
Semi-Right-Terminating-意解析可能文法による決定性文脈自由言語族の特徴付け
Characterizing the Class of Deterministic Context-Free Languages

by $\mathrm{s}_{\mathrm{e}}\mathrm{m}\mathrm{i}-\mathrm{R}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$-Terminating Uniquely Parsable Grammars

広島大学工学部 森田憲– (Kenichi Morita) $*$

広島大学工学部 李 佳 (Jia Lee) \dagger

Abstract
A uniquely parsable grammar (UPG) intro-
duced by Morita et. al (1997) is a kind of
phrase structure grammar, in which parsing
can be performed without backtracking. It is
known that UPGs and their three subclasses
form a “deterministic Chomsky hierarchy”. Es-
pecially, the class of RC-UPGs (UPGs with
right-terminating and context-free-like rules)
exactly characterizes the class of deterministic
context-free languages (DCFLs). In this paper,
we newly introduce a semi-right-terminating
grammar (SR-G) and a semi-right-terminating
UPG (SR-UPG). We show that the classes of
SR-Gs and SR-UPGs exactly characterize the
classes of context-free languages and determin-
istic context-free languages, respectively. Al-
though an SR-UPG is a variant of an RC-UPG,
it is simpler than the latter as a framework for
characterizing the class of DCFLs.

1. Introduction
A uniquely parsable grammar (UPG) [4] is
a kind of phrase structure grammar whose
rewriting rules satisfy the following condition:
If a suffix of the righthand side of a rule matches
with a prefix of that of some other rule, then
these overlapping portions remain unchanged
by the reverse application of the rules. By this
condition, UPGs can be parsed without back-
tracking. Furthermore, it is known that $\mathrm{t}\mathrm{h}\mathrm{e}_{J}$

class of UPGs and its three subclasses form a
“deterministic Chomsky hierarchy”. That is,
the classes of (unrestricted) UPGs, M-UPGs
(monotonic UPGs), RC-UPGs (UPGs with

*morita@ke.sys.hiroshima-u.ac.jp
flijia@ke.sys.hiroshima-u.ac.jp

right-terminating and context-free-like rules),
and REG-UPGs (regular UPGs) exactly char-
acterize the classes of deterministic Turing ma-
chines, deterministic linear-bounded automata,
deterministic pushdown automata, and deter-
ministic finite automata, respectively.

In this paper, we introduce a semi-right-
terminating grammar (SR-G) and a semi-right-
terminating UPG (SR-UPG). They are gram-
mars having semi-right-terminating rules (SR-
rules), each of which is of the form \alphaarrow

$\beta t,$ $\alpha tarrow\beta t$, \alpha $-+\beta $, $A-\rightarrow $t, or A-\rightarrow

$$, where α and β are non-empty nonterminal
strings, A is a nonterminal, t is a terminal, and
$ is an end-marker. We prove that the classes of
SR-Gs and SR-UPGs exactly characterize the
classes of context-free languages (CFLs) and
deterministic context-free languages (DCFLs),
respectively. Although an SR-UPG has some
similarity with an RC-UPG, it is simpler than
the latter in its definition. Hence, this gives an-
other characterization of the class of DCFLs.

2. Definitions
2.1. Uniquely Parsable Grammars
We first give definitions of a grammar with an
end-marker, a uniquely parsable grammar, and
some other related notions that are needed in
the following sections (see e.g. [2, 5, 6] for ba-
sic notions on formal languages, and [4] for a
uniquely parsable grammar).

Definition 2.1 A grammar (with an end-
marker) is a system

$G=$ $(N, \tau, P, s,$,

where N and T are sets of nonterminals and
terminals respectively $(N\cap T=\emptyset),$ S is a start

数理解析研究所講究録
1148巻 2000年 29-34 29

symbol $(S\in N)$, and $ is an end-marker $(not\in$

$(N\cup T))$. P is a set of rewriting rules of the
following form:

$\alphaarrow\beta$, $\alpha -\Rightarrow $\beta , $\alpha\arrow\beta$,
$\alpha $-\rightarrow $\beta $, or A-*$$,

where $\alpha,$ $\beta\in(N\cup T)^{+},$ $\alpha\neq\beta,$ $A\in N_{f}$ and α

contains at least one nonterminal.

