
Recognizing Ordered Tree-SAella ble Boolea n

Functions Based on OBDDs

Yasuhiko TAKENAGA (武永康彦)

Department of Computer Science,
The University of Electro-Communications

Abstract In this paper, we consider the complexity of recognizing ordered tree-shellable
Boolean functions when Boolean functions are given as OBDDs. An ordered tree-shellable
function is a positive Boolean function such that the number of prime implicants equals
the number of paths from the root node to a 1-node in its ordered binary decision tree

representation. We show that given an OBDD, it is possible to recognize in quadratic

time a function ordered tree-shellable with respect to the variable ordering of the OBDD.

1 lntroduction

A tree-shellable function is a positive Boolean function defined by the relation between
its prime implicants and binary decision tree (BDT) representation: the number of prime
implicants equals the number of paths from the root to a leaf labeled 1 in its binary

decision tree representation [6]. An ordered tree-shellable function is a special case of a

tree-shellable function and its prime implicants have the similar relation with an ordered
BDT. In this paper, we deal with the complexity of recognizing ordered tree-shellable
functions.

An ordered tree-shellable function has the following good properties. First, if a Boolean

function is shellable, one can easily solve the union of product problem [2], which is the

problem of computing the reliability of some kind of systems. Second, if a Boolean

function is tree-shellable, it is easy to compute its dual.
When a Boolean function is given as its DNF representation, it is $\mathrm{N}\mathrm{P}$ -complete to check

if the function is ordered tree-shellable [3]. If a variable ordering π is given, it is possible
to check if the function is ordered tree-shellable with respect to π within polynomial time.

In this paper, we consider the case when a Boolean function is given as its Ordered
Binary Decision Diagram (OBDD) representation. An OBDD $[1, 4]$ is a directed acyclic

graph that represents a Boolean function. As OBDDs are widely used in many appli-

cations due to their good properties, it is worth considering the case when an OBDD is

given as an input of recognition problems [5]. We show that it is possible to check if the
function is ordered tree-shellable with respect to the variable ordering of the given OBDD
in quadratic time.

数理解析研究所講究録
1148巻 2000年 94-99 94

2 Basic Definitions

Let $B=\{0,1\},$ n be a natural number, and $[n]=\{1,2, \ldots, n\}$. Especially, $[0]=\emptyset$. Let
π be a permutation on $[n]$. π represents a total order of integers.

Let $f(x_{1}, \ldots, x_{n})$ be a Boolean function. We denote $f\geq g$ if $f(x)=1$ for any assignment
$x\in\{0,1\}^{n}$ which makes $g(x)=1$. An implicant of f is a product term

$i \in I\wedge x_{i}\bigwedge_{j\in J}\overline{xj}$
which

satisfy
$\bigwedge_{i\in I}x_{i}\bigwedge_{j\in J}\overline{x_{j}}\leq f$

, where $I,$ $J\subseteq[n]$. An implicant which satisfies
$\bigwedge_{i\in I-\{s\}}x_{i}\wedge\overline{x}j\in Jj\not\leq f$

for any $s\in I$ and
$\bigwedge_{i\in I}x_{i}\wedge j\in J-\{t\}\overline{Xj}\not\leq f$

for any $t\in J$ is called a prime implicant of f .

An expression of the form $f=k=1 \vee m(\bigwedge_{\in}X_{i}iI_{k}j\in\wedge\overline{xj})kJ$ is called a disjunctive normal form
Boolean formula (DNF), where $I_{k},$ $J_{k}\subseteq[n]$ and $I_{k}\cap J_{k}=\emptyset$ for $k=1,$ $\ldots,$

m . A positive
DNF (PDNF) is a DNF such that $J_{k}=\emptyset$ for all k . If f can be represented as a PDNF,
it is called a positive Boolean function. A PDNF is called irredundant if $I_{k}\subseteq I_{l}$ is not

satisfied for any $k,$ $l(1\leq k, l\leq m, k\neq l)$. For an irredundant PDNF, let $PI(f)$ be the set
of all I_{k} . $PI(f)$ represents the prime implicants of f . In the following of this paper, we
consider only positive functions and we assume that a function is given as an irredundant
P DNF $f=k=1i\in I_{k}\vee\wedge x_{i}m$.

3 Graph Representations of Boolean Functions

3.1 Binary Decision Tree

A Binary Decision Tree (BDT) is a labeled tree that represents a Boolean function. A
leaf node of a BDT is labeled by 0 or 1 and called a value node. Any other node is labeled
by a variable and called a variable node. Let label (v) be the label of node v . Each node
except leaf nodes has two outgoing edges, which are called a $\mathit{0}$-edge and a 1-edge. Let
$edge_{0}(v),$ $edge_{1}(v)$ denote the nodes pointed to by the 0 -edge and the 1-edge of node v

respectively. The value of the function is given by traversing from the root node to a leaf
node.

