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ON SOME STABILITY THEOREM OF THE NAVIER-STOKES EQUATION
IN
THE THREE DIMENSIONAL EXTERIOR DOMAIN

YOSHIHIRO SHIBATA (WASEDA UNIV.)
MAsAO YAMAZAKI (HITOTSUBASHI UNIV.)

Problem, History and our Motivation of study. The motion of nonstationary
flow of an incompressible viscous fluid past an isolated rigid body is formulated by the
following initial boundary value problem of the Navier—Stokes equation:

—Au+(u-V)u+Vp=f£f, V.-u=0 in (0,00) x Q,
(1) u[an =0, ult—o =a

lim u(t,z) = U-
x| —00

Here, ) is the exterior domain in R3 identified with the region filled by a viscous
incompressible fluid; 02 denotes the boundary of Q0 which is assumed to be a smooth
and compact hypersurface; u = T(ug,u2,u3) ( TM means the transposed M ) and p
denote the unknown velocity vector and pressure, respectively, while f = T(fy, f2, f3)
and a = T(ay,as,a3) denote the given external force and initial velocity, respectively.
U is the given speed of the motion of the fluid at infinity and 0 = 7(0,0,0).

Here and hereafter, we use the standard notation in the vector analysis. For example,

we put
O%u; s,
Au =T (Auy, Aug, Aug), Auj = Z 5 QJ, T(51,52,03), 8@—_—5};
>, v,
. =T . . . . J— —J
(u-V)v="T((u-V)v, (u-V)vg, (u-V)uvs), (u-V)y; E:ZIW For’
\ u—dlvu~zaue (ui,uz,u3), v="(vi,vq,v3)
61:2 1,U2,U3 1,V2,V3
3
U1V1, U2V1, UYL 2ue=10cf1e fi1, fi2, fis

UV = | uivy, ugvz, ugvz2 |, V-F=| S0 8fsr |+ F =1 fa, fo2, fos
U3, UVs, U3V3 3 f31, f32, fa3
) ) Ze:1 8£f3€ ) 3

Putting u = ue, + v, instead of (1), here we consider the following problem :
—AV+ (U V)V+ (v-V)v+Vp=f, V-u=0 in (0,00) x €,
(2) Vlan = —Uco; V| o —a— Uy

lim v(t,z) = 0.

|z =00
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In this note we consider the case where the external force f is independent of time ¢,
namely f = f(z). The results reported here can be extended to the time depending
external force by using the method due to Yamazaki [33]. But, since we would like to
show some basical idea, we consider only the case of time independent external forces.
And moreover, we will discuss the problem from the point of the stability of stationary
solutions. Because, when the external force is independent of time, we can expect that
the flow becomes stable asymptotically in time because of the viscousity. Therefore, as
the stationary problem of (2) we consider the following time independent problem :

—AWH (U - VIWH+ (W-V)W+Vra=f, V.-w=0 in{,
) W|,q = —Ueo, lim w(z)=0.
|| —o0

Concerning (2), Leray [26] and Hopf [19] proved the existence of square-integrable
weak solutions for an arbitrary square-integrable initial velocity, whose uniqueness is a
still unknown and challenging problem. Concerning the stationary flow to (1), namely
u = u(z) and therefore u, = 0, Leray [25] proved the existence of a smooth steady
solution with a finite Dirichlet integral. But, the solutions obtained by Leray and Hopf
did not provide much qualitative information. In particular, nothing was proven about
the asymptotic structure of the wake behind the body O = R3 — Q. This is a topic of
great interest in itself. In 1965, Finn [8] - [13] gave a new existence theorem of (3) for
the case of small data, which provided a great deal of qualitative asymptotic informa-
tion, especially exhibited a phenomenon of wake behind the body O. The solution that
he obtained was called physically reasonable. To investigate the relationship between
Finn’s physically reasonable solutions and Leray’s solution is also very interesting prob-
lem, which was first studied by Babenko [1] (also Galdi [14], Farwig [7]). In his review
paper [13], Finn proposed a further investigation of the relationship between the class of
the physically reasonable solutions and corresponding nonstationary solutions solving
(2), which is called the stability problem below.

If we put v(t,z) = w(z) + z(¢,z) and p(t,z) = n(z) + ¢(t,z) in (2), the stability
problem is to solve the following problem :
2 —Az+ (U - V)z+ (W-V)z+(z- V)W ‘

+(z-V)z+Vqg=0 and V-z=0 in (0,00) x ,
def

ZIaQ =0, z|z:o =b = a—Uwx—W, lellgloo z(t)l') = 0.