Definition 2.2 Let $G=$ $(N, T, P, S,$ be a
grammar, and η be a string in $(N\cup T\cup\{})^{+}$.
A rule $\alphaarrow\beta(\alpha, \beta\in(N\cup T\cup\{})^{+})$ in P is
said to be applicable to η if $\eta=\gamma\alpha\delta$ for some
$\gamma,$

$\delta\in$ $(N\cup T\cup \{})$ *. Applying $\alphaarrow\beta$ to η we
obtain $\zeta=\gamma\beta\delta$, and say ζ is directly derived
from η in G. This is written as $\eta\Rightarrow$ (. Let

\Rightarrow^{*} denote the reflexive and transitive closure of
\Rightarrow . An n -step derivation is denoted by $\eta 4\zeta$.
The language $L(G)$ generated by G is defined
by $L(G)=$ { $w\in T^{*}|$ S\Rightarrow *w}.

Definition 2.3 Let $G=$ $(N, T, P, S,$ be a
grammar, and η be a string in $(N\cup T\cup\{})^{+}$.
A rule $\alphaarrow\beta$ in P is said to be reversely
applicable to η if $\eta=\gamma\beta\delta$ for some $\gamma,$

$\delta\in$

$(N\cup T\cup \{})$ *. Reversely applying $\alphaarrow\beta$ to
η we obtain $\zeta=\gamma\alpha\delta$, and say η is directly re-
duced to ζ . We write it as $\eta\Leftarrow\zeta$. Apparently,
$\eta\Leftarrow\zeta$ iff $\zeta\Rightarrow\eta$. The $relationS\Leftarrow^{*}$ and g are
also defined similarly $to\Rightarrow^{*}$ and 4.

Definition 2.4 Let $G=$ $(N, T, P, S,$ be a
grammar. If P satisfies the following condi-
tion (the “UPG-condition”), then G is called a
uniquely parsable grammar (UPG) .
1. The righthand side of each rule is neither S ,

S, S, nor S.
2. For any two rules $r_{1}=\alpha_{1}arrow\beta_{1}$ and $r_{2}=$

$\alpha_{2}arrow\beta_{2}$ in $P(r_{1}$ and r_{2} may not be distinct
rules) the next statements hold.
(a) If $\beta_{1}=\beta_{1}’\delta$ and $\beta_{2}=\delta\beta_{2}’$ for some

$\delta,$ $\beta_{1}’,$ $\beta;2\in(N\cup T\cup\{})^{+}$, then $\alpha_{1}=\alpha_{1}’\delta$

and $\alpha_{2}=\delta\alpha_{2}’$ for some $\alpha_{1}’,$ $\alpha_{2}’\in(N\cup T\cup$

$\{})^{*}$.
(b) If $\beta_{1}=\gamma\beta_{2}\gamma’$ for some $\gamma,$ $\gamma’\in(N\cup T\cup$

{$} $)*$, then $r_{1}=r_{2}$.

The UPG-condition $2(\mathrm{a})$ requires that if
some proper suffix of the righthand side of r_{1}

matches with some proper prefix of that of r_{2} ,
then the lefthand sides of r_{1} and r_{2} also contain
them as a suffix and a prefix, respectively. The
condition $2(\mathrm{b})$ says there is no pair of distinct
rules r_{1} and r_{2} such that the righthand side of
r_{2} is a substring of that of r_{1} .

The following Theorem shows that any given
string $w\in T^{*}$ can be parsed without backtrack-
ing provided that $w\in L(G)$.

Theorem 2.1 [4] Let $G=$ $(N, T, P, S,$ be a
UPG, and let η be a string in $(N\cup T\cup\{})^{+}$.

