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On thermal convection equations of Oberbeck-Boussinesq type
with the dissipation function
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1. Introduction

We study the stability of the motionelss state and bifurcation of cellular
patterns in the Rayleigh-Bénard convection under the effect of the dissipative
heating.

The Oberbeck-Boussinesq equations are frequently used as model equa-
tions in the mathematical analysis of convection phenomena such as the
Rayleigh-Bénard convection problem. Many interesting and usueful math-
matical results have been obtained through the Oberbeck-Boussinesq equa-
tions, and Rajagopal, Rizicka and Srinivasa [7] gave a justification for the
derivaton of the Oberbeck-Boussinesq equations from the point of view of
continuum mechanics. However, there are some phenomena such as the
earth’s upper mantle convetcion, convection in fast rotating configurations
and etc., in which the Oberbeck-Boussinesq equations seem inappropriate
due to the fact that the effect of dissipative heating is not taken into account
in the equations. ‘

Our purpose here is to study the model equations including the effect of
dissipative heating, which was derived in [3], in the context of the Rayleigh-
Bénard convection. We consider convection phenomena in the infinite fluid
layer {(z,23,23) € R3; 0 < z3 < 1}, where z3-direction is taken opposite to
the gravity and temperatures at the lower and upper boundaries {z3 = 0,1}
are prescribed by constants 6° and 6%, respectively, with 8° > 6*. Then the
model equations derived in [3] take the form
(1.1)

divv = 0,
(9tv——Av—/\9e3+Vp+v-VV = 0,

00 — £A0 — 2vs + 240 — z3)vs + (s +v- VI = ZD(v)-D(v).

Here the unknown {v,p,0}, v = (vi,v;,v3), denotes the deviation of the
fluid velocity, pressure and temperature from the motionless state {V,p, 0} =



{0,—;_1:3—{-5;3:3(1 —;tg),% — 3} ;e3=(0,0,1); © = 5%%%—-%% ;A > 01s
defined by A? = R ; R is the Rayleigh number ; Pr and ¢ are the Prandtl
and dissipation numbers, respectively ; and € > 0 is a small non-dimensional
parameter. The function 2D(v) - D(v) denotes the dissipation function :
ZD(V) : D(V) = %Z?,j:l(al'jvi + ar.'vj)z'

In (1.1) the effect of the dissipative heating is controlled by the parameter
¢. If one sets ( = 0 in (1.1), one formally obtains the usual Oberbeck-
Boussinesq equations.

The boundary conditions on {z3 = 0,1} are given by

v=0 and 6=0 on {z3=0,1}.

We require {v,p,8} to be %—periodic in z;-direction for given I; > 0 (j =
1,2).

As a first step of the mathematical analysis of (1.1), we consider the
stability of the motionless state. As is well known, in the usaul Oberbeck-
Boussinesq case (¢ = 0), there exists a critical Rayleigh number A (de-
pending on [; and l;) such that if A < A, then the motionless state is
unconditionally stable, while if A > )., then the motionless state is unstable
([2, 4, 8, 9]). We will see, in section 2, that in case ( > 0 but small the
motionless state is still stable even when X is slightly beyond A, ([3]).

In section 3 we consider the bifurcation problem. In case { = 0 it is known
that various types of stationary solutions with cellular patterns bifurcate
from the critical value X, supercritically. (See [4] and references therein). We
will consider stationary problem of (1.1) under the slip boundary conditions
for v on {3 = 0,1} and show that some transcritical bifurcation branches
exist when ¢ > 0, in particular, solutions of hexagonal patterns bifurcate
transcritically. This is in contrast to the usual Oberbeck-Boussinesq case
(¢ = 0) where only supercritical bifurcations can occur.

2. Stability of the motionless state

We investigate the stability of the motionless state in the Rayleigh-Bénard
convection, i.e., the stability of the trivial solution of (1.1). We consider
the initial boundary value problem for (1.1) under the boundary conditions
described above and initial condition

Vlz:o = Vo, 9|t=0 = bp.



Notation : We set Q0 = Ty 4, x (0,1), Ty, = RQ/(Z;—I"Z X %’Z); ()
denotes the scalar product of L*(Q); H™(Q) denotes the m-th order L2-
Sobolev space on (1.

