goooboooobgon
1148 0 2000 O 23-28

23

An Attribute Precedence Graph Grammar
and Tabular Forms

HAKXRY HHE AF (Tomokazu Arita)

HARE EH

Abstract This paper characterizes graph
grammars which provide formal definition
of program documentation tabular forms
with respect to syntactic manipulation and
mechanical drawing. We propose an at-
tribute context-free graph grammar with
280 rewriting rules and 1248 attribute rules
for ISO 6592 based nested program forms
with 137 items. The grammar is shown to
have precedence property [1] by 5376 rela-
tions over the marks. Furthermore, we con-
sider context-sensitive graph grammars for
tessellation tabular forms.

Keywords graph grammars, program doc-
uments, form layout.

1 Introduction

Graph grammars have been studied and uti-
lized, by several authors, for their possible
association with program diagrams, gen-
eration of general diagrams and computer
aided design for the industrial objects. (see

e.g. [1],12])

This paper deals with tabular forms for pro-
gram specification and its syntactic defini-
tion with respect to the mechanical draw-
ing. Items in program specification doc-
uments were generally listed in [3]. The
program specification documents are usu-
ally represented by tabular forms [5].

B1'H (Kiyonobu Tomiyama)

We came to notice that tabular forms can
generally be represented by graphs. Thus,
in this paper we regard the tabular forms as
nested diagrams and represent nested dia-
grams by marked graphs.

In [1], Franck employed marked graphs for
nested diagrams, introduced a precedence
graph grammar for the marked graphs
and formalized parsing of nested diagrams.
Nishino [4] introduced an attribute graph
grammar with respect to a drawing problem
of tree-like diagrams and formalized trans-
formation of tree-like diagrams. In [4], the
drawing problems were specified by seman-
tic rules of attributes. We have also studied
syntactic and algorithmic manipulation of
diagrams [6], [7] [8]. The purpose of this
paper is to characterize graph grammars
which provide formal definition of program
specification forms with respect to syntactic
manipulation and mechanical drawing.

2 Preliminaries

2.1 Program Documentation Lan-
guage Hiform96

We introduce here a program documenta-
tion system called Hiform96 [6] based on
1S06592 [3].

The International Organization for Stan-
dardization issued a guideline in ISO6592

and described all items in program docu-
mentation in Annex A, B and C. Hiform96
includes all items defined in these Annexes.
Hiform96 is defined by 17 types of forms.
The Fig. 2.1 shows a Hiform96 program
documentation form.

program name : hanoi_main
subtitle : hanoi

library code : cs - 2000 - 01
author : Tomokazu Arita
approver :
key words : Hanoi Tower
scope : Fundamental
variant :

language : Java fl req.: JDK1.2

]
operation : Interactive batch realtime| hardware req. :
e e

references :

function : 1. list and explanation of input data or parameter,
2. list and explanation of output data or return value.

A
General document
version: 1.0
original release : 1999/12/22
current refease : 2000/01/28

[CR-code :

1. list and explanation of input data.

int n; [Number of Plates]

String target; [Target Symboi }
String work; { Working Symbot]
String destination; [Destination Symbol }

2. list and explanation of output data and return value.

output data : No. to be moved: Source Symbol -> Destination Symbol
return value : void

example :
1. Example of Operation

hanoi(5, A, B, C)
2. Example of Output

1:A>C
2: A>B
1: C->B
3:A->C
1. B->A

Fig. 2.1 A program documentation of Hiform96.

The order among tabular forms is defined
by a context-free string grammar [5].

2.2 Nested Diagrams for Tabular
Forms

We use a nested diagram as a formalization
of a tabular form document. The following
Fig. 2.2 illustrates the nested diagram that
represents a tabular form.

24

program name :
subtitle :

library code : version :

author : original release :
approver : current release :

[program name - |
! 1
'l subtitle : |
‘Tibrary code : __|[version : I}
[author : |[original release : |!
[approver : I[current release : |,

Fig. 2.2 A tabular form and its corresponding
nested diagram.

2.3 Marked Graphs for Nested Dia-

grams

We introduce a marked graph for a nested
diagram as an example. An edge label
shows relations between items. ’lf’ is the
meaning of ’left of’. ’ov’ is the meaning of
‘over’. 'in’ is the meaning of 'within’.

program name :
subtitle :

library code :
author :

version :
original release :
current release :

N
D L
o0
subtitle

in in gy
[library code | [version |

=
Q
)

ov

- -

[=]
<

[original release]

lease]

If
[Tauthor]

2

ta—0 0

¥
[approver] [currentr

—_—
If

Fig. 2.3 A nested diagram shown in Fig 2.2
and its corresponding marked graph.