If $\eta\Leftrightarrow S\,$ then $\eta\Leftarrow\xi^{n-1}\Leftarrow$ S for any string
ξ such that $\eta\Leftarrow\xi$ $(n=1,2, \cdots)$.

The next Corollary states that, in a UPG,
parsing can always be performed in a unique
way by a leftmost reduction (see [4] for the def-
inition of a leftmost reduction

$1\mathrm{m}\mathrm{r}\Leftarrow$
).

Corollary 2.1 [4] Let $G=$ $(N, T, P, S,$ be a
UPG, and let η be a string in $(N\cup T\cup\{})^{+}$.
If $\eta\not\in S\,$ then $\eta_{1\mathrm{m}\mathrm{r}}\not\in$ S $(n=1,2, \cdots)$.

Definition 2.5 A rewriting rule of the follow-
ing form is called a right-terminating rule (R-
rule), where $\alpha\in N^{+},$ $\beta\in N^{*},$ $x\in T^{+}$.

$\alphaarrow\beta x$, $\alpha -\rightarrow $\beta x,
\alpha $-\rightarrow \beta x$, or $\alpha $-f βx.

A rewriting rule of the following form is called
a

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{X}\mathrm{t}-\mathrm{f}\Gamma \mathrm{e}\mathrm{e}$-like rule ($C$-rule), where $A\in$

$N,$ $\alpha\in N^{+}$.
$Aarrow\alpha$, $A-\rightarrow α , A-\rightarrow \alpha $,

A-\rightarrow $\alpha $, or A-$ $$.

Let $G=$ $(N, T, P, S,$ be a UPG. G is called
an RC-UPG iff every rule in P is either an
R-rule or a C-rule.

It is known that the class of RC-UPGs ex-
actly characterizes the class of languages ac-
cepted by deterministic pushdown automata
(DPDAs) (i.e., the class of DCFLs) as stated
in the following Theorem. We use the notation
$\mathcal{L}[A]$ to describe the class of languages gener-
ated (accepted, respectively) by the class A of
grammars (automata).

Theorem 2.2 [4] $\mathcal{L}[\mathrm{R}\mathrm{C}- \mathrm{U}\mathrm{P}\mathrm{G}]=\mathcal{L}[\mathrm{D}\mathrm{P}\mathrm{D}\mathrm{A}]$.

30

2.2. $\mathrm{s}_{\mathrm{e}}\mathrm{m}\mathrm{i}- \mathrm{R}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$-Terminating
Grammars

We newly introduce a semi-right-terminating
grammar, and a $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}-\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}_{-}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ UPG
here.

2.3. Pushdown Automata
We give here definitions of nondeterministic
and deterministic pushdown automata which
will be needed later (see e.g., [2, 5, 6] for the
detail).

Definition 2.6 A rewriting rule of the follow-
ing form is called a semi-right-terminating rule
(SR-rule), where $\alpha,$

$\beta\in N^{+},$ $A\in N$, and $t\in T$.

$\alphaarrow\beta t,$ $\alpha tarrow\beta t$, \alpha $\rightarrow \beta $,
$A\rightarrow $t, or A-\Rightarrow $$.

Let $G=$ $(N, T, P, S,$ be a grammar. G is said
to be a semi-right-terminating grammar (SR-
G) iff every rule in P is an SR-rule.

Definition 2.7 Let $G=$ $(N, T, P, S,$ be an
SR-G. G is said to be a semi-right-terminating
uniquely parsable grammar (SR-UPG) iff G

satisfies the UPG-condition in Definition 2.4.

The next Lemma states that SR-UPGs can
also be defined by adding a simple constraint
to SR-Gs.

Lemma 2.1 Let $G=$ $(N, T, P, S,$ be an SR-
G. G is an SR-UPG iff G satisfies the following
conditions.
(i) There is no rule in P whose righthand side

is S$.
(ii) There is no pair of distinct rules $\alpha_{1}arrow\beta_{1}$

and $\alpha_{2}arrow\beta_{2}$ in P such that $\beta_{1}=\gamma\beta_{2}$ for
some $\gamma\in N^{*}$.

