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Numerical Validation of Solutions of Nonlinear |
Complementarity Problems

G. E. Alefeld* X. Chen F. A. Potra}
B NE

Abstract

This paper proposes a validation method for solutions of nonlinear com-
plementarity problems.

1 Introduction

Let f : R® — R"™ be a continuous function. The nonlinear complementarity prob-
lem (NCP) is to find a vector z € R" such that

z>0, f(z)>0, :va(:z:) = 0.

‘The NCP models many important problems in engineering and economy. Moreover,
the NCP is a fundamental problem for optimization theory since the first order
necessary condition for an optimal point can be reformulated as an NCP.

In section 2, we present a slope for the numerical validation of the solution of
NCP. In section 3 we give an interval arithmetic evaluation of the slope.

In this paper we denote an interval by [z] = {z € ®",z < z < 7z}. The
nonnegative orthant of R" is denoted by R’} .

2 The slope for NCP

It is well known and easy to verify that the NCP is equivalent to the following
system of nonlinear equations

F(z) := min(f(z),z) =0, (2.1)

where the “min” operator denotes the componentwise minimum of two vectors.
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where the “min” operator denotes the componentwise minimum of two vectors.

The function F' is not differentiable at z only if f(z) = z. Hence F is differen-
tiable on an interval [z] if f(z) > z for all z € [z] or f(z) < z for all z € [z]. In
other words, if F' is differentiable on [z], then

F(z)= f(z) if f(z) <z for all z € [z]
or :
F(z)=z  if f(z) > z for all z € [z].

Many existing algorithms for validation of solutions of the system of nonlinear
equations assume that the involved function is continuously differentiable. Such
algorithms are based on the mean value theorem for differentiable functions and
an interval extension of the derivative. For instance, we suppose F' is differentiable
on [z]. Then

F(z) - F(y) € F'([z])(z —y), forall z,y € [z]. (2.2)
The Krawczyk operator is defined by
K(z,A,[a]) =z - A7'F(z) + (I - A7'F'([z]))([] — =),

where A is an n X n nonsingular matrix.

However, In general F' is nondifferentiable in an arbitrary interval. Recently,
some methods have been proposed for general nondifferentiable equations [5, 20].
In this paper we give a sharp and computable interval operator for the special
nondifferentiable system (2.1). Using this interval operator, we can verify the
existence of solutions of the NCP numerically.

The first step is to define a slope §F(z,y) for F' such that for a fixed z € [z]

F(z) = F(y) = 6F(z,y)(z —y), forall y€ [z]. (2.3)
We assume f has a slope df on [z] such that for a fixed z € [x]
fz) — f(y) =6f(z,y)(z —y), forall yela]. (2:4)
Let us use the following notations
S ={z €la]| fi(z) > =}

S; ={z €[] | fi(z) < z;}
S; ={z €[z] | filz) = z:}
N={1,2,...,n}.

For a vector z € [z] and an ¢ € N, z is in one of the three sets. Hence for any
two vectors z,y € [z] and an ¢ € N nine cases can happen. We summarize the
nine cases in Table 1.
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0F;(z,y) y
57 S, 57
S el ai(8fi(z,y) —el)+el | e
| S; | Bi(dfi(z,y) —el) + el fi(z,y) §fi(z,y)
S7 ef éfi(z,y) el
Table 1: a; = (y - f(y))z ’ ,Bz _ (f(l') - m)z

(Fflz)—Ffly)—z+y)’ " (Fl@)—z+y—F)
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Lemma 2.1 Let the ith row of 6 F(z,y) be defined by Table 1. Then for every two

vectors z,y € [z],
F(z) — F(y) = 0F(z,y)(z — y)-
Proof: Let 2 € N be fixed. Since f has a slop, it holds
fi(z) = fily) = éfi(z, y)(z — y)-
Suppose z € S US? and y € S;f U SY. Then
Fi(z)-Fiy) =z -y =¢ (z—y).
Suppose z € S; and y € SPUS; ory € S; and z € S?. Then
Fi(z) - Fi(y) = fi(z) — fi(y) = 6fi(z, y)(z — y).
Suppose z € S; and y € S;". Then
Fi(z) - F(y) = filz) —w
= fiz)—zi+ef (z—y)