(4)

This problem was first solved in the Ly—framework by Heywood [16]. In fact, he proved
an unique existence theorem of solutions to (4) in the Ly framework with b € La()
with small norm. This was sharpened, particularly with respect to the time decay rate,
by Masuda [28], Heywood [17, 18], Miyakawa [29] and Maremonti [27]. But, as Finn
already showed in [10], if w(z) is a physically reasonable solution and if us # 0 and
f = 0, then w(z) is not square-integrable over {). Therefore, it seems reasonable to
seek a solution z(t, z) of the problem (4) such that z(t,z) belongs to the class to which
w(z) belongs for each t > 0. Especially such a class is not the set of square-integrable
functions over ().
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In this direction, Kato [21] solved the problem (1) in the L,,~framework when Q@ = R"
(n 2 2), U = 0, f = 0 and the L, norm of a is very small. He employed various
L, norms and L,-L, estimates for the semigroup generated by the Stokes operator.
Iwashita [18] (cf. also Borchers and Miyakawa [3], Giga and Sohr [15]) extended Kato’s
method to the case where Q # R™ (n 2 3), f = 0 and uy,, = 0 and the L, norm of a
is very small. Our argument about the stability theorem is also based on L, - L, type
decay estimates of the Oseen semigroup. In connection with the stability problem, from
the results due to Kato and Iwashita we have the stability of trivial solution O of the
stationary problem of (3) with respect to small L,, perturbation when us, = 0.

Our interest here is to consider the stability problem when f = f(z) is non-trivial.
When u,, =0 and f = V- F(x), F having suitable decay property at infinity, Borchers
and Miyakawa [6] and Kozono and Yamazaki [23, 24] proved the stability of physically
reasonable solutions of (3) with u,, = 0 with respect to small L, () perturbation,
that is the problem (4) admits a unique solution z(t,z) € BC((0, 00) ; Lp 00(Q2)) when
[wll,, @ and b, _ o, aresmall enough, V-b=0,n 23 and ux =0

On the other hand, when us, # 0, Shibata [32] proved the stability of physically
reasonable solutions of (3) with respect to small L3(2) perturbation, that is the problem
(4) admits a unique solution z(¢,z) € BC([0, 00); L3(€2)) when some weighted norm of
w(z), ||b|,, o, and |uc| are small enough and V-b = 0. But, the smallness assumption
of w depends on |us|, and therefore from Shibata [32] we can not consider the limit
process : |Us| — 0. One of the reason is that the solution class for non-zero uy, is
different from the u,, = 0 case. Since the solution class is the same when f = 0, from
Shibata [32] we can see that the solution of (1) in the non-zero us case tends to the
solution in the case when uy, = 0 in L3(2) norm for each ¢ > 0 (moreover, in Ly, (2)
norm) when |uy| — 0. .

The motivation of our study here is to consider the limit process : |us| — 0 when
f(z) is non-trivial. Since L3 o (£2) seems to be the optimal space when u,, = 0, we
have to consider (4) also in L3 o (€2) when |us| # 0. Unfortunately, we have not yet
obtained any answer about the limit process. Here, we can report only that when |u|
is small enough, our solutions to (3) and (4) have uniform estimations with respect to
|uso|- From this, we can obtain some weak star limit, but it is very weak conclusion
concerning the limit process and therefore we omit the precise statement. We hope that
such direction of study of the Navier-Stokes equation has own interest and that our
study gives an interesting aspect in the study of the Navier-Stokes equation.

Statement of main results. In order to state our main results precisely, first of all
we introduce the definition of the Lorenz spaces Ly, 4(Q2) for 1 £ p < oo as follows :

%

oo 1/q
gt | WMo ={ [TEor 00T} 150<00

Hf“z;p o(G) Sup Jm(a7 f)l/p <00 q = 00,
’ o>0

f € Lpg(G)

where

fr(t) =inf{oc > 0| m(o, f) < t}; m(o, f) = {z € G ||f(z)| > o}
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and | - | denotes the Lebesgue measure.
Below, we consider only the case where the external force f is given by the following
potential form :
Fyq, Fia, Fi3
f(z) =V F(z), F=| Fa, Fz, Fss
F31, F33, F33

Note that under the assumption : V - w = 0 we have
(w-Viw=V-(wew).
Below, we say that (w, ) is a solution to (3) if
< VW, Vo >+ < (U V)W, p> - <WwWRW,Vp>—<7,V-p>=—<F,Vp >
for any ¢ € C$°(Q)3, and