Proof. The “only if’ part is obvious. The “if’
part is also easy to prove as follows: First, it is
clear that, if G is an SR-G, then the righthand
side of a rule in P can be neither S , $S, nor S
from the definition of an $\mathrm{S}\mathrm{R}$-rule. We can also
see that, if G is an SR-G, P automatically sat-
isfies the UPG-condition $2(\mathrm{a})$. This is because
the righthand side of each rule is of the form
βt , \beta $, $t, or $$ $(\beta\in N^{+}, t\in T)$. Furthermore,
if G is an SR-G and β_{2} is a substring of β_{1} for
a pair of distinct rules $\alpha_{1}arrow\beta_{1}$ and $\alpha_{2}arrow\beta_{2}$ in
P , then β_{2} must be a suffix of β_{1} by the same
reason as above. Hence, the Lemma follows. \square

Definition 2.8 A pushdown automaton
(PDA) is a system defined by

$M=(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{\mathit{0}}, F)$,

where Q is a set of states, Σ is a set of input
symbols, Γ is a set of stack symbols, $q_{0}\in Q$

is an initial state, $Z_{0}\in\Gamma$ is an initial stack
symbol, and $F(\subseteq Q)$ is a set of final states.
$\delta:Q\cross(\Sigma\cup\{\epsilon\})\mathrm{X}\mathrm{r}arrow 2^{(Q\cross\Gamma^{*})}$ is a transition
function.

An instantaneous description (ID) of a PDA

M is a triple $(q, w, \alpha)\in Q\cross\Sigma^{*}\cross\Gamma^{*}$. It denotes
a computational configuration of M , where M

is in the state q_{2} the unread input string is w ,
and the stack string is α (the leftmost symbol of

α is at the top of the stack). The $relati_{on}\vdash be-$

tween IDs that represents the transition of com-
putational configuration is defined as follows:
For any $q,p\in Q,$ $a\in\Sigma\cup\{\epsilon\},$ $w\in\Sigma^{*},$ $A\in\Gamma$,
and $\alpha,$ $\beta\in\Gamma^{*},$ $(q, aw, A\alpha)\vdash(p, w, \beta\alpha)$ iff
$(p, \beta)\in\delta(q, a, A)$. $Let\vdash^{*}be$ the reflexive and
transitive closure $of\vdash.$ A string $w\in\Sigma^{*}$ is said
to be accepted by M , iff $(q_{0}, w, Z_{0})\vdash^{*}(q_{f}, \epsilon, \alpha)$

for some $q_{f}\in F$ and $\alpha\in\Gamma^{*}$.

Definition 2.9 Let $M=(Q, \Sigma, \Gamma, \delta, q_{0}, z0, F)$

be a PDA . M is called a deterministic push-
down automaton (DPDA) iff (1) and (2)
hold.
$(l)|\delta(q, a, A)|\leq 1$ for every $(q, a, A)\in Q\cross$

$(\Sigma\cup\{\epsilon\})\mathrm{x}\mathrm{r}$.
(2) For each $q\in Q$ and $A\in\Gamma$, if $(q, \epsilon, A)\neq\emptyset$,

then $(q, a, A)=\emptyset$ for all $a\in\Sigma$.

3. Characterizing the Class of Deter-
ministic Context-Free Languages
by SR-UPGs

Lemma 3.1
(I) For any $PDAM$, there is an SR-G G_{M}

such that $L(M)=L(G_{M})$.
(II) For any DPDA M , there is an SR-UPG

G_{M} such that $L(M)=L(G_{M})$.

31

Proof. (I) Let $M=(Q, \Sigma, \Gamma, \delta, q0, Z0, F)$ be
an arbitrary PDA. We can assume, without
loss of generality, that the initial stack sym-
bol Z_{0} is never popped. We construct an SR-G
$G_{M}=$ $(N, T, P, S,$ such that $L(M)=L(G_{M})$

in the following manner. The sets N and T of
nonterminals and terminals of G_{M} are as fol-
lows (we assume $S\not\in\Gamma$):

$N=\{s\}\cup\Gamma\cup(\mathrm{r}\mathrm{X}Q\cross\Sigma)\cup(\Gamma \mathrm{x}Q)$

$T=\Sigma$

The set P of rules is as follows:
(1) For each $A\in\Gamma$, and $q_{f}\in F$, include the

following rules in P .