A path from the root node to a leaf node labeled 1 is called a 1-path. A path P of a
BDT is represented as a sequence of literals. If the k-th edge on a 1-path P is the l-edge
(0 -edge, resp.) from the node labeled by x_{i} , positive literal x_{i} (negative $\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}_{\overline{X_{i}}}$, resp.)
is the k-th element of P . For simplicity, we denote $\tilde{x}_{i}\in P$ when \tilde{x}_{i} is included in the
sequence representing P , where \tilde{x}_{i} is either x_{i} or $\overline{x_{i}}$. Let $pos(Pk)$ ($neg(P_{k})$, resp.) be the
set of indices of variables whose positive (negative, resp.) literals are in P_{k} .

When the 0 -edge and the 1-edge of node v point to the nodes representing the same
function, v is called to be a redundant node. In the following of this paper, we assume
that a BDT has no redundant node.

95

If there is a total order of variables which is consistent with the order that variables
appear on any path from the root to a leaf, it is called an ordered BDT (OBDT). The
total order of variables for an OBDT is called the variable ordering. If label (v) is the k-th
element of the variable ordering, we say that k is the level of v and denote level$(v)=k$.
Let the level of value node be $n+1$.

3.2 Ordered Binary Decision Diagram

An Ordered Binary Decision Diagram (OBDD) $[1, 4]$ is a directed acyclic graph that
represents a Boolean function. Intuitively, an OBDD is obtained by combining the nodes
of an OBDT which represent the same function into a single node. The nodes of an
OBDD consist of variable nodes and two value nodes. Similarly to an OBDT. there is a
total ordering of variables for an OBDD, which is called a variable ordering.

When two nodes i and ;/ have the same label and represent the same function, they are
called equivalent nodes. When $edge_{1}(i)=edge_{0}(i)$, node i is called a redundant node. An
OBDD which has no equivalent nodes and no redundant nodes is called a reduced OBDD.
It is known that a Boolean function is uniquely represented by a reduced OBDD, provided
that the variable ordering is fixed. In the following of this paper, we assume w.l.o.g. that
an OBDD means a reduced OBDD. The size of an OBDD is the total number of nodes.

4 Ordered $\mathrm{R}\mathrm{e}\mathrm{e}$-Shellable Boolean Function

Definition A positive Boolean function f is tree-shellable when it can be represented by
a BDT with exactly $|PI(f)|$ l-paths.
Definition A positive Boolean function f is ordered tree-shellable with respect to π if
it can be represented by an OBDT with variable ordering π which has exactly $|PI(f)|$

1 -paths. f is ordered tree-shellable if there exists π such that f is ordered tree-shellable
with respect to π . We call π to be the shelling variable ordering of f .

Proposition 1 If $f=k=1i\in I_{k}\vee\wedge Xmi$ is tree-shellable, there exists a BDT T representing f

which satisfy the following conditions.
\bullet T has $m1$ -paths $P_{1},$

$\ldots,$
P_{m} .

\bullet Each P_{k} corresponds to a term I_{k} by the rule that $i\in I_{k}$ iff $x_{i}\in P_{k}$.

As an ordered tree-shellable function is tree-shellable, Proposition 1 also holds for or-
dered tree-shellable functions.

The next corollary is clear from the proof of Theorem 4 of [6].

Corollary 2 Let T be an OBDT with variable ordering π that represents a Boolean
function f . f is ordered tree-shellable with respect to π iff there exists I_{t} which satisfy
$I_{t}\subset\wedge pos(P_{i})\cup\{l\}$ for any 1-path P_{i} of T and any $\overline{x_{l}}\in P_{i}$,

96

5 Checking Ordered Tree-Shellability Based on OBDDs

Theorem 3 Given an OBDD with variable ordering π , it is possible to check if the
Boolean function represented by the OBDD is ordered tree-shellable with respect to π or

not within polynomial time.

Proof We first give the polynomial time algorithm to check ordered tree-shellability.
Let $lev(u, v)= \min\{level(u), level(v)\}$. In this algorithm, 0 represents the value node
labeled 0 .
[Algorithm CheckOTS]

1. Check if the OBDD represents a positive function. If not, it is not ordered tree-

shellable.