_ (filz) — ) (0 fi(z,y) — el ) (@ —y)
(0fi(z,y) — € )z —y)

= filz) — i (z,y) —eD)+el | (z -
- (go 2 g ien -+ ) v
= (Bi(6filz,y) — € ) + €] )z — v).
Suppose z € S; and y € S;". Then
Fi(z) - Fi(y) = =i — fi(y)
= yi—fily)+el(z—y)

+el(z—y)




(i — fi()Ofilz,y) — €N —y) | 7,
(6fi(z,y) —el)(z —y) +e (z-y)

- (i (5e0) -+ ) (6 )

(f(z) = f(y) —z +9)
= (0i(6fi(z,y) —€]) + € )(z —y).

Lemma 2.2 In Table 1, we have
o; € (0, 1) and f; € (0, 1).

Proof: Notice that ¢; is used when z € S;" and y; € S;. Then from y; — fi(y) > 0
and f;(z) — z; > 0, we have

vi — fi(y)
(i — fi(y)) + (fi(z) — z3)

Since §; is used when z € S and y; € S;f, fi(z) — z; < 0 and y; — fi(y) < 0.
Hence we have
fi(w) - I

(filz) — z:) + (i — fi(y))

€ (0,1).

o =

€ (0,1).

6 =

Now we study the nonsigularity of  F'(z,y). The nonsingularity is dependent
on the properties of 6 f(z,y).

An n x n matrix A is called a Py matrix if all principal minors of A are non-
negative. A matrix A is called a P matrix if its all principal minors are positive
[8]. By using two theorems on the Py matrix and the P matrix given by Gabriel
and Moré [10], we have the following proposition.

Proposition 2.1 1. If §f(z,y) is a P matriz, then §F(z,y) is nonsingular.

2. If§f(x,y) is a Py matriz and S;t contains z or y for everyi € N, then 6 F(z,y)
s nonsingular.

Proof: 1. By Lemma 2.1 and Lemma 2.2, § F(z,y) can be written as
§F(z,y) =1+ D(8f(z,y) — 1),

where D =diag(d;) is a diagonal matrix with 0 < d; < 1. Hence by Theorem 4.4
in [10], § F(z,y) is nonsingular.
2. If S;" contains z or y for every i € N, then

(SF(E,y) =I+D(6f(:13,y)—[),

where D =diag(d;) is a diagonal matrix with 0 < d; < 1. Hence by Theorem 4.3
in [10], 6 F(z,y) is nonsingular. |
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If f is an affine function, say f(z) = Az +c, then A = §f(z,y). For a P matrix
A, by Proposition 2.1, if we choose z € S;7, then §F(z,y) is nonsingular for all
y € R

For a nonlinear function f, we need the following definitions.

Definition 1 A mapping f from an interval [z] in R™ into R" is said to be

1. a Py function on [z] if for all z,y € [z] with x # vy, there is an indez i such
that

; #yi and  (fi(z) — fi(y)) (@i — wi) > 0;

2. a P function on [z] if for all z,y € [z] with z # y, there is an indez i such that
sy and (fi(z) = L) —w) > 0

3. a uniform P function on [z] if for some v > 0

max(fi(z) - fi(y)) (@i — :) 2 lle —yll for all 3,y € [2];

/. a monotone function on [z] if for all z,y € [z,
(f@@) = f) (z~y) 2 0;
5. a strictly monotone function on [z] if for all 7,y € [1],
(f(z) = F@) (z —y) >0
6. a strongly monotone function if for some v > 0
(f(=) = F@) (z =) 2 lle =yl for all z,y € [z].

It is easy to verify that every monotone function is a F, function, every strictly
monotone function is a P function and every strongly monotone function is a
uniform P function.