V-w =0 in Q, W0 = —Uoo, lim w(z)=0.
lz|—o00

Here and hereafter we put

011, O2001, O3¢1
Vo = | O1p2, Oap2, O3pp2 | for p =
013, O203, O3¢3

T (o1, P2, 93);

<p,qg>= / p(z)g(z)dx when p and g are scalor;
Q

3
<PV >= Z < Pk, ¥k > for 3 x 3 matrices ® = (1), ¥ = (Vi) ;
Jk=1
; 3
<u,v>= Z <wuj,v; > foru= T(uy,ug,us3), v ="T(v1,v2,v3) ;
j=1

Theorem 1. (1)(Existence) There eizsts an € > 0 such that F = (Fj), Fjx €
L3/2,oo(Q) and

3
Z HijlILs/z,m(Q) + ‘u00| § €,
Jik=1

then the problem (3) admits a solution (W, m) € L3 oo(Q) X L3200 (2) such that Vw €
L3/3,00(2)%*3, and moreover

||VW”L3/2’OO(Q) + ”W”L&m(n) + ”’/T”La/zyoo((z) < Ce

where C is independent of F', w, 7, € and Uy
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(2) (Uniqueness) There exists an € > 0 such that if (wj,7m;), j = 1,2, are solutions
of (3) with the same external force f such that w; € L3 (), VW; € L3z oo(f),
7j € L3;9.06(2) and moreover : :

“Wj“L&OO(Q) S ¢
then w1 = wo and 1 = ma.

Now, we will disuss the stability. Namely, we will discuss an exsitence of solutions of
(4) with some uniform estimates with respect to u.,. Moreover, we will discuss some
decay property of solutions to (4). The problem (4) will be considered as a perturbation
of the following evolutional Oseen equation :

u— Au+ (U - V)u+Vp=0, V-u=0 in (0,00) x ,

ulan =0, u|a:0 =a.

(7)

Let P denote the regular projection from L, 4(2)3 into Ly, 4(Q2)2 = {v € Lp4(Q) |
Vv = 0} (cf. Kozono and Yamazaki [23, 24], Borchers and Miyakawa [6]). If we
operate P to (7), we have '

u +P(—A + (Ugo - V))u=0 in (0,00) x Q,

u|6§2 =0, ult:o =a.

(8)

The Oseen operator P(—A + (ue - V)) generates an analytic semigroup {Tu, (t)},5,,

which was proved by Miyakawa [29]. The following theorem concerning the decay prop-
erty of {Ty_ (t)},5, is a key of our stability theorem.

Theorem 2. ( L, , - L, estimate) (i) Whent 2 2 and |us| < o, we have the following
estimates :

1) NTu.®all,, @ = Ct77all,  q
3/1 1 .
l<p<oo, v==|-—=], 1<pSg<oo, 1SrL©
2\p 4«
@ [ Tan®all, o < Call,, o 1<p<oo, 1SrSoo
3)  IVTun®all,, @ SCTH D], o, 1<p<g<3 15700
(4) ||VTuoo (t)a”Lq'T(Q) é Ct—3/2pHaHLP,T(Q)’
1<p<gq 3<qg<oo, 1£rL
(5) VT, (t)aHLoo(ﬂ) S Ct~3/2p”a”Lp,r(Q)’ I<p<oo, 1Sr=so00

Here, C is independent of uy while C depends on p, q, v and o.
(ii) When 0 <t <2 and |us| S o, we have the following estimates :

1) Tuc(®all,,, @ = Ct 7l q 1<pSg<oo,
(2)  IVTue(®all,, @ S Ct¢V]a]

- Lg,r()?

—_ =
HA
3
HA

A
A
8 8

1<p=g<oo
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Here, C is also independent of us, while C depends on p, q, r and o.

Applying P to (4) formally we have

2 +P(~A+ue - V)z+ Vi wRz+zQwW+2zR2z =0,

Z]an =0, th:o =b.

Applying the Duhamel’s principle, we have
t
z(t) = Ty, (t)b — / T (t — 8)PV - [w ®2z(s) +z(s) ® W + z(s) ® z(s)] ds.
0

Testing the equation by ¢ € C§%.(Q) = {w € C§°() | V - ¢ = 0}, we have

< Z(t),go > =< Ty (t)b,p >

- /t < Ty, (t—8)PV - [w®z(s)+2(s) W +2(s) ®z(s)], ¢ > ds
0
=< Ty, (t)b,p >

+ /0 <w®z(s)+2z(s) @wW +2(s) ®2(s), V[T_u, (t — s)p] > ds.

Therefore, we introduce the following definition.