In the case of the Oberbeck-Boussinesq equation (¢ = 0) the stability
of the motionless state is known to be controlled by the critical Rayleigh
number A\.*> > 0 which is given by

1 2(v - e3,0) 1) nd : }
2.1 -——Esup{ i {v,0} € Hy(2)* — {0}, divv=0,.
C = v e | 0 € O 10

The motionless state is unconditionally stable if A < A. while unstable if
A> A [2,4,8, 9]

In case ¢ > 0 the motionless state is (conditionally) asymptotically stable
even when X is slightly beyond A, for sufficiently small ( > 0, namely, we
have the following

Theorem 2.1 ([3]). (i) For each {vo,0} € HL(Q)® x L2(Q) with divvy = 0
there exist T > 0 and a unique solution {v(t),6(¢)} o ( 1) on [0,T] in the
class

v € C([0,T); (Hy)*) N L*(0,T; (H?*)?), 6€C([0,T]; L*) N L*(0,T; Hy).
(ii) There exist o > 0 and A ({) such that if 0 < ¢ < {p and X <

(), then the motionless state is asymptotically stable, namely, there exists

d > 0 such that for each {vo,0} € Hy(Q)* x L*(N) with divvy = 0 and

IVollzr + ||6o]l2 < 8, the solution {v(t),0(¢)} exists on [0,00) and satisfies
(

vl + 1022 < Ce™ (lIvolla + [10o]l2)

for some constants C, v >0. If x > X\((), then the motionless state is
unstable.

The number A .(() satisfies
Ac(0) =X and A () > A for 0<( < (o

Proof. Following [3] we here give an outline of the proof of (ii). See [3] for
details.

To prove the assertion (ii) we consider the eigenvalue problem linearized
at the motionless state :

(2.2) —ou+ Lu =0,



where u = {v, 6},

~ 3 Av — AP(6b) )
Lu=L /\, = 1 ) ?
u=L(,¢)u ( —& A0+ 2({(O — 23) — 1)vs

A is the Stokes operator —PA, P is the orthogonal projector from L*(Q)3
to H and H is the L?-closure of the set of all smooth solenoidal vector fields
in Q vanishing near {z3 =0, 1}.

Since £ has compact resolvent, the spectrum o (L) of £ consists of discrete
eigenvalues {0, }n>1 with Reogy < Reoy; <--- <Reo, < -+ = +o0.

The principle of linearized stability impiles that the motionless stable is
stable if Reo; > 0 while unstable if Reo; < 0. Therefore the assertion (ii)
follows from the next proposition.

We denote the eigenvalues o; of £ by o;(A, ().

Proposition 2.2. There exist (o > 0 and A.(¢) > A such that if 0 < { < (o
and A < Ac(€), then a1(A, ) > 0. Moreover, if 0 < { < (o and X > A((),
then 01(X, () < 0. Here the number A (() satisfies

A(0)= A and A (¢) > A, for 0 < (¢ < (o

Proof. We consider the eigenvalue problem (2.2):
—ou+ L(A,()u =0,

Av — AP(6b)
L(A =
(3 ( 804 B r )
It is known that in case ( =0, all elgenvalues {on(A) = 0n(X,0)} >y are real,
the smallest eigenvalue has even multiplicity, say 2m (m € N), and

Uo(A) = 0'1(/\) =-.= Uzm(/\) < 02m+1()\) < - <Z O'n()\) <-oo = H4oo.
Furthermore, v
(23) (£(A,0)u,u) > go(A)]lull®

for u € D(A) x (H*() N H)(Q)), where D(A) denotes the domain of A.
Here and in the following we denote the scalar product of H x L*(2) by (-, ")
which is defined as, for u; = {v;,0,;} € H x L*(Q) (j =1,2),

(Ul,uz)-_’-—: (Vi,v2)r2(q) + Pr (61, 02)12() and |lu]| = v/(u,u).



There also holds that oo(A) > 0 (resp. go(A) < 0) if and only if A < X = A,

(resp. A > )Ag) while 0p(A) = 0 if and only if A = ), and there exists

Yo = Yo(l1,12,Pr) > 0 such that if j > 2m + 1 and A < Ay then o;(A) > 7o.