S$ $arrow$ AS$
S$ $arrow$ (A, q_{f})

(2) For each $p,$ $q\in Q,$ $a,$ $b\in\Sigma$ and $A,$ $B\in\Gamma$, if
$(p, \epsilon)\in\delta(q, a, A)$ then include the following
rules in P .

(B,p, b) $arrow$ $B(A, q, a)b$

(B,p) $arrow$ B ($A,$ q , a)$

(3) For each $p,$ $q\in Q,$ $a,$ $b\in\Sigma,$ $A,$ $B\in\Gamma$, and
$\gamma\in\Gamma^{*}$, if $(p, B\gamma)\in\delta(q, a, A)$ then include
the following rules in $P(\gamma^{R}$ denotes the re-
versal string of γ).

$\gamma^{R}(B,p, b)$ $arrow$ $(A, q, a)b$

$\gamma^{R}(B, p)$ $arrow$ ($A,$ q , a)$

(4) For each $p,$ $q\in Q,$ $a\in\Sigma,$ $b\in\Sigma\cup\{}$, and
$A,$ $B\in\Gamma$, if $(p, \epsilon)\in\delta(q, \epsilon, A)$ then include
the following rule in P .

$(B,p, a)b$ $arrow$ $B(A, q, a)b$

Furthermore, if $q\not\in F$ then include the fol-
lowing rule.

(B,p) $arrow$ B (A , q)$

(5) For each $p,$ $q\in Q,$ $a\in\Sigma,$ $b\in\Sigma\cup\{}$,
$A,$ $B\in\Gamma$, and $\gamma\in\Gamma^{*}$, if $(p, B\gamma)\in\delta(q, \epsilon, A)$

then include the following rule in P .
$\gamma^{R}(B,p, a)b$ $arrow$ $(A, q, a)b$

Furthermore, if $q\not\in F$ then include the fol-
lowing rule.

γ^{R} (B , p)$ $arrow$ (A , q)$

(6) For each $a\in\Sigma$, include the following rule
in P .

$Z_{\mathit{0}}, q_{0}, a)$ $arrow$ $a

(7) Include the following rule in P .

(Z_{0} , qo) $arrow$ $$

It is easy to see that each rule is an SR-rule.
Hence G_{M} is an SR-G.

The computing process of M is simulated by
a reduction process in G_{M} . An ID of M

$(q, a_{1}\cdots a_{j)}A_{1}\cdots A_{k})$

is represented by the following string in G_{M} ,
where $q\in Q,$ $a_{1}\cdots a_{j}\in\Sigma^{*}$, and $A_{1}\cdots A_{k}\in$

$\Gamma^{+}(k\geq 1$ because the initial stack symbol is
never popped). In the following, we also call
such strings IDs of M .

In the case $j\geq 1$:
$A_{k}Ak-1\ldots A2(A_{1}, q, a1)a2\ldots$ aj$

In the case $j=0$: $A_{k}A_{k-1}\cdots A2$ (A_{1} , q)$

We first show that if a terminal string $w=$

$a_{1}\cdots a_{j}\in\tau*$ is generated by G_{M} then M ac-
cepts w . Since $w\in L(G_{M})$, there is a re-
duction w \Leftarrow^{*} S. Consider this reduc-
tion process. First, w must be reduced by
a rule in (6) (or the rule (7) if $w=\epsilon$), be-
cause the other rules cannot be used for a ter-
minal string. This yields $Z_{0}, q0, a1)a_{2}\cdots$ aj$
(or $Z_{0,q0})$ if $w=\epsilon$), an initial ID of M .
After that, the rules in (2) $-(5)$ are used to re-
duce it, and new IDs appear successively. Note
that in the case of an ID with $j\geq 1$, the
rules in (2),(3) or the first rules in (4),(5) are
used, while in the case of $j=0$, the second
rules in (4),(5) are used. It is easy to see that
$M’ \mathrm{s}$ movement is simulated correctly by the
rules in (2) $-(5)$. Finally, a string of the form
$alpha(A, q_{f})$ $(\alpha\in\Gamma^{*}, A\in\Gamma, q_{f}\in F)$ must
appear. Otherwise, rules in (1) cannot be used
to reduce the string into S. Since the string
$\alpha (A, q_{f}) represents a final ID of M , the string
w is accepted by M .