2. For $i=1$ to n , repeat (a) and (b).

(a) For any node v in level i do:
if edge0 $(v)\neq 0,$ $A_{l(}\mathrm{e}ved_{\mathit{9}}e0(v),edg\mathrm{e}1(v))=Alev(edg\mathrm{e}_{0}(v),ed_{\mathit{9}}e1(v))\cup$ { $(edge_{0}(v),$ edgel $(v))$ }.

(b) For any pair $(u, v)\in A_{i}$ do:
if level$(u)>i$

$A_{t\mathrm{e}v(u,e}dg\mathrm{e}\mathrm{o}(v))=Alev(u,edg\mathrm{e}_{0(}v))\cup\{(u, edge\mathrm{o}(v))\}$

else if level$(v)>i$

if $edge_{0}(u)\neq 0,$ $A_{lev(e(),v}\mathrm{e}d_{\mathit{9}}0u)=A_{l(ed0}\mathrm{e}vg\mathrm{e}(u),v)\cup\{(edge\mathrm{o}(u), v)\}$

else do:
$A_{i\mathrm{e}v(_{Gd}(}\mathit{9}^{e}1u),edg6_{1}(v)\rangle=A(\mathrm{e}d\mathit{9}\mathrm{e}1(u),ed_{\mathit{9}}\mathrm{e}1(v))\cup$ { $(edge1(u),$ edgel $(v))$ }
if $edge_{0}(u)\neq 0,$ $Al\mathrm{e}v(\mathrm{e}d_{\mathit{9}}e0(u),edg\mathrm{e}\mathrm{o}(v))=A_{(edge_{0}(),ed0}\cup\{u\mathit{9}e(v))(edge0(u), edge0(v))\}$

3. The given OBDD represents an ordered tree-shellable function iff no pair of the form
(u, u) is generated in step 2.

In this algorithm., $A_{i}(2\leq i\leq n+1)$ is a set of pairs of nodes.
We consider the time complexity of the above algorithm. Let m be the size of the given

OBDD. As shown in [5], stepl can be executed in m^{2} time. In $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$, through n iterations,

each variable node appears exactly once. Thus, it takes $O(m)$ time. In $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$, through
n iterations, the same pair may be generated many times. However, as the number of

different generated pairs is less than m^{2} , the total number of generated pairs is less than
$2m^{2}$. Thus, Algorithm $\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{k}\mathrm{o}\mathrm{T}\mathrm{S}$ runs in $O(m^{2})$ time.

Now we should prove that Algorithm $\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{k}\mathrm{o}\mathrm{T}\mathrm{S}$ correctly checks the ordered tree-
shellability of the given Boolean function. This proof consists of two stages. We first
show in Lemma 5 that there exists a pair of 1-paths $P_{i},$ P_{j} that satisfy some condition iff
the function is not ordered tree-shellable with respect to the variable ordering. Then we
show that the algorithm correctly detects such pair of l-paths.

97

We call a 1-path $P_{\dot{J}}$ which satisfy $pos(P)\dot{J}=I_{i}$ the main path of I_{i} . If P, is a main
path of some prime implicant, we call P_{j} a main path. If an OBDT T witnesses that f is

ordered tree-shellable, any 1-path of T is a main path. We call a 1-path P_{j} which satisfy
$I_{i}\subseteq pos(P_{j})$ a corresponding path of I_{i} .

Proposition 4 1. For any prime implicant I_{i} , there exists a main path of I_{i} .

2. Any path is a corresponding path of some prime implicant.

From Proposition 4 and the definition of ordered tree-shellable functions, we can see

that there exists a pair of 1-paths both of which are corresponding paths of the same
prime implicant iff f is not ordered tree-shellable. The next lemma shows that we have

only to detect special ones among such pairs of l-paths.

Lemma 5 Let T be an OBDD representing f with variable ordering π . f is not ordered
tree-shellable with respect to π iff there exists a pair of 1-paths $P_{i},$ P_{j} in T which satisfies
$pos(P_{i})\subseteq pos(P_{j})$ and $|pos(Pj)\backslash pos(P_{i})|=1$.

Proof [if] If there exists a pair of 1-paths $P_{i},$ P_{j} satisfying $pos(Pi)\subseteq pos(Pj),$ $P_{\dot{l}}$ and
P_{j} are corresponding paths of the same prime implicant. That is, at least one of them is

not a main path.
[only if] Assume f is not ordered tree-shellable. Then from Corollary 2, for some path P_{i}

and $\overline{x_{l}}\in P_{i}$, there does not exist $I_{t}(t\neq i)$ that satisfy $I_{t}\subseteq pos(Pi)\cup\{l\}$ and $I_{t}\not\subset pos(P_{i})$.