If 1 <3 < 2m each oj()) is continuous in A. In particular, for any € > 0

there exists §(g) > 0 such that if X < Ao — ¢, then oo(X) > §(¢). ([4, 8, 9].)
We now consider the case 0 < ( < 1. We write (2.2) as

—ou + Eou + ()\ — /\0)/\4111 + CMzu + Mg()\,C)u = O,

where

B [ —P(6b) ~ 0
Lo =L(%,0), M= ( —5-V3 ) , M= ( 20(0 — z3)v; ) |

and
Ma(d, Qu = ( %?_(’C(eo“ 3)v3 > '
We first consider the case A < Ay — € for some ¢ > 0.
Proposition 23 For any € > 0 there exists 8(¢) > 0 and (,(g) > 0 with
o(£(A,€)) C {o; Reo > &(e)/2}
if A< X—¢€ and 0 < ¢ < ().

Proof. Since ||(® — z3)v3|2 < C ||ull, we see from (2.3) that

Re(£(), ()u,u) = (£(X,0)u,u) + Re ((Mau,u) + Re (Ms(), O)u, )
> (a0 — CAoC)||ull®.

Now recall that for any € > 0 there exists § = () > 0 such that if A < Ag—e¢,

then oo > d(g). Thus, if { < %% and A < Mg — ¢, then

Re (£(A, )u,u) > 8(e)zlull,

which implies that o(L(),()) C {o; Reo > 14(e)} for A < Xp — € and
0<(¢< 5%(% This shows Proposition 2.3. '

We next investigate L(A, () for |A = Xg| <e <k land 0 < (K 1.



Proposition 2.4. (1) There exist €3 > 0 and (3 > 0 such that
(2.4) a(L(N ) C{a;lol < 10} U{o; Reo > 370}

if A= <ez and 0 < (¢ < (s
(ii) There exist 0 < e3 < €3 and 0 < (3 < (o such that the eigenvalues of
L(X¢) in{o; |o| < 170} have the form

(2.5) o = oA = Ao) + o+ O(IA = hol” + ()

with constants (1) < 0 and ¢V > 0, if A — Xo| < €3 and 0 < ¢ < (.
Moreover, there exists A\. = A({) > 0 satisfying

A(0) =X and A (¢) > X for 0<( < (3

and it holds oy(X\,¢) > 0 if A < A(¢) and o1(\,{) <0 if A > A({), provided
that '/\ - )\()I < E3 and 0 S C S C3.

Proof. We first observe
”Mju”2 < C”u” (.7 = 112,3)
Since Ly is self-adjoint, we obtain for some constant a = a()o, 6,Pr) >0,

I = Ao) My + (M2 + Ms(A, €)= + Lo) 'ul|
< dbdolbC) ) < Llu

= rknml ptokl

provided that u € & = {o; |o] > 170} N {o; Recd < 270}, [A — Xo| < €2 and

0 < ¢ < (, for some small e, > 0 and {; > 0. This inequality immediately

implies that ¥ is included in the resolvent set of £L(},¢) and (2.4) follows.
To prove (2.5) we note that the problem (2.2) is equivalent to

(2.6) —ob — A0+ 2-(¢(0 — x3) — 1)vs = 0,

—ov —Av —A0b + Vp =0,
divv = 0
with boundary conditions under consideration.

To solve (2.6) we expand v, § and Vp into Fourier series in z; and z,,

.k k
21r1(TiL.1:1+722r2)h(

and so we assume v, 6 and Vp to have the form e z3), where



(k1,k2) € Z2. We first consider the case (k1,k2) = (0,0), namely, v; = v;(z3)
(1 =1,2,3), 0 = §(z3). Due to divv = 0 we have d—d"U3 = 0. This, together
with v =0 on {z3 = 0,1}, yields v3 = 0. We then obtain

=ollvillZ200) + g0l = 0 (1=1,2),

1 |
—0'“0”%2(0,1 ”dmO“L?m = 0.

This implies that

I 0, < o1, h#o}

o > ar? = ainf
{ “h”L2(o 1)

where @ = min (1,Pr ~!). Therefore, we see that o € {o; Rec > 340}.
We next consider (kj,k2) # (0,0). This is the case where there really
occurs o € {o;|o| < 170}. Taking curl curl of (2.6),, we obtain

O'A’Ug + A2'U3 + /\Aga = 0,
(2.7)

—00 — A0+ 2(¢(0 —z3) — 1)v3 =0

with boundary conditions v3 = Osv3 = @ = 0 at z3 = 0, 1 and the periodic
boundary conditions in z; and z,. Here A, = 01 + 0.