Conversely, suppose a string $w=a_{1}\cdots a_{j}\in$

Σ^{*} is accepted by M . That is, the following

32

relation holds for some $q_{f}\in F$ and $A_{1}\cdots A_{k}\in$

Γ^{+} .
$(q_{0}, w, Z_{0})\vdash^{*}(q_{f}, \epsilon, A_{1k}\ldots A)$

We show that there is a reduction from w to
S. First, reducing w by a rule in (6) (or (7)
if $w=\epsilon$), a string representing the initial ID is
obtained. Then, each step of M is simulated by
the rules in (2) $-(5)$. Since M accepts w , w
must be reduced to a final ID

$A_{k}A_{k-1}\cdots A2(A1, q_{f})$.

After that, by the rules in (1) it is reduced to
S. Thus, w\Leftarrow * S. Therefore w is gen-
erated by G_{M} . By above, $L(G_{M})=L(M)$.

(II) Let $M=(Q, \Sigma, \Gamma, \delta, q_{0,0}z, F)$ be an ar-
bitrary DPDA. An SR-UPG G_{M} that simulates
M is constructed in exactly the same way as
shown in (I), and the proof of $L(G_{M})=L(M)$

is also the same. The only thing we must show
is G_{M} is indeed an SR-UPG, i.e., it satisfies the
conditions (i) and (ii) in Lemma 2.1.

It is clear that G_{M} satisfies the condition (i).
We can also verify that the righthand side of
each rule cannot be a suffix of that of any other
rule because M is a DPDA (this is done by
checking all the pairs of rule schemes in (1)

$-\square$

(7) $)$. Hence, G_{M} satisfies (ii).

In order to show $\mathcal{L}[\mathrm{P}\mathrm{D}\mathrm{A}]\supseteq \mathcal{L}[\mathrm{S}\mathrm{R}- \mathrm{G}]$ and
$\mathcal{L}[\mathrm{D}\mathrm{P}\mathrm{D}\mathrm{A}]\supseteq \mathcal{L}$ [$\mathrm{S}\mathrm{R}$-UPG], we first prove the fol-
lowing Lemma.

Lemma 3.2 Let $G=$ $(N, T, P, S,$ be an SR-
G, and $w_{0}\in\tau*$ be a terminal string. For any
$n(=1,2, \cdots)$ and any $\xi_{n}\in(N\cup T)*$, ifwo $\not\in$

xi_{n} , then there exist $\eta_{n}\in N^{+}$ and $w_{n}\in\tau*$

such that $\xi_{n}=\eta_{n}w_{n}$.

Proof. It is proved by a simple induction on n .
The case $n=1$: It is clear, because only one
of the rules of the form $A\rightarrow $t or A\rightarrow $$

can be used to reduce wo.
The case n $>$ 1: Consider a reduction

wo $n-1\Leftarrowxi_{n-1}Leftarrowxi_{n}$. From the induc-
tive hypothesis, there exist $\eta_{n-1}\in N^{+}$ and
$w_{n-1}\in T^{*}$ such that $\xi_{n-1}=\eta_{n-11}w_{n-}$. Since
only the rules of the form $\alphaarrow\beta t,$ $\alpha tarrow\beta t$, or
\alpha $\rightarrow \beta $ can be used to reduce $eta_{n-1}w_{n-1}$ $,
there exist $\eta_{n}\in N^{+}$ and $w_{n}\in\tau*$ such that
$\xi_{n}=\eta_{n}w_{n}$. \square

Lemma 3.3
(I) For any SR-G G , there is a $PDAM_{G}$ such

that $L(G)=L(M_{G})$.
(II) For any SR-UPG G , there is a DPDA M_{G}

such that $L(G)=L(M_{G})$.

