steady flow. After subtraction of the steady solution
followed by change of coordinates, our problem is formulated as follows:
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Oauy + Oug — 2n = Fi(n,u) on g = 1,

D

(1) On—uy =n*dm onxy =1,
1 1
2) 8,5’11/ - ﬁA’U; + §Vp + Vlc%u + 82‘/1 (IL(L)Z> = Fg(’)],u, Vp) mo<izy < 1,
3) divue =0 in0 <z <1,
) u=0 on 3 = 0,
)
)

N N N —
W~

p — 20qug — (2 cot a — o csc oz812) 1= Fy(n,u) onxzy=0.

1 and o are stream-wise and cross-stream coordinates respectively. Here the unknowns
7, % and p correspond to the unknown free surface, the disturbance of velocity vector and
the scalar pressure respectively. (V1,V2) = (—(1 — x2)?,0) denotes the velocity of the
basic laminar flow. The equation (1) on x; = 1 comes from the kinematic boundary
condition. We assume that the unknowns are periodic in x; with period ¢. The constant
a(0 < a < 7/2) is the angle of inclination. The positive constant o denotes the surface
tension coefficient. R is the Reynolds number. The terms in £} , F5 and Fy(n,u, Vp)
are quadratic or higher. For this nondimensionalization and the derivation of (1) ~ (6)
see | 3, 4] .

To study qualitative behavior of solutions to the full nonlinear problem (e.g., bifur-
cation problem, decay in time, etc.,), it is indispensable to investigate the properties of
solutions to the linearized problem. To do so we write down the problem in the form of
evolution equatio in appropriate function space by using an orthogonal projection paral-
lel to some gradient space, and state that the operator arising in the linearized problem
generates an analytic semigroup. We here present only the outline of the proof of our
result.
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We give some notations. Set Q = {(z1,2z2) €R®; 0 <z <{, 0<zy <1}. Let

r > 0. H" (Q) is the space of functions which are in H; (R x (0,1)) and are periodic in
x;, with period £. Let Sp = 002 N{xy = 1} and Sp = 90 N {xy = 0}. We identify Sr with
the interval (0 , £). H" (Sr) is the space of functions which are in H] _(R) and are pe-
¢

riodic with period £. H® denotes L?. We set H (Sp) = {go € H" (Srp); / odr = 0}_
J0

To eliminate the pressure from (2) we use the orthogonal projection P onto the L2
orthogonal complement of the following gradient space

G={Vg¢; peH (Q), p=0o0nuz=1} .

Applying P to (2) and using the boundary condition (6) we can write the linearized
problem as follows

1()-e()-()

where gp and f are arbitrarily given in H§ (Sp) and PL?(£2) respectively. G denotes the
2 x 2 matrix of operator We give the detailed explanation of G in the next section.

We now announce our result.

Theorem 1 There exists a v > 0 such that, if ReX > v there exists the inverse
(A= G)™* in X with its operator norm satisfying

| C
-1 < 7
where X = HZ(0,€) x PLY(€).

2. Formulation of the linear problem

We recall some properties of the orthogonal projection P.

Lemma 1 Let r > 0. i) P is a bounded operator on H"(£2). ii) Suppose ¢ € H'().
Then P(V¢) == Vb, where 1 satisfies

Yp=¢on Sp, Op =00n S, AyY-=0inQ.

See([1,page 369]) for the proof of Lemma 1.
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We now formulate the linear problem

(8) | Ok — ug = 1 on xp =

9) Ovu — %Au + —,I-lz—VP + Vidiu + 0:.V4 (162> =f, m0<xzy <1,
(10) divu=0 in0<mz<l,

(11) u=0 on ry = 0,

(12) Doy + Orug — 21 = go on &g = 1,

(13) p — 20up — (2 cot a — o csc (1812) n=g3 onxy=0.