.ok k .k k
We now substitute vz = 62”'(#x1+7§x2)f(:v3), 6 = ezm(#xﬂ'i‘m)g(xg) for
(k1, k2) # (0,0) into (2.7). Then we find the eigenvalue problem : '

—0D,f + D f — dwlg=0
(2.8) ~0g+ £D,g+ (O —23)—1)f=0 (0<az3<1),
f= d-’taf g=70 7 ($3=071)'v

where w? = (%‘-)2 + (:‘11{2—]“1)2 >0, D, = (—-(—i‘% +w?) and D,? = (24::—5 —w?)2
3
It is easily verified that the eigenvalues and eigenfunctions of (2.6) for

ki, ks, 0,0) can be obtained from those of (2.8) with suitable w? > 0 and
(K1, ,

vice versa, since w? > 0. We write (2.8) as

(2.9) —oMf+L(\Of =0, f={f g}



Here

M= ( %“’ X ) L(\() = ( (o f)i)_l) ;l—Azc)dj)

and the operators D, and D,,* are defined as above for g € H2(0,1)NH}(0,1)
and f € {f € H*(0,1); f = ﬁf =0 at z3 = 0,1}, respectively.

The eigenvalues o;(Ao) of Lo are given by the eigenvalues of the eigenvalue
problem (2.9) with A = Xp and { = 0, and moreover, the eigenvalues of
L(A,¢) in {o; |o| < 70} are given by those of L(A,() in {o; |o] < 170}
In particular, ¢(L(0,0)) N {o; lo| < 17} = {oo(Ae) = 0}. The following
lemma summarizes the results in [6, page 38].

Lemma 2.5. (i) The eigenvalue ao(Xo) = 0 of L9 = L[(0,0) is simple.
(ii) One can choose an eigenfunction fo = {fo, g0} of L(®°) associated with
00(Xo) = 0 in such a way that fo(z3) > 0 and go(z3) > 0 for 0 < z3 < 1.
Since go(Ao) is simple by Lemma 2.5 (i), there exists only one eigenvalue
o =0(X() of L(A,() in {o; |o] < 2} when |X — Xo| and ( are sufficiently
small. Furthermore, due to the simplicity of g¢()o), one can see that o(), ()
is analytic in A and ( near A = )y and ¢ = 0 and it is expanded as

(2.10) o\ 0) = 32 aUR( = AJick  with 00 = o(Xo) = 0.
jk>0 ‘

We denote by f(A,() the eigenfunction associated with (), () satisfiying
£(0,0) = f,. Then ‘ ’

(211) £0,0)= 52 (A= o)iHeliH
5, k>0

with £(®0) = f,. Substituting (2.10) and (2.11) into (2.9) we obtain

LOf, =0,
(2.12) —o MO Mfy 4+ LOOF1O 4 [(10g) —

(2.13) - —a O Mfy 4 LOOFO1) 4 pODE — ¢



and so on. Here L(), () = 2 o<ik<1(A = o)’ ¢k LR with L9 = L(0,0),

on= (om0 o0

and L) = A\71LOY. To compute o) we define (-,-) by

1
(f1,f2) = f1($3 f2($3)d$3+Pr/ 91(333)92(553)61333
0

forf; = {f;,9;} € L2(0, 1)2 (5 = 1,2). Here f denotes the complex conjugate
of f. Note that (L(®Of,,£;) = (f;, L(®9f,) and (Mf,f) > 0 for f # 0.
- Taking (-, -) of (2.12) and (2.13) with f;, respectively, we obtain

o109 — (L(l’o)fo,fo> and  o©@) = (L(O’l)fo,fo)

(Mfo, fo) . (Mf,, )

respectively. The coefficient o(*?) must satisfy ¢(*?) < 0, since oo()) > 0 if
and only if A < Ay, and ao(\) < 0 if and only if A > X¢. Since fo, go > 0 by
Lemma 2.5 (ii) and since © > 1 > z3 for 0 < z3 < 1, we see that

1
<L(O'l)f0,f0) = / /\o(@ - $3)f0($3)g0(.'1,‘3)d.'133 > 0.