Definition 3. Let 3 < p < co. We call z a mild solution of (4) in the class S, if z
satisfies the following conditions :

(i) z € BC((0,00); L360(R), V-z=0, t1/273/2P)5(1 ) € BC((0,00); Lp,o());

(ii) < z(t),p >=< Ty (t)b,p >

+ /t <w®z(s)+z(s) @w+2z(s) ®2(s), V[I_u, (t — s)p > ds;
0

(iii) tlilgl+ < z(t),p >=<b,p > Vo € Cyp(92).

If a mild solution is regular in the usual sense, then it satisfies (4). To prove the
regularity is now rather standard (cf. Kozono and Yamazaki [24], also Yamazaki [33]),
and therefore we only give a sketch of our proof about the following existence theorem
of mild solutions below.
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Theorem 4. Let 3 < p < oo. Then, there ezists a 0 > 0 such that if ||b||,, o +

[uoo| £ 0 and V - b = 0, then (4) admits a mild solution z in class S,. Moreover, z
satisfies the following estimate :

(9) 2]3,00,¢t + [2]p,00,t S Co Vit e (0,00),
where C' > 0 is a constant independent of Uy, and b,

[z]3,oo,t = Oiggt ”Z(S’ ’)“L&w(a)?

10
1o [2lp.o0,e = sup sU/273/2P) (s, )

0<s<t ”L”’“’(n).

Remark. By Marcinkiewitz interpolation theorem, for any r € (3,p) we have
“Z(t’ .)”Lr(ﬂ) g CT t—(1/2—3/2r)o_ Vte (0, OO)

Open Problem. Show the following decay property of our mild solution z :

sup 52 ||z(s, ), < Co,
<s<t

sup s'/2|[Va(s, )
0<s<t

< Co.

HLS’OO(Q)
Sketch of Our Proof.

A Sketch of Our Proof of Theorem 1.

The linearized equation of (3) is the following Oseen equation in (2 :

) {fAu+(uoo-V)u+V7r:V-Fl V-u=0 inQ,

ul,, =0.

In oreder to show the unique existence and estimates of solutions to (11), when u, =
0, Kozono and Yamazaki [23] used the duality argument. But, when uy # O, this
method does not seem to match with the Oseen equation, because of the first order
term u., - V. We used a compact perturbation method, the idea of which going back to
Shibata [31]. Namely, combining the unique existence and estimates of solutions in the
whole space case and in the bounded domain case by using the cut-off technique, we
reduce the problem to the Fredholm type equation on the right hand side. And then,
the sharp uniqueness theorem for the Oseen equation in 2 implies the invertibility of
this Fredmolm equation. Since we have to keep the divergence free condition, we use
Bogovski lemma ([3, 4] and also [14, 20]). Essentially the same argument is found also
in Shibata [32], Iwashita [20] and Kobayashi and Shibata [22]. While we have proved
a linear theorem with very general exponents p and ¢, here we only state the following
theorem in order to explain our basical idea.
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Linear Theorem. Let3/2 < p < 3 and F = (F;;) ( 3x3 matriz ) with Fj; € L, o (12).
Then, there exists an € > 0 independent of F such that if |ux| < €, then (11) admits a
unique solution (0, m) € L3y/(3-p),00()? X Lp.oo(Q) with Vu € Ly o (€2)%73.

Moreover, there exists a constant C independent of us,, F', u and 7 such that

(12) [[ul @ TVl o 7L, L@ S CIFIL, @

L3p/(3—p),00

In oeder to solve (3) by using Linear Theorem, we construct a vector of C§°(R?)
functions by,_ (z) such that

V by, (z) =0, bu g ="Ux; bu,(z)=0 (lz| 2 HR)a
102 bu,, (2)] £ Calus| Vo

Such a vector-valued function is easily constructed by using the Bogovskii theorem (|3,
4] and also [14, 20]). Put u = b,,__ +v and then (11) is reduced to the following equation

—AV+ (U - V)V+ V- [(by, +V)® (by, +V)]+ V=V .- F inQ,
(12) { V-u=0 in Q, ul,, =0, Illlm v(z) =0.