Applying P to (9) and taking (13) into account, by using Lemma 1 we have

1 . 1 1 1
8,5'11; — PEAU -+ P (Vldlu + 82‘/1 (162>> - ﬁVpl -+ —ﬁsz = PfO — §Vp:,

with
Ap; =0in 2, Op; =0o0n S, j=1,2,3,
p1 = 200us , p2=(2cota—ocscadt)y, ps=gs onxy=
We collect the terms depending on u, then define the operator A by

1 . - Us 1

If we set R :u — ug|g, for u € PL2(), then the gradient Vi of the solution

Ap=0inQ, Yp=¢onSp, 0GyY=~0o0nSs

for a given ¢ € H?(Sr) can be regarded as R*¢, where R* is the formal adjoint of R
with respect to L? inner product . ( See [2]. )

We have now expressed (9) and (13) in the form
1

i 1
Ou + Au + ﬁR*(2 cotar — o escadi)n = Pfy — 7

R*gg .

Using an auxiliary solenoidal vector we can reduce (12) to the homogeneous case g, = 0.
Thus, we can assume g = 0 and g3 = 0.
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We now give the precise definition of the operator G. Set

A 0 R\ (1
u) \—%R*(2cota—ocscadi) —A) \u

D(G) = { (n,u) € Hg (Sp) x PL*(9);
ne HZ (Sp) ,uc H*(Q), w=0o0n Sg, diuy + Ou; — 27 =0 on SF} )

with the domain

(
’

—

The linearized problem can now be rewritten in the form (7).

In the following sections we shall construct the resolvent operator (A — G)™! for A € C
with sufficiently large real part. The resolvent equation can be written in the form of
the stationary problem with parameter

(14) | A1 — ug = go on zy =1,
, (15) A — %Au + %Vp + Vi0iu + 8. V3 <162> =f in0<mz<l,
(16) divu =0 in0<uzp <1,
(17) u=20 on zo = 0,
(18) Ooup + Ohug — 2 =0 on xy =1,
(19) p— 205us — (2cot o — o cscad®) n =0 on g = 0.

We begin by solving the linear nonhomogeneous equations with homogeneous bound-
ary conditions.

Proposiotion 1 Let ReX > 0. Let f € PL*(Q) be arbitrarily given. Then there exist
u and p satisfying

1 1 o
)\uwﬁ-Aqu ﬁVp*f, dive = 0 in

®=0on S'B,p—282u2:o, Oou1 + O1ug = 0 on Sg
with

lu‘HZ + RIA| Iutjﬂ < C’Rf].ﬂ[;z y pla < CR|fiL2 .

For the proof see [1, p371].
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3. Model problem in the half-space

In this section we first consider the following problem in {(;1:1, z2) ER?; 29> 0 } with
periodicity in z; with period £.

(20) AN — v = by on ry = 0,

(21) Av—,}%Av+%Vq:0 inz, >0,
(22) divo =0 inz, >0,

(23) 82’01 + 611)2 - bg on rq = 07
(24) —q -+ 20909 + 00012 = by on Ly =

This problem retains only principal terms.

Proposiotion 2 Let v > 0 be arbitrarily fized. Let by € Hg/2(SF)

and let by, by € HY*(Sp). Then, for Re X > v, there exist n, v and ¢ satisfying (20)
~ (24) with

(25) tlsya + M 1lgss < C (IBalyya + [balyjo + lealyja)

(26) [0l + A oy < C (Jbilayg + A Poslyyo + [bslya) -

The outline of the proof . We follow | 5]. Set y = z3. We decompose the unknowns into
each Fourier mode:

n=>_ n™ exp(ifa;)
n#0

(n)
v=Y (ZEH)E%) exp(iz) , ¢ = Zq‘”) exp(i§x1) ,

~ y

2nmn

Here £ = — " € Z. Then we arrive at a boundary value problem of ordinary differ-
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ential equations for v( ), () and q™
d\?
(28) Ry — [ () 1) vt 9 — g
’ dy Tay
d

(29) v + di; . iny >0
(30) A1 — vy = by

, dv
(31) 1€vq + dyl =by,

dv-
(32) —q—|—2—d%2~(ro|§|2'r/:b3 - ony=0.