Thus, (®) > 0, and we have obtained (2.5). Now we define Ao(() by
a(Ao(¢),¢) = 0. We then have

CRY

(2.14) Ao(€) = Ao — —5;¢ + O(LF).

Since Ao(¢) also depends on w?, we denote Ao(¢) by Ao({;w?). Then the
critical number A.(() is given by

, ok \?  [2mk,\?
2.1 A = f A : .
( 5) C(C) (khk2)lé122\(0,0) ° (C, ( L ) * ( ly )

This completes the proof.

Proposition 2.2 now follows from Propositions 2.3 and 2.4 by taking € = €3
in Proposition 2.3 and {, = min {{;(e3),(3}. This completes the proof of
Proposition 2.2.
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3. Remarks on bifurcation problem

In this section we consider bifurcation problem for (1.1). Due to a tech-
nical reason, we here consider (1.1) under the slip boundary conditions for v
on {z3 = 0,1} instead of the no-slip boundary conditions, i.e., we consider

Opav1 = Opyva =v3 =0 on {z3=0,1}.

The boundary conditions for # are the same as in sections 1 and 2, and we
also impose the same periodic boundary conditions in z; and z,-variables as
in sections 1 and 2. We also require

/é v1(x)dx = /Q vg(x)dx = 0.

Under these boundary conditions one can also obtain similar critical numbers
A.(¢) for the stability of the motionless state. In case ( = 0 it is known
that nontrivial solution branches of various cellular patterns such as rolls
and hexagones bifurcate at \.. (See [4] and references therein.) Due to the
unconditional stability of the motionless state, only supercritical bifurcations
can occur when ¢ = 0. |

We will show that, in contrast to the case of { = 0, some transcritical
bifurcation branches exist when ¢ > 0. In particular, hexagonal solutions
bifurcate at A.(¢) transcritically when ¢ > 0.

Notation. In this section we denote the spatial variable x and the fluid
velocity v by

X = (z1,%,73) = (2,y,2) and v = (v1,v2,v3) = (u,v,w)

respectively. We also write the periods {; and [; as

9
L, =" and I, = 27

a B
When ¢ = 0, the usual critical Rayleigh number \.> under the slip boundary

conditions is given by a similar formula to (2.1). But in this case it has an
explicit formula :

2 2\3
(e +27r ) . Wem? = (ak)? 4 (Bm)%

M2 = inf
(kym)€Z? Wk,m




Note that ﬁ%@i attains its mimimum value at w = w, = 7/v/2. By a
similar argument in section 2, one can obtain the critical number Ac(¢) for
sufficiently small ¢ > 0, which is given by an analogue of (2.15) :

(31) /\C(C) = /\c(c;w2) = inf )‘O(vakm )7

(k,m)eZ?
where w? = o? 4+ 2 and wi ? = (ak)? + (8m)?. Here the function Ao((;w?)
is given by an analogue of (2.14) :

(w2 + m2)3 o@D

)‘O(C;wz) = - U(I,O)C + O(Cz)

w?

Ae(€) = Ae(¢;w?) attains its minimum in w at w.({) = w. + O(()-

3.1 Two-dimensional case.
We first consider the two-dimensional problem ; this means that the un-
knowns v, @ (and p) depend only on z and z but not on y, and v(z,2) = 0
In this case the critical number A.(¢) in (3.1) may be written as

(3.2) A(€) = Ae(€;0®) = fnf do(G; (k).

We now take o in such a way that the infimum in (3.2) is attained at
both k =1 and k = 2. (This really occurs. See [1, 8] for the case ( = 0.)