As the underliying space, we put

To = {(u,7) € L3,00(2)*>xL3/2,06(Q) | Vu € L33 50 (2)**%, ul,, =0, V-u=0
”u“Lsym(n) + ”vu“Lme(n) + IIVT(IlLS/z,m(Q) § U}:

because the exponent p for which the assertions that w € Lg;/(3-p)(£2) implies w@w €

L,(Q) and that Vw € L,(Q) imples w € L3,/ (3-p)(£2) is equal to 3/2 only. By using

Linear Theorem and the contraction mapping principle, we can prove the existence of

solutions to (12) in Z, immediately under suitable choice of a small positive number o.
From now on, we give

A Sketch of Our Proof of Linear Theorem. 1st step : Analysis of solutions in R3. By
Fourier transform we can write a solution (u,7) to the equation in the whole space :

(~Au+ (U - V))u+Vr=V-F, V-u=0 inR?

by the following form :

3 . o
u(e) = Bun [FYe) = 77 | 3 i (F (© - —(—S—F—@> (=),

7/1100 M

3

m(z) = H[F)(z) = 7! 2 ’5‘;!*;(5 ().
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Since

2\* . _ . _
e (5g) (6P +iluncle) ™| < CalleP + ifumfesl ™ Ve
where C,, is independent of u,, by the orthogonal transformation in £ and the Lizorkin
theorem about the Fourier multiplier oprator we can see easily that

+IVull, gsy + [I7ll < Gl F|

||u||L3p/(3——p)(lR3) Lp(R3) Lp(R3) = Lp(®R3)’

Since Ly, oo (R?) = (Lp,, Lp,)6,00, 1/p = (1—0)/p1+6/p> in the real interpolation sense,
we have

(13) [[ull

After cutting off the solutions, we have to handle with the following equation :

+ [Vl +lll, s GollFIl,,

L3p/(3—p),00 ®®) Lp,oo (R3) co(®R3) = oo (R3)"

(14) —Au+ (U - V)u+Var=f, V.u=0 inR3

where f € L, o(R3) with supp f C B, = {z € R? | |z] < b}. Let (E(ux)(z), P(z))
denote the Oseen fundamental solution whose exact formula was given by Oseen [30]
(cf. also [14, 22, 32]), and then the solution of (14) is given by the convolution formula
0= F(uy) *f and 7 = P x f. Since

C
(ueo # 0)
_’E3/25 331/2
|E(u) (@ ”§|§1 V) < { 0 ) ol < E%
P (1 = 0),

where 5, (z) = |Z| — Us - Z/|Uso| and C is independent of u.,, we have

IE@ol,, gty SC IVB@a)l,, 0 SCr o, , oo SC,

where C is independent of u.,. Therefore, by the generalized Young inequality we see
that

||U||L3p/(3—p),oo(R3) § HE(UOO)“ 3/2, (IRB) || HL (]R3) = Cbe“ oo (R3)?
”VUH oo (R3) — HVE(uOO)“ (RS)“f“L (R3) = Cb”fHL ,oo(R‘g)’
”pH o (R3) — ”PH (Ra)HfHLq(R3) é CbeHLp,oo(]R3)7'

where 1 + (3 —-p)/3p =1/3+ 1/q, 1+1/p=2/3+1/gand 1 < q < p. To obtain
that ¢ = 1, we need the assumption : p = 3/2. The restriction : p ) < 3 comes from the
Sobolev inequality :

< Cp||Vul|

Hu“LBp/(B (RS) = L (]R3)'

2nd step : Solutions in a bounded domain. Let D be a bounded domain in R3 with
smooth boundary dD. By interpolating the well-known theorem concerning the Stokes
equation and Oseen equation in a bounded domain, we have tha following theorem.
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Theorem. Given F = (Fy;) € Ly o(D)**3, Fy € Ly oo(D) and ¢ € R, there exists a
unique solution (w,m) € Wy (D)? X Ly oo(D) to the equation :
<Vw,Vp >+ < (U - VIW,p>—<m,V-p>
=< F,Vp >+ < Fy,p> VeeC5(D),

/de:c, V-w=0 inQ, w,=0.
D

Moreover, if [us| < ¢ and 1 < p < 3, then there exists a constant C' depending on p,
D and og such that

+IVWI,, oy + 7l s ClI(E, Fo)llz, o)

|IW||L3p/(3_p)'OO(D) Lp,o(D) =

If F =0, thenw e W2 _ (D), n€ W, (D) and

D) + ||7T“W; = C”FO“L,,,oo(D)'

Il .

Here and hereafter,

W;Too(G) = {w € LP,OO(G) | ”w”wg}w(c) = Z Hagwlleyoo(G) < OO}

la|<m
For the latter purpose, we write the solution given in the above theorem as follows :

w = L(D,ux)[F, Fo,c], 7 =p(D,u)lF, Fo,c].

3rd step : Bogouskii Operator. Let 1 < p < oo and let D be a bounded domain in R3
with smooth boundary 0D.

pro00(D) = {u € W (D) | Zul,p =0 (lof =m —1)},

p,00,0

W o(D) = {u € W o(D) | /D wdz = 0}.