Definition 2.3.1 [1]. A marked graph is a

system (K, R, k,r) where K is a finite set
of nodes, K#0), RCKxK,k: K-V a
mapping for marking the nodes, r : R — M
a mapping for labeling the edges. m]

2.4 Context-Free Graph Grammar

We survey here context-free graph gram-
mars [1] and precedence grammars [1]

Definition 2.4.1 [1]. A (context-free) pro-
duction is a 4-tuple p = (A, H,p°, p®), where
A is a single node graph (the left-hand side
of p), H = (Kp, Ry, kn,74) is a nonempty
graph (the right-hand side of p), and p®, p* :
M — Kj, are partial functions where M is
the set of all labels for edges. m|

Definition 2.4.2 [1]. A context-free graph
grammar is a system GG = (V,T, M, P, S),
where V is a finite set of alphabet, i.e. a set
of symbols for labeling the nodes, T'C V is
a set of the terminal symbols, M is a finite
set of labels for the edges, P is a finite set
of productions of the form p = (A, H, p¢, p*)
explained above, S € V — T is the start
symbol, i.e. the start graph for GG. |

Notation 2.4.3 [1]. For m € M let

(A, B € Vand there)
exists a rule with an
edge (z,y) on the
right-hand side where }
z is labeled by A,

y is labeled by B

and (z,y) has label m. |

(A, B € Vand there is
arule p = (A, H,p%, p*)
and B is the label of
the node p*(m) in H

25

A, B € Vand there is
arule p = (A, H,p®, p°)
and B is the label of
the node p*(m) in H

m = (B, A)

—

Notation 2.4.4 [1]. For m € M let
def . +

‘'m T T m T -
>m & &

d, .
<>m éf *im T Tm

where + denotes transitive closure.

m

m m

+
._._)m

O

Precedence relations are con flictless if and
only if for every m € M the relations
<m, =m, >m and <>, are pairwise disjoint

[1].

Definition 2.4.5 [1]. A context-free graph
grammar is called a precedence grammar if
and only if (i) the precedence relations are
conflictless. (ii) all rules are uniquely in-
vertible. (iii) there is no reflexive nontermi-
nal symbol in the grammar.]

3 Attribute Precedence
Graph Grammars for Hi-
form

3.1 Definitions for Attribute Graph
Grammar

We introduce an another type of graph
grammars for formalization of tabular forms
based on [1] and [4].

Definition 3.1.1 (cf. [1], [4]) An at-
tribute graph grammar is a 3-tuple AGG =
(GG, Att, F), where

1. GG = (V,T,M, P,S) is called an under-
lying context-free graph grammar of AGG.
Each production p in P is denoted by p =
(A, H,p%,p*). Lab(H) denotes the set of
all occurrences of the node symbols label-
ing the nodes in the graph H.
2. Each node symbol X € V of GG has two
disjoint finite sets Inh(X) and Syn(X) of
inherited and synthesized attributes, respec-
tively. We denote the set of all attributes of
nonterminal node symbols X by Att(X) =
Inh(X)U Syn(X). Att = Uxey Att(X) is
called the set of attributes of AGG. We as-
sume that Inh(S) = 0. An attribute a of
X is denoted by a(X), and set of possible
values of a is denoted by V' (a).
3. Associated with each production p =
(Xo, H,p%,p°) € P is a set F, of seman-
tic rules which define all the attributes in
Syn(Xo) U Uxerasmy Inh(X). A semantic
rule defining an attribute ag(X;,) has the
form ao(X;,) = f(ai(Xi), - am(Xin)),
0 < ij < |Lab(H)|,)(ij € Lab(H),O < j <
m. Here |Lab(H)| denotes the cardinality
of the set Lab(H), and f is a mapping from
V(a1(X5,) X oo X am (X)) into V(ag(Xi,))-
In this situation, we say that ag(X;,) de-
pends on a;(X;;) for 5,1 < j <minp. The
set F' = Uyep Iy is called the set of seman-
tic rules of AGG.