For this choice of a one sees that dimker £ () = 4. We restrict ourselves
to the subspace of functions which have the Fourier expansions of the form :

(u= Z Uk,n Sin akx cos nrz,
k,n
J w= Z Wk, COS akr sinnmz,
ks
0= Z Ok,n cos akz sinnmz.
\ km

Then if Ly, () is restricted on this space, we have dimker £, ) = 2, and
ker £, (¢) = span{ug, ug}, where

0
w = w |cosajzsintz+0() (j=1,2)
07

11
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with some constants w’ and 6.
We look for nontrivial stationary solutions for A near A\.(¢) by the Lyapunov-
Schmidt method. To do so, we write u as

u=Aul4+A4ui+ 0, A eR, (®,ui)=0 (j=1,2),

where u” are functions in ker L) satisfying (u}, ut*) = §; ;. The Lyapunov-
Schmidt reduction then yields

(3.3) { Po(A — () A1 + ¢(p1 + Prpa) A1 As + O(|A|3) =0,
| Po(A = Ae(€)) Az + CqAy® + O(JAP) = 0,

where po = O(1) < 0, p; = O(1) < 0, p, = O(1) > 0 and ¢; = O(1) > 0 as
¢ — 0.
From (3.3) we obtain the following

Theorem 3.1. (i) (Usual roll solutions) There exist nontrivial solution
branches {{A1,0},A — A(¢) = u1A:?} and {{0, A3}, ) — A(0) = paAr?},
where pi; (3 =1,2) are positive constants. The solutions u; corresponding to
these branches have the forms :

u; = A;ud + O(J4;1%) (5 =1,2).

These are the usual roll solutions.
(i) (Mized solutions) (a) (Ezistence)There exists Pro > 0 such that if

Pr > Pry, then there exist two nontrivial solution branches of the forms :
. { A= £, Ay = taze + O(IEP)a
A= A(C) = Fuae + O(le]?),

where a; = O(1) > 0 and uz = O(1) > 0 as ¢ — 0. (Fig. 1). The solutions
us) corresponding to these branches have the forms

u(y) = e(ug £ azul) + O(e?).

(b) (No existence) If Pr < Pry, then there exist no small stationary solutions
except for the trivial solution u = 0 and the usual roll solutions u; (j =1,2)
obtained in (i).
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Remark. In case ¢ = 0 the analysis of mixed solutions was given in details

in [1].
}\f) M fuee‘t
r7—’~m) mvx,u( Sﬂwtmw
(Pr‘>PJ?o)

Ay

Fig, 1

3.2 Hexagonal solutions

We next consider the bifurcation problem of solutxons of hexagonal pat-
terns. To obtain hexagonal solutions we require § = v3a and also 2a =~
w.(¢). We restrict ourselves to the subspace of functions invariant under -
rotation in (z,y). We further require that u has the Fouier expansions of the
form:

’

u= E Ukmn SIN @k cos \/gamy cosnwz,

kmmn
v = E Vkmn COS akz sin \/§amy cosnwz,
(3.4) § ks y
w= _;_ Wrmn COS kT COS \/_amy sinnwz,
k.m,n

0= E Okmn COS akm cos \/—amy sinnmwz.

\ kmn

The requirement of 2 S-rotation invariance restricts the form of functions in
(3.4), for example, 8 has the form

0 = Z Ormn{cos akz cos \/§&my

k,m,n
k+m=even

+cos {a(2k — 3m)z} cos {V3a(ik + im)y}
+ cos {a(Lk + 2m)z} cos {v3a(3k — tm)y}}sinnmz.

(See (4, 5].)
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In this space we have dimker £, ) = 1. We take a nontrivial vecter ug
from ker L, (¢), whose w-component wq has, say, the form

wo = {2 cos az cos \/gay + cos 2az} sinmz + O(().

Similarly as in secton 3.1 we look for nontrivial étationary solutions for
A near A;(¢) by the Lyapunov-Schmidt method. We write u as

u=Auy+®, AeR, (P,uy) =0,

where ug is a function in ker £, ()" satisfying (uo,ug) = 1. The Lyapunov-
Schmidt reduction then yields

(3.5) Po(A = A(C))A + (p1A? + p2 A + O(|A]*) = 0,

where pg = O(1) < 0, p; = p1(Pr) = O(1) and p, = O(1) >0 as ¢ — 0.
Here p; = p;(Pr) changes signs at some Pr = Pr;.
From (3.5) we obtain the following

Theorem 3.2. There exists Prq; > 0 such that

(i) if Pr # Pr,, then there exists a hezagonal solutions branch bifurcating at
Ae(¢) transcritically

and

(i) if Pr = Pr, there exists a hezagonal solutions branch bifurcating at A.(()
supercritically. (Fig. 2).

o bompe, g el
Ac(Z)& > A

T'.i}\ Z
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