Proof. (I) Let $G=(N, T, P, S,$ be an ar-
bitrary SR-G. To prove the lemma, it suf-
fices to show that there is a PDA $M_{G}=$

$(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F)$ that accepts the language
$L(G)\{}=\{w |w\in L(G)\}$. Because, the
class of context-free languages is closed under
the quotient operation with a regular set (see
e.g., [2] $)$.

The sets of input and stack symbols of M_{G}

are as follows: $\Sigma=T\cup\{},$ $\Gamma=N\cup\tau\cup\{\, Z_{0}\}$.
Let \hat{R} be the maximum length of righthand
sides of the rules in P. M_{G} has an “internal”
stack in its finite-state control that can store
up to \hat{R} symbols, besides its “real” stack. The
whole stack of M_{G} is formed by attaching the
internal stack on the top of the real stack, and
we call it simply a “stack” from now on. We
assume that the internal stack always keeps as
many symbols as it can by getting them from
the real stack (except Z_{0}). Given an input
$win T^{*}\{},$ M_{G} simulates a reduction process
ofw in the following manner.
1. Push the symbol $ into the stack.
2. Read one input symbol and push it into the

stack.
3. If the contents of the stack is SZo, then

halt in a final state, else go to 4.
4. If some rule of G is reversely applica-

ble to the string stored in the internal
stack, then nondeterministically choose one
of such rules and perform the reduction in
the internal stack and go to 5. If no such
rule exists, then halt in a non-final state.

5. If the top symbol of the stack is a terminal
or $, then go to 3, else go to 2.

First we show that if $w\in L(G)$, then win

$L(M_{G})$. Assume $w\in L(G)$, i.e., w\Leftarrow m S
holds for some m . Then for each $n(0\leq n\leq$

$m)$, there are $\zeta_{n}\in\{}N^{*},$ $a_{n}\in T\cup\{}$, and
$x_{n}\in T^{*}\{\epsilon$, $ $\}$ such that $wnot\in\zeta_{n}a_{n^{X}n}$ from
Lemma 3.2. We now give w$ to M_{G} as an in-
put. Let $D_{k}=(q, x, \gamma)$ be the ID of M_{G} at
the k-th execution of Step 3 (note that, here, γ

33

represents the contents of the whole stack).
We claim that there are choices of move-

ments of M_{G} that satisfy the following condi-
tion: For each $n(0\leq n\leq m)$,

$D_{n+1}=(q^{(n+)}1,$ $x_{n},$
$a_{n}(^{R}nz_{0})$

holds for some $q^{(n+1)}\in Q$. This is proved by
an induction on n .

The case $n=0$: By Steps 1 and 2, $\zeta 0$ and
a_{0} are pushed into the stack, because in this
case ($0=$ $ and $a_{0}x_{0}=$ w$. Thus $D_{1}=$

$(q^{(1)}, x_{0}, a_{0}\zeta_{\mathit{0}0}^{R}z)$ holds for some $q^{(1)}\in Q$.
The case $n>0$: By the induction hypothesis,

we assume there are choices of movements of
M_{G} such that $D_{k+1}=(q^{(+)}k1, x_{k}, a_{k}\zeta_{k}^{R}Z_{\mathit{0}})$ for
$k=1,$ $\cdots,$ $n-1$. Let $\alphaarrow\beta$ be a rule used in

$\zeta_{n-}1an-1^{X}n-1\Leftarrow\zeta_{n}a_{n}x_{n}$.