Interpolating the well-known Bogovskii theorem ([3, 4] and also [14, 20]), we can con-

o
struct a linear operator B : W7 (D) — W;?;}O(D)“Q‘ such that for f € W', (D)

we have V - B[f] = f in D and
< C|IfIl

By pess iy S Ol g o

where the constant C depends on m, p and D. Since B[f] € WIZ‘;}O(DP, we can extend

B[f] to the whole space by 0 outside D, and then B[f] € sz’"o'gl(]R?’)i*’ supp B[f] C D,
V -B[f] = fo in R® and
BN, ) S O o

where fo(z) also denotes the 0 extension of f to the whole space.
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4th step : A Reduction to the Equation of the Fredholm type. Devide soluton to (11)
into three parts :
U= Ve +Vg+ Ve T =T + g+ Te.

Voo and 7y are defined in the following manner. Let ¢, and ¥, be functions in
C°°(R3) such that

_{1 2| = R ’ _{1 2| > R—1
72=10 |z<R-1" "7 \0 |f<R-2

Note that 1o = 1 on supp ¢«. Put

Voo = Yoo Lug, [PooF] = B[Vtpoo * Eu [P Fll, Moo = tooll]pao F]-
Put ¢o = 1 — 95 and let ¥y € C°(R3) such that

1 |z|<R

, z)=1 onsu .
0 le|=R+1 Yo() PP %o

(o) = {
Take R so large that Bgr_4 D 0€2. Put D = Qgr42 = Q2N Brya, and therefore

Vo = ¢0E(D> uoo)[(POFa 0, O] - B[V"ﬁo . ‘C(D’ uoo)[(pOFv Oa 0]]7
mo = hop(D, Uso) [0 F, 0,0].

Then, we arrive at the following equation to (v, 7,) :

(15) { —Ave+ (Uoo - V)Ve + Ve = 7(Uo)[f], V:-ve=0 in g,

VC‘an =0

where 7(Ueo)[F] € Lp.oo(€2), supp r(u)[F] C D' ={z € R® | R—2< |z| S R+ 1}
and [|r(uso)[Fll,, ) S CIIF|l,, ., With some constant C' > 0 independent of us

whenever |uy| £ 0¢. From this point of view, we are going to solve the following
equation : '

(16)

—Au+ (U - V)u+Vr=f£f, V-u=0 inQ,
ul,, =0

where f € L, o(2) and supp f C D’. The equation (16) is solved by the compact
perturbation method. In fact, put
P(uoo)f = (1 - @)E(uoo) * £ + (P‘C(QR-{-%O)[O’ f!nR+2 ) C]
+B[(Vp) - (E(us) * )] = B[(Vep) - L(Qr+2,0)[0,fl, ., ]
Qf = (1~ P)p £+ op(ps2, 00, o, ]
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where

c=/ 7 f0dz, o(z)=

QRr42

{1 |z| £ R —2 £(z) {f(a:) z €
) T)=
0 Jz|2R+1 0 T ¢

and f |QR+2 is the restriction of f to Qr12. P(us)f and Qf satisfy the following equation

(A + e - V) P(too)f + V(QF) = f + S(too)f, V- Plus)f =0 in Q.
P(uco)f|,, =0
where
S(ueo)f = 2(Ve) - VE(ueo) * £2 + (Ap) B(Uso) * 0 4 [(Ueo V)] E(Uso) * £°
+2(V) - L(Qr+2,0)[0,flg ] — (A@)L(Qr+2,0)[0, £, ,,c]—
+ (Voo - V)(9L(QR+2,0)[0,fl, - €]) ,
+ (A + uee - V)(B[(Ve) - E(uco) * £°] = B[(V) - L(Qr+2,0)[0, £l cl])
— (Vo) * £° = p(Qr+2,0)[0, o, - <])-
Since S(ueo)f € Wy o (€2) and supp S(u)f C D', S(us) is a compact operator from
Ly 00,0’ (£2) into itself, where
Lp oo () = {f € Ly (Q)® | supp £ C D'}.
By using the representation formula of F(us.) * f°, we see easily that

(17) 15(us0) = SOlece, _ o S Clttoal”?

when |us| < 1, where £(Lp 0o p/(€2)) is the set of bounded linear operators from
Ly 00,0/ (§2) into itself.
Our uniqueness theorem is the following one.