For a Fréchet differentiable function f, the following results are known [11, 17].
1. If f'(z) is a P matrix for all z € [z], then f is a P function on [z].
2. If f is a uniform P function on [z], then f'(z) is a P matrix for all z € [z].
3. f is a P, function on [z] if and only if f'(z) is a Py matrix for all z € [z].

If f is Fréchet differentiable on [z], by the mean value theorem, for any z,y € [z],
there is a diagonal matrix A =diag(}\;) with A; € [0,1] such that

f(@) = fly) = f'(=z + Aly — 2))(z — y)-

The following proposition is a direct corollary of Proposition 2.1.



Proposition 2.2 Suppose that f is Freéchet differentiable. Let 6f(z,y) = f'(z +
A(y — 1)), where A =diag(X;) is a diagonal matriz with 0 < A; < 1.

1. If f is a uniform P function, then 0F (z,y) is nonsingular.

2. If f is a Py function and S contains z or y for every i € N, then 0F (z,y) is
nonsingular.

For a locally Lipschitzian function f, Song, Gowda and Ravindran gave the
following results [22]. »

Suppose f is semismooth. f is a Py function on [z] if and only if the Bouligand
subdifferential Op f(z) consists of P, matrices at all z € [z].

Notice that the mean value theorem does not hold for g f. Moreover, for a F
function, the Clarke generalized Jacobian 8f(z) = co Opf(z) may consists of a
matrix which is not Py,. Hence we generalize Proposition 2.2 to nondifferentiable
monotone functions as follows.

Proposition 2.3 Suppose that f is a locally Lipschitzian function.

1. If f is a strongly monotone function, then there is a 6f(x,y) € Of(TY) such
that 6 F(z,y) is nonsingular.

2. If f is a monotone function and S contains x or y for every i € N, then
there is a 6 f(z,y) € 0f(TY) such that 0F (z,y) is nonsingular.

Here codf(zy) denotes the convez hull of all points Z € OF (u) for u € 7y, and TY
denotes the line segment between z and y.

Proof: 1. Since f is a locally Lipschitzian function, f is differentiable almost every
where. Moreover at a point z € [z] where f is differentiable, f'(2) is a strongly
monotone matrix. By definition, the Clarke generalized Jocabian at y is defined
by
0f(y) = co{klim f'(z%) : 2¥ =y, f is differentiable at z*}.
—00

Since f'(z*) is a strongly monotone matrix, the limit lim,_,, f'(z*) is a strongly
montone matrix. Moreover, the convex combination of strongly monotone matrices
is still a strongly monotone matrix.

By Proposition 2.6.5 in [6], there is a matrix ¢ f(z,y) €codf(T7) such that

f(@) = fy) = f(z,9)(z —v).

Since a strongly monotone matrix is a P matrix, by Proposition 2.1, §F(z,y)
is nonsingular.
The proof for Part 2 is similar. |

72



73

3 Interval extension

We assume that f has an interval arithmetic evaluation of the slope df(z, [z]) for
fixed z € [z] and all y € [z].

To define an interval arithmetic evaluation for F', we fix € [z] and consider
the following nonlinear programming problems

min y; — fi(y)
st.  y €[z (3.1)

and

max y; — fi(y)
st.  y€lz] (3.2)

Let y»' and y*? be solutions of the nonlinear programming problems (3.1) and
(3.2), respectively. Let

(v*? — f(*?))s

F@-stvr= i), | @ oty =109):#0

o; =

and

(f(z) — z);
(f(z) =z + o>t = f(yPh))s

Then we can define the interval arithmetic evaluation by

Bi = if (f(z) —z+y™ = f(y*")) #0.

eT, y** € S US]
SF@ ) =\ o alohie ) — )+, e 50

16i,1](6 fi(z, [z]) — eT) + €F, z € S;,y"! € SiF.

Theorem 3.1 For a fized z € [z], we have
F(z) — F(y) € 6F(z,[z])(z — y), for all | y € [z].
Proof: Suppose y** € S;t US?. Then for all y € [z],
vi — fily) <vi* — fi(y™?) 0.
That is, y € S;" U S? for all y € [z], so z. Hence
Fy(z) - Fi(y) = @i — yi = ¢] (z — y) = §Fi(g, [z])(z — y).