O

Definition 3.1.2 An attribute graph
grammar AGG = (GG, Att,I") is an at-
tribute precedence graph grammar (APGG
) iff GG is a precedence graph grammar.

0

3.2 An Attribute Precedence Graph
Grammar for Hiform

We propose an attribute graph grammar
which characterize the Hiform documents.

26

The characterized forms are called Hi-

form2000.

The grammar which formalizes Hiform2000
is called Hiform Attribute Graph Gram-
mar(HFAGG). We show productions of
HFAGG in Table 3.1. HFAGG consists of
280 productions. The mark of the start
graph is " [struct]”.

We also construct 1248 semantic rules of
HFAGG as shown in Table 3.1.

Proposition 1 . The grammar HFAGG
above is an attribute precedence graph
grammar.

Proof. We can construct 5376 relations
over the marks in HFAGG as shown in Ta-
ble 3.2. The relation are shown to be pair-
wise disjoint. a

Remark. We can implement a linear time
parser[1] for the underlying graph grammar
of HFAGG. a

3.3 The Layout Problem of Hiform

Layout problems of nested diagrams are
solved by attribute evaluation [4]. We use
attributes which are z, y, width and height.
Symbols z and y are used to calculate z
coordinate and y coordinate, respectively.
And width and height are also used to cal-
culate width and height, respectively.

Proposition 2 . Attributes in HFAGG
are evaluated in linear time. O

4 Tessellation Forms

We consider here tessellation forms that
represent tables such as symbol tables. We

27

note that ISO6592 does not issue about any
symbol tables. We introduce an attribute

No.| Production Semantic rule "
X(1)=0 Widlh(0) = () NCE context-sensitive graph grammar that
[struct] ._ D1 [innerstruct] |Y(1)=0 height(0)= height(2) .
1 0= = 2|)= generates tessellation forms.
lin tin x(2)=x(1}
' M y(@)=y(1)
) head x(1)ix(0)+MIeﬂ width(O):M!eﬂ*—Mrighl E :] I:] :]
2| et oo T | ewaniwiney ol T
“'in = height(1)+ (2] - - X =
’ *[body 1, ["Rlighirysmicon “Wiopecanshio o . s s B
hi-if hi-If hi-if
75,[head root]2 ;gizg wmi;"‘?“)";;ﬂﬁ:'“(%m hf: ovl i}f-wlﬁf@vlﬂf-&vl:
M height(0)=height(2
X(2)=x(1) + HMIeft eg+H(l3Ijt0pT$| & S TR TR RER
¥(@)=y(1) + Hhtop hf-ovl I:rvlf-ovl hf-ov I___hlt-ovl:
: ol X(1)=x(0) width(0) = _ e a =
Ha W,i[head root]o:= m"xfwhead row], y(;;_ﬁ?} heigrr::a(:mmm).,wndm(z))] . hi-If hi-If . hEIf
" Y head root 1 oreenietisy ndv oM@ Fig. 4.1 A tessellation form and its
; ; corresponding marked graph.
H3 o[head root], = i?head row], [X(1)=x© width(0) = width(1)
o T 1 1y(1)=y(0) height(0)= height(1)
' 1
H4 -[head row], = -[head column] (<=0 e iy
e o 4.1 NCE Graph Grammars
i [chgl'] [col%mn] }‘S{‘Cfﬁ? w'd"m)mu)»,w.dm(z)msra . .
H5 | [887hn = Bhet) heighio)= Y is the alphabet of node labels. T"is the
iinov +width(1) + HSh max(height(1),height{2)) l h b t f d 1 b 1 Th t f 11
y@)=y(1)
alpflabet oI edge labels. e set oI a.
lef ovH . .
He |3 hoad column = 3 head scalar [0), (Cg;)%ncrete) graphs over ¥ and I' is denoted
v Al
=,
:qv,lf)
H7|s [scaar] = {Program Name | /(=40 heg{O)= HEIGHT prame . .
finouf inout A graph with (neighborhood controlled) em-
Table 3.1 Productions of HiForm Attribute bedding over Y. and I is a pair (H,C) with
Graph Grammar (HFAGG). H e GRgrand C C ¥ xT'xT' x Vg x
{in,out}. C is the connection relation of
(H,C), and each element (o,f,~,x,d) of
C (with 0 € 3, B,y € T, z € Vg, and
d € {in,out} is a connection instruction of
Right] || timerstruct} | (head) HEAD: [body] (H 3 C)
Left i Jov | Jov i f i Jov] ¥ {inJov] W[inJov]w]
. .
Cmersrot] | = The set of all graphs with embedding over
(reas) | > = Y and I' is denoted GREx 1. .
bean [> >
{ body]