Uniqueness Theorem. Let1 < p < co. If (u,7) € S'(Q)4N (WPQJOC
satisfies the homogeneous equation :

~Au+ (oo - VIu+Vr=0, V-u=0 inQ, u|,=0

(9% X W 10e(92))

and the growth order condition :

lim R / u(@)|dz =0, Jim R / in(2)| dz = 0,

R—0o0
RE|z|S2R RZ|x|S2R

then u =0 and m = 0. Here, we put

S'(Q) ={u|3U € 8 such that u = Uon N}.

Remark. if 1 < p < 3 and u € Lgp/(3_p),00(2), VU € L () and 7 € Ly (), then
(u, 7) satisfies the growth order condition. But, in general the uniqueness does not hold
for the exterior domain when u € Ly 1,(€2)® with Vu € L, (2)3*? and p 2 3.

By using the Fredholm alternative theorem for the I+ compact operator, we have
the following lemma.
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Key Lemma. There exists an € > 0 such that if |us| < €, then the inverse operator
(I+ S(ue))™ of I + S(us) exists in L(Lp,oo,p'(£2)). Moreover, we have

(T + S(uoo))—ll[L(Lp’oovDr(Q)) =C

where C is independent of U, whenever || < €.

Proof. By (17), it is sufficient to show the lemma in the case where u,, = 0. In view
of Fredholm alternative theorem, we have only to show the injectivity of I + S(us).
Therefore, we take f € L, o, p/(2) such that (I +S(us))f = 0. And, we will show that
f = 0. By the definition of S(us) we have —AP(0)f + VQf =0in Q, V- P(0)f =0
in © and P(0)f|,, = 0. By the uniqueness theorem, P(0)f = 0 and Qf = 0. And then,
employing the argument due to Shibata [31] and also Iwashita [20], we see that f = 0.

By Key lemma, the solution (v.,m.) of (15) can be written by the formula :
Ve = P(Uoo) (I + S(Us0)) 7' (Uso)[f],  me = QI + S(uao)) T (uco ) [f]

which completes our proof of Linear Theorem.

A Sketch of Our Proofs of Theorems 2 and 4

In order to show Theorem 2, we use the following estimate due to Kobayashi and
Shibata ] :

1

(18) D N0 Tur )2l ym oy S Comr(L+8)"*llall, o
=0

for any 1 < p < 0o, m 2 0 and R >> 1 with a suitable constant Cy, m, r independent of
U. Interpolating this inequality, we have

1

(19) Y N Tu (Dallymap S Comr(l+07 %l o
§=0

forany 1 < p<ooand 1 < g £ oo. Let Sy (f)a denote a solution of the evolutional
Oseen equation in the whole space. By the usual L, - L, estimate and the interpolation
theorem, we have

| Qo —(v+4 3 /1 1
(20)  10/02Sur ()2l ) S Cpagirgiat D al = : (1_) B 5)

forl<p<g<oo,1<7r < o0, and

(21) 1883 Sune (Dall,_ o) S Cpogrgiat™ 2PHHA D)
forl <p<ooandl < r £ oo, when t > 0. By using the cut-off function and combining
(18), (19) and (20) and employing the same argument due to Kobayashi and Shibata
[22] and also Iwashita [20], we have Theorem 2.
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Now, we will give a sketch of our proof of Theorem 4. We proved Theorem 4 by the
contraction mapping principle. As the underlying space, we put

T, = {u(t, ) € BO((0,00); Ly o)) | V- u=0in 0,
[u]3,oo,t + [u]p,oo,t é o forVt > 0}

Given u(t) = u(t,-) € Z,, let us define v(t) = v(t,-) for each ¢t > 0 by the formula :
<v(t),p >=<Tyu(t)b,p >

4
- / <w®u(s)+u(s,)@w+u(s) ®u(s), V[T-u, (t — 8)p] > ds
0
for all ¢ € C§%,(€2). What we have to show is that

(22) | < V(t)’ p > ‘ é C{llb“L&oo(Q) + ”W”L&OO(Q) [u]3,007t + [u]iz%,oo,t}”(»o“z,zi/%l(n)’
(23) l < V(t), 14 > | § Ct—(1/2“3/2p){”b“L&OO(Q) + ”W”Ls,m(n)[u]%m,t
’ = 1.

+ {u]B,oovt[u]p,oovt}”(P”qul(ﬂ)’ +

=
Q|

Since we can get the continuity of v(¢,-) with respect to t > 0 by considering the
difference : < v(t;) — v(t2), ¢ >, we see that v € Z,. Taking o smaller if necessary, we
can also see easily that the map : u — v is a contraction one from Z,, into iteself, which
completes the proof of Theorem 4.

