A Note on Decomposition Numbers for $SU(3, q^2)$

Katsushi Waki Hirosaki University 脇 克志 (弘前大学 理工学部)

This is a joint work with Prof. Okuyama. Let q be a power of a prime p and r is a prime which divides q+1. So there are s and a such that $q+1=r^as$ and s isn't divided by r any more. F is an algebraically closed field of the characteristic r.

We denote $GSU(3,q^2) = \left\{ A \in SL(3,q^2) \mid A\omega \overline{A}^t = \omega \right\}$ where $\omega = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Then the order of G is $q^3(q^3+1)(q^2-1)$.

In [1], Geck determined the decomposition numbers of the principal block of G as the following.

Theorem 0.1

		I_G	$arphi_S$	$arphi_T$
1	$ heta_1$	1		
1	θ_{q^2-q}		1	
1	$ heta_{m{q}^3}$	1	lpha	1
r^a-1	θ_{q^2-q+1}	1	1	
r^a-1	θ_{q^2-q+1}		$\alpha - 1$. 1
$(r^a-1)(r^a-2)/6$	θ_{q^2-q+1}	1	$\alpha-2$	1

where $2 \leq \alpha \leq \frac{r^a+1}{3}$

Let we denote I_G , S, T simple FG-modules which are corresponding to above irreducible Brauer characters.

In this paper, we determine α in case the center of G is trivial.

1 Notation

For any elements a in the finite field $GF(q^2)$, $\overline{a}=a^q$. Then three kinds of elements t, h(x), u(a,b) in G denote $\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} x & 0 & 0 \\ 0 & x^{q-1} & 0 \\ 0 & 0 & x^{-q} \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & -a & 1 \end{pmatrix}$. From these elements, we can construct subgroups of G.

•
$$H = \{h(x)|x \in GF(q^2)^{\times}\}$$

- $U = \{u(a,b)|a\overline{a}+b+\overline{b}=0\}$
- $U_0 = \{u(0,b)|b+\overline{b}=0\}$
- $B = H \ltimes U$
- $B_0 = H \ltimes U_0$

And the order of each subgroups is $q^2 - 1$, q^3 , q, $q^3(q^2 - 1)$, $q(q^2 - 1)$. Let R be Sylow r-subgroup of B then the order of R is r^a .

2 About Subgroups

It is easy to check the following.

Lemma 2.1 $G = B \cup BtU$

Lemma 2.2 The center of U is U_0 .

Lemma 2.3 For any non-trivial subgroup R' of R, $N_B(R') = B_0$.

Lemma 2.4 Any subgroups R' of R is $TI(Trivial\ Intersection)$ set.

Let L denotes $B_0 \cup B_0 t U_0$, then the number of elements in L is $q(q^2 - 1) + q^2(q^2 - 1) = q(q + 1)(q^2 - 1)$ and a next lemma is followed.

Lemma 2.5 L is a subgroup of G and it is isomorphic to $U(2,q^2)$.

For any subsets S of G, we define $\widehat{S} = \sum_{s \in S} s$. We fix the element b in $GF(q^2)$ with the condition $b + \overline{b} \neq 0$. For this b, we define $\gamma(b) = \sum_a \widehat{B}tu(a,b)$ where a runs over $a\overline{a} + b + \overline{b} = 0$. Then we can get the following lemma.

Lemma 2.6 For the element b, let $a_0 \in GF(q^2)$ with $a_0\overline{a_0} + b + \overline{b} = 0$.

i) If
$$b_0 = (a_0 \overline{a_0})^{-2} b$$
, then $a_0^{-1} \overline{a_0^{-1}} + b_0 + \overline{b_0} = 0$.

ii) If
$$g = u(-\overline{a_0^{-1}}, b_0)tu(a_0, b)$$
, then $\gamma(b) = \widehat{BLg}$.

Proof: (i)
$$\overline{a_0^{-1}}a_0^{-1} + b_0 + \overline{b_0} = \overline{a_0^{-1}}a_0^{-1} + (a_0\overline{a_0})^{-2}b + (a_0\overline{a_0})^{-2}\overline{b} \\
= (a_0\overline{a_0})^{-2} \left\{ a_0\overline{a_0} + b + \overline{b} \right\} = 0$$

(ii) Since $L = B_0 \cup B_0 t U_0$, $BL = B \cup B t U_0$. So $\widehat{BL} = \widehat{B} + \widehat{BtU_0} = \widehat{B} + \widehat{BtU_0}$. The equation : $tu(a,b)t = h(b)u(-a\overline{b^{-1}}b,\overline{b})tu(-a\overline{b^{-1}},b^{-1})$ shows that

$$\widehat{BLg} = \widehat{B}g + \widehat{B}t\widehat{U_0}g
= \widehat{B}u(-\overline{a_0^{-1}}, b_0)tu(a_0, b) + \widehat{B}t\widehat{U_0}u(-\overline{a_0^{-1}}, b_0)tu(a_0, b)
= \widehat{B}tu(a_0, b) + \widehat{B}t\sum_{b'}u(0, b')u(-\overline{a_0^{-1}}, b_0)tu(a_0, b)
= \widehat{B}tu(a_0, b) + \widehat{B}t\sum_{b'}u(-\overline{a_0^{-1}}, b_0 + b')tu(a_0, b)
= \widehat{B}tu(a_0, b) + \widehat{B}\sum_{c}tu(-\overline{a_0^{-1}}, c)tu(a_0, b)
= \widehat{B}tu(a_0, b) + \widehat{B}\sum_{c}tu(\overline{a_0^{-1}c^{-1}}, c^{-1})u(a_0, b)
= \widehat{B}tu(a_0, b) + \widehat{B}\sum_{c}tu(a_0 + \overline{a_0^{-1}c^{-1}}, b)$$

where b' runs over $b' + \overline{b'} = 0$ and c runs over $\overline{a_0^{-1}}a_0^{-1} + c + \overline{c} = 0$. Now, if we put $a = a_0 + \overline{a_0^{-1}}c^{-1}$,

$$a\overline{a} = (a_0 + \overline{a_0^{-1}}c^{-1})\overline{a_0 + \overline{a_0^{-1}}c^{-1}}$$

$$= (a_0 + \overline{a_0^{-1}}c^{-1})(\overline{a_0} + a_0^{-1}\overline{c^{-1}})$$

$$= a_0\overline{a_0} + c^{-1} + \overline{c^{-1}} + a_0^{-1}c^{-1}\overline{a_0^{-1}}c^{-1}$$

$$= a_0\overline{a_0} + c^{-1}\overline{c^{-1}}\left(c + \overline{c} + a_0^{-1}\overline{a_0^{-1}}\right)$$

$$= a_0\overline{a_0}$$

So we can check that a runs over $a\overline{a} + b + \overline{b} = 0$ and $a \neq a_0$.

3 Calculations of Modules

We denote k_H the trivial character of H and k_H^B induced character of k_H to B. Since the restriction of the irreducible character φ_S to the Borel subgroup B