Suppose y*! € S;7 U S?. Then for all y € [z],

i — fily) > v — fily™) > 0.
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That is, y € S; U S} for all y € [z], so z. Hence

Fi(z) - Fi(y) = fi(z) — fily)
= 6fz(x y)(z —y)
€ 0f(z,[z])(z —y)
= 0Fi(z,[z])(z —y).

Suppose 3?2 € S; and v € S;F U SY. Let y € [z]. If y € S;" U SY, then

Fi(z) - Fi(y) = € (z—y)
(10, ] (8fi(z, [z]) — €] ) + €] ) (= — v)
= 0Fi(z,[a])(z - y),

where we use 0 < a; < 1. If y € S;, then by Lemma 2.1, we have

(o) — Fi(y) = yi — fi(y) () — )+ 6T | (z —
A - B0) = (72 e O N+d)e-v).

m

Since y*? is an optimal solution of (3.2), we have

— fily) yi2 — fi(y2) .
(@ - 70) -2+ 9% = U@ - Jod -z ryd 5T

Therefore, we have

Fi(z) - Fi(y) € (10, ] (8fi(=, []) — &) + €1 ) (z — y) = 0Fi(a, [z]) (= — v)-

Similarly, we can prove this theorem for the case z € S;7, y:-"l e St.

0<

O
Remark 3.1 In some case, the nonlinear programming problems with box con-
straints (3.1) and (3.2) are easy to compute. For example, if f is an affine function.
However, if one does want to spend time on computing problems (3.1) and (3.2) for
a sharp interval arithmetic evaluation, the following interval arithmetic evaluation
can be considered as a simple but overestimated interval arithmtic evaluation:

G(z,[z]) = [0,1](6f (=, []) = I) + 1.
Following the discussion above, we can show
6F(z,[c]) C G(z,[a])

and
F(z) — F(y) € G(z,[z))(z —y) forall z,y € [a].

Proposition 3.1 1. If §f(z,[x]) consists of P matrices at all y € [z], then every
element in G(z, [z]) is nonsmgular
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2. If 6f(z,[x]) consists of Py matrices at all y € [z] and x € Sf for all i € N,

then every element in 0 F(z, [z]) is nonsingular.

Proof: The proof for the part 1 is similar as the proof for part 1 of Proposition
2.1. For part 2, by Theorem 4.3 in [11], we only need to show 4 f;(z, [z]) is not in

0F;(z, [z]) for every i € N.
Since z € S}t and . ‘
v — iy < @i — filz) <0,
y“! € S;". Hence
0F;(z, [z]) # 0fi(z, [z])
and
0Fi(z, [z]) # 16, 1)(6fi(z, [a]) — &) + €]
This implies that
8Fi(z, [z]) = [0,0](8fi(z, [z]) — €]) + €],
where ¢; is a number between 0 and 1. Now we show « # 1.
If y% € S;" U S?, then o; = 0. '
If 4% € S, then from z € S;f, we have
fil)—z; >0
and i2 )
0<ai= Yi —fl(y,) <1

(f@) - F?) -z +y™2):

We complete the proof.

4 Algorithm

Based on the results in [3, 5], we propose the following verification method.

Algorithm 1 Let r > 0 be a given tolerance and let x be an approzimate solution

of the system (2.1). Calculate
| [z] = (z +r[-e,e) N R,

where e = [1,...,1]T and choose a nonsingular matriz A. Compute
L(z,A,[z)) =2z — A™'F(z) + (I — A7'6F (z,[z]))([z] — z).

o If
L(z, 4, [z]) < [2],
then there 1s a solution z* € [z] of (2.1).
o If
L(xaAv [:E]) N [‘T] = 0’

then the interval [z] contains no solution of (2.1).

We will give examples and report numerical results in a new version

paper.

(4.1)

(4.2)

(4.3)

(4.4)

of this
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