Therefore, we shall explain how to get (22) and (23) below. The key is the following
lemma.

LEMMA. Ifl1<q<r<3andl/q—1/r=1/3, then we have

/0 IV O, oy &t < Crallll, car-

Remark. From the usual L, - L, estimate, we have

“V[Tuoo (t)ﬂo] ||L,.(Q) é C",qt_l H‘PH Lg(S)

when 1/g — 1/r = 1/3, which does not imply the integrability. In order to get the
integrability, we used a little bit smaller spaces L, ; and L, ; than L, and L, which is
a crusial part of our argument.

Proof of LEMMA. Observe that

[e’s) S 27 o0
1 .
| VT @it = X [ VT @l S5 3 Pm,

j=—o0 j=—o0
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where
mj= sup I]v[Tuoo(t)(p]”Lr NN
29-1<t <29 ’
By Lp1 - Lg,1 estimate,
S3((2-1) 1)
”v[Tuoo(t)(P]“Lr,l(n) édpkt 2 P2 ||('0”ka,1(9)

with suitable constant d,, independent of u, for £ =0, 1, where 1 < pg < ¢ < p; <
r < 3. Since 277! <t < 27, we see that

(3(2-2)+3) o —(3(2-1) +3)
my S dp,2 13T @y T s ),
o (2( ) +1) 3/1 1 1
s(L-1)41
Cpk:dpkz 2 pg 2 and Sk:§<p_k...;>+§,
and then '
%g@gﬁmj§QMwm%Mm,k:QL

By the real interpolation, we see that
(€2:08)g1 =41, s=(1—0)so+0s1, 0<O<1
(cf. J. Bergh and J. Lofstrom [2 , Theorem 5.6.1]). Therefore, we have

1 1-6 8

Do b1

o0
Y. 2°my SCllell,, @

j=—o0

In particular,

3/1 1 1
S——(1—9)80+081—§(5—;>+§—1

because 1/q — 1/r = 1/3, and therefore we have

w .
Z 2’mj é Cq“‘P”Lq_l(Q)’

j=—00

which completes the proof of the lemma.

To show (22), observe that

[ Tuee (OPll, oy S ClIPIL, oy

/{: <weu(s), V[T_u_(t—s)p] > ds




t
10y e [ 19y i IV = D6l
o0
S 191y i [0l | IV (6= )6l 0

using LEMMA and noting that 2/3 — 1/3 = 1/3,

S Clwll,, o 3,00l , o)

/0 <u(s)@u(s),V[T-_u (t —s)p] > ds

t
< [ I, oy IV o= 96l o

< Clulfe, [ IV (= )6l o ds

< Clul o liel, , o
To show (23), observe that _
(i_2
1T (Bl e S CEEH B, g,
Choose r so that 1/3+1/p+1/r =1, and then 1/q — 1/r = 1/3. Therefore,

/Dt <wou(s), V[T_u, (t —s)p] > ds

t
<11y |, 18 i [P ¢ = )6,

t
_(1_
< 1wl _ oy (oo / s

<ot B wl,, o lulnscdllell, o

t\)lm

In fact, since
”v[T—uw (t - S)QO“LTJ(Q) é C(t - 3)—1”§0”Lq71(9)

as follows from that (3/2)(1/q —1/r) +1/2 =1, we have

t/2 1 3
/o sTEBNVIT (6= 9))ll,, o d5

t/2
< C/ s
0

< C(t/2)! /W s

0
< o/2) /2 ) ¢ll,,

Nf=

.3 -
2p)(t —_ 3) ! ds”SO“Lq’l(Q)

(S

— 3
%) dsl|el,, o

1_3
( 2p )H()OHLQI(Q)

VT (t = )l oy d

88



89

On the other hand,

Mb—-‘
w’m

/s( 5 V[T (t = )l e dS
t/2

< (/27 | T 6= 500l 0

< cr(3-%) /0 IVIT-uss ()¢l e 08
< ot~ (5~ 21)”90“ Lg,1(2)°

and therefore we have

ft

In the same manner, we have

to|»4
le

_(1_3
VT (t = )l @ S CEEH g,

/0 < u(s) @ u(s), V[Tu_(t — 8)¢] > ds

t
< / (), o I, o IV (¢ = )]l oy s

t
(1_3
s C[U]s,oo,t[u]p,oo,t/ s~ B VT (t - )l e ds
o ,
(1_3
< 0t~ 075 [uls oo s [ulp oot €]1, o
Combining these estimations implies (23), which completes the proof of Theorem 4.
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