We have omitted the upper indices and also have used same b; j = 1,2,3 to denote-
its Fourier coefficients. From (30) 7= A™" (vy + b;). We substitute this into (32). As
Solonnikov did in [5, pages 200 — 206] , we can obtain the solution of the system which
decays as y — oo. The explicit form can be written as follows

—ry

(33) wi(Ey.0) = ~——b
g T (I~ Db+ [ IEDIEFA+ oull] -+ iErlr — €} e
+(r+|€| {=00i€l¢*(r® + [€1)br — [€*(2rA + oolé[*)bs
A+ g}

(34) U2(§7 Y, >‘)

R 3p(r — &r(r — ) _ (r ey
~ e {l€Pr €Dy = (e — €D — €lr(r + DA}
R
+ T 1ENP {Uolfl 2+ 1E12)by — 2€IE[(2r A + oolé|?)by
-TYy _ e‘lgly
HE(? + |5|2>b%} ST

(35) q(&,y,7)
= % {=0ol€lP(r® + 1€[*)by + (2i€r A+ ioo€]€1*)by — A(r® + |€]2)bs} eMél |
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where r = /R + [£]|? and
P = (r2 4 |g?)* - 4rlef* + Rool¢f

From (30) we can recover 7 :

(36) n= % (1 = R";f“) by — i "8 \§| R%bg

To obtain (25) and (26) we need

Lemma 2 Let v > 0 be arbitrarily fized. For A with Re A > v it holds that

Pl >R, P> 2R

Raolé < (; ' 9’2—\@) 71,
(RIA)? < (3+ %\/?) P .

This lemma is proved in [5, Lemma 2.5]. For the rest of the proof we only have to
estimate each terms in (33) ,(34) and (36) by using Lemma 2.

As a consequence of Proposition 2 we can show

Proposiotion 3 Let b; € HS/Z(SF). There is a y1 > 0 such that , for Re X > v, there
erist n, v and q satisfying

(37) AN — vy = by on zg = 0,
1 1
(38) Av — ﬁA’v + ﬁ'\7q =0 inxe <1,
(39) dive =0 inxe <1,
(40) Oovy + O1vg — 21 =0 on zg = 1,
(41) q — 20209 — (2 cota — g csc af)f) n=20 on xy=1.
with
(42) l"7|5/2 +Al |7/|3/2 <C |bll3/2 )

(43) : vy + Al vl < Cloaly, -
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4. Outline of the proof of Theorem 1

We finally explain how to solve

(44) A1 — Uz = go on zz = 1,

(45) /\u—%AUnL%Vp:f in 0 <z <1,

(46) divu =0 in0<xp <1,

(47) u=0 onz =0,

(48) Souy + Ous — 2n =10 on ry = 1,

(49) p — 209U — (2 cot o — o csc a312) =20 on s = 1.

Here go € Hg/ (Sp) and f € PL*(Q). Note that, for our purpose, it is enough to consider
(45) because (45) contains the principal terms of (15) and the terms in (15) which are
not in (45) can be regarded as lower order purturbations. Further we can assume f = 0
because of Proposition 1 , using the fact that uy € Hg’/ *(Sp) if w € H*(Q) satisfies u = 0
and dive = 0. |

Since we solve the model-problem in the half-space {(z1, z2); 2 < 1} by Proposition
3, we have to cut off this solution. Then we adjust the solenoidal condition by solving
the boundary value problem of Poisson equation. This can be done by use of [1, Lemma
2.8 ]. Finally we adjust the boundary conditions (47), (48) , (49) and the right hand side
of the equations (45). Then we have n,u and p satisfying (45) — (49). Instead of (44)
this soution satisfies the equation of the form '

AN —ug = go — Mgo

where M is some linear operator on Hg/ ®(Sp) which becomes the contraction map on
this space if Re X is large enough. Hence if we start to solve the problem above with
(Id— M)~ go in the right hand side of (44), we can get the desired solution. By combining
these results we can show Theorem 1.
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