For such P_{i} and x_{l} , let P_{j} be the path traversed by the assignment such that $x_{k}=1$ iff
$k=l$ or $x_{k}\in P_{i}$. If P_{i} is a corresponding path of $I_{i’},$ P_{j} is also a corresponding path
of $I_{i’}$ because it cannot be a corresponding path of any other prime implicant. Thus, P_{j}

satisfies $pos(P_{j})=pos(Pi)\cup\{l\}$. Thus $pos(Pi)\subseteq pos(Pj)$ and $|pos(Pj)\backslash pos(P_{i})|=1$ are

satisfied. \square

In the second step, we have to show that Algorithm CheckOTS correctly detects such

pair of paths. In other words, we have to prove the following lemma.

Lemma 6 Algorithm CheckOTS finds a pair of nodes (u, u) iff there exists a pair of

1-paths $P_{i},$ P_{j} as described in Lemma 5.

Proof [only if] We prove that for any pair (v, w) generated in the algorithm

$(*)$ there exist paths $P_{v},$ P_{w} such that P_{v} is a path from the source to $v,$ P_{w} is a path
from the source to $w,$ $pos(P)v\underline{\subset}pos(P_{w})$ and $|pos(P)w\backslash po\mathit{8}(P_{v})|=1$.

If it holds, when there exist a pair $(u, u),$ P_{i} and P_{j} of Lemma 5 are obtained by appending
a path from u to the value node labeled 1 to P_{v} and P_{w} .

We prove it by induction on the number of iterations in step2. In the first iteration,

one pair is generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$ and the pair satisfies $(*)$. We assume that all the pairs

generated in the i-th iteration $(i<s)$ of step2 satisfy condition $(*)$. In the s-th iteration,

98

a) any pair generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$ clearly satisfies $(*)$, and
b) a pair generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ from a pair $(u’, v)/$ satisfies $(*)$ by appending literals cor-
responding to the edges used in the algorithm to $P_{u’}$ and $P_{v’}$ because $(u’, v)’$ satisfies
$(*)$.
[if] Let $e_{i}^{s},$ e_{j}^{S} be the endpoints of the subpaths of $P_{i},$ P_{j} that consist of the literals of
$x_{1},$

$\ldots,$
x_{S} . We prove that for any s , the pair (e_{i}^{s}, e_{j}^{s}) is generated in the algorithm.

When P_{i} and P_{j} diverge at some node (labeled x_{t}), only P_{j} have the positive literal x_{t} .
Thus, for $x_{k}(k>t)$, either i) both P_{i} and P_{j} has the same literal, ii) either of them has

$\overline{x_{k}}$ or iii) neither of them has a literal of x_{k} . Thus, we can see that pairs of nodes are
generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ for all the above possible cases. Therefore, if P_{i} and P_{j} join at node
$u,$ (u, u) never fails to be generated. \square

ロ

6 Conclusion

In this paper, we have considered the complexity of checking ordered tree-shellability
of a Boolean function given as an OBDD. We have shown that given an OBDD, it is
possible to recognize in quadratic time a Boolean function that is ordered tree-shellable
with respect to the variable ordering of the OBDD. However, it seems difficult to check if
the given function is ordered tree-shellable with respect to the other variable orderings.
To make use of the merits of ordered tree-shellable functions, it is important to find classes
of Boolean functions for which this problem has small complexity.

参考文献

[1] S. B. Akers, Binary Decision Diagrams, IEEE Trans. Comput. C-27 (1978) 509-516.

[2] M. O. Ball and J. S. Provan, Disjoint Products and Efficient Computation of Relia-
bility, Operations Research 36 (1988) 703-715.

[3] E. Boros, Y. Crama, O. Ekin, P. L. Hammer, T. Ibaraki and A. Kogan, Boolean Nor-
mal Forms, Shellability and Reliability Computations, RUTCOR Research Report
3-97 (1997).

[4] R. E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput. C35, No.8 (1986) 677-691.

[5] T. Horiyama and T. Ibaraki, Knowledge-Base Representation and Recognition of
$\mathrm{P}_{\mathrm{o}\mathrm{S}}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{H}\mathrm{o}\mathrm{r}\mathrm{n}$ Functions on Ordered Binary Decision Diagrams, Technical Report of
IEICE, COMP98-85 (1999) 17-24.

[6] Y. Takenaga, K. Nakajima and S. Yajima, Tree-Shellability of Boolean Functions,
Technical Report of IEICE, COMP97-54 (1997) 71-78.

99