Since $\alphaarrow\beta$ is an $\mathrm{S}\mathrm{R}$-rule, β must be a suf-
fix of $(_{n-1}a_{n-1}$. Hence, this reduction can be
performed at Step 4 in the internal stack. Af-
ter that, if the top symbol is not a terminal,
then an input symbol is read and pushed into
the stack by the steps 5 and 2. Thus, $D_{n+1}=$

($q^{(n+1)},$
$x_{n},$

$a_{n}(_{n}^{R}Z\mathrm{o})$ holds for some $q^{(n+1)}$.
By the claim just proved, we see $D_{m+1}=$

$(q^{(m+1},$$\epsilon)$, SZo) holds, because $\zeta_{m}=$ $S,
a_{m} $=$ $, and $x_{m}=\epsilon$. Hence the input
w$ is accepted by M_{G} at Step 3. Therefore
$L(G)\{}\subseteq L(M_{G})$ holds.

On the other hand, it is clear that if $w\not\in$

$L(G)$ then M_{G} does not accept w$, because
M_{G} performs only legal reductions in G . Con-
sequently, $L(M_{G})=L(G)\{}$ is concluded.

(II) Next, we consider the case that $G=$

(N, T, P, S, $) is an SR-UPG. We can con-
struct a DPDA M_{G} that accepts the lan-
guage $L(G)\{}$ exactly the same way as in (I)
(note that the class of deterministic context-
free languages is also closed under the quo-
tient operation with a regular set [1] $)$. Be-
cause, by Lemma 2.1, there is at most one
rule which is reversely applicable to a string
of the form $\zeta_{n}a_{n}x_{n}$, and thus the step 4 is per-
formed deterministically as well as the other
steps. Hence, M_{G} is a DPDA. The proof of
$L(M_{G})=L(G)\{}$ is the same as (I)

$\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\square$

that M_{G} is deterministic.

By Lemmas 3.1 and 3.3, we can obtain the
following Theorem.

Theorem 3.1

$\mathcal{L}[\mathrm{S}\mathrm{R}- \mathrm{G}]$ $=$ $\mathcal{L}[\mathrm{P}\mathrm{D}\mathrm{A}]$

\mathcal{L} [$\mathrm{S}\mathrm{R}$-UPG] $=$ $\mathcal{L}[\mathrm{D}\mathrm{P}\mathrm{D}\mathrm{A}]$

4. Concluding Remarks
We introduced an SR-G and an SR-UPG, and
proved that they characterize the classes of
CFLs and DCFLs. It is well known that the
class of DCFLs is equal to the class of languages
generated by the class of $\mathrm{L}\mathrm{R}(k)$ grammars [3].
But it is rather complex to test whether a given
context-free grammar is an $\mathrm{L}\mathrm{R}(k)$ grammar.
SR-UPGs give much simpler grammatical char-
acterization of DCFLs than $\mathrm{L}\mathrm{R}(k)$ grammars.
Furthermore, an SR-UPG is obtained from an
SR-G by adding the following simple constraint
(besides some minor constraint): There is no
pair of rules such that the righthand side of a
rule is a suffix of that of the other. Hence, the
difference between deterministic and nondeter-
ministic pushdown automata is also character-
ized simply in a grammatical formalism.

References
[1] Ginsburg, S, and Greibach, S., Deterministic

context free languages, Inf. Control, 9, 620-
648 (1966).

[2] Hopcroft, J. $\mathrm{E}_{)}$. and Ullman J. D., Intro-
duction to automota theory, languageS\rangle and
computation, Addison-Wesley, Reading, Mas-
sachusetts (1979).

[3] Knuth, D. E., On the translation of languages
from left to right, Inf. Control, 8, 607-639
(1965).

[4] Morita, K., Nishihara, N., Yamamoto, Y., and
Zhang, Z., A hierarchy of uniquely parsable
grammar classes and deterministic acceptors,
Acta Informatica, 34, 389-410 (1997).

[5] Rozenberg, $\mathrm{G}_{)}$. and Salomaa, A. (eds.), Hand-
book of formal languages, Vols.1-3, Springer-
Verlag, Berlin (1997).

[6] Sippu, S., and Soisalon-Soininen, E., Parsing
theory, Vols. I and II, Springer-Verlag, Berlin
(1988,1990).

34