Right [[Program Name]| [head scatar] §[head column)| [headrow] | [head root] iHead

Left nJov] H [mJov] d ImJov]H | infov] i {mJov] it imJov] ¥
Program Name | <> | <> <> <>f > <> > >
[head scalar] <> < <O < <> = <> > >
[head column]| <> <> <> <> > >

[head row] < < < < = >

[head root) =

T,

Table 3.2 Precedence relations in HFAGG.

Definition 4.1.1 [9]. An ed NCE grammar
is a tuple G = (X,A,T,Q, P, S), where &
is the alphabet of node labels, A C X is
the alphabet of terminal node labels, I' is
the alphabet of edge labels, 2 C T is the
alphabet of final edge labels, P is the finite
set of productions, and S € ¥ — A is the
initial nonterminal. A production is of the
form X — (D,C) with X € ¥ — A and
(D,C) € GRExr. ‘ |

4.2 A Context-sensitive Attribute
Graph Grammar for Tessellation
Forms

We consider here an edNCE context-
sensitive graph grammar for tessellation
forms. We extend edNCE graph grammars
and introduce a context-sensitive attribute
graph grammar called an attribute NCE
graph grammar. We show productions of
an attribute NCE graph grammar TFAGG
in Fig. 4.2 for tessellation forms.

Cell x(D) = x(C)
c oV y(D) = y(C)
D x(B) = x(C)
[Cell it —rst = C ¥(B) = y(C)+height(D)
8 | e width(C)
B = max(width(D) ,width(B))
ey M height(C) = height{D)+height(B)
Cell
D h-ov
ht-ov x(Cell) = x(D)
y(Cell) = y(D)
m T e ©
h-ov width(D) = WIDTH_cell
height(D) = HEIGHT _cell
h-ov]
B
Cell X(D) = X(C)
c ™ y(D) = y(C)
D | xB)=x(C)
[Cellst—w~1y y(B) = (C)+height(D)
h
B > width(C)
B0l = max(width(D) ,width(B))
height(C) = height(D)+height(B)

Fig. 4.2 Productions of TFAGG.

5 Conclusion

We suggested a graph grammar that char-
acterizes ISO6592 based program documen-
tation forms with respect to both the logical
and visual structures. We are now develop-
ing a software documentation system utiliz-
ing our suggested approach in this paper.

Acknowledgment We thank Professor K.

28

Sugita of Tokai University, Professor K.
Tsuchida of Toyo University, and Profes-
sor T. Yaku of Nihon University for valu-
able suggestions. We also thank Mr. S.
Kanai’s advice in the course of preparing
the manuscript.

References

[1] Reinhold Franck, A Class of Linearly Parsable
Graph Grammars, Acta Infomatica 10, 175-201
(1978)

[2] G. Engels, R. Call, M. Nagl, et al., Software spec-
ification using graph grammars, Computing 31,
317-346 (1983)

[3] 1SO6592-1985, Guidelines for the documentation
of computer-based application systems, (1985)

[4] T. Nishino, Attribute Graph Grammars with Ap-
plications to Hichart Program Chart Editors., Ad-
vances in Software Science and Technology 1, 426-
433 (1989)

[5] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku,
Proc. of Advanced Software Mechanisms for

Computer-Aided Instruction information Literacy
APEC-CIL’97, (1997)

[6] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, A visual programming environment
based on graph grammars and tidy graph drawing,
Proc. Internat. Conf. Software Engin. (ICSE 98)
20-11, 74-79 (1998)

[7] A. Adachi, T. Tsuchida and T. Yaku, Program
visualization using attribute graph grammars, CD-
ROM Book, IFIP World Computer Congress 98,
(1998)

[8] Y. Adachi, K. Anzai, K. Tsuchida and T. Yaku,
Hierarchical program diagram editor based on at-
tribute graph grammar, Proc. IEEE COMPSAC
21, 205-213 (1996)

[9] Grsegorz Rozenberg (Ed.), Handbook of Graph

Grammar and Computing by Graph Transforma-
tion,World Scientific Publishing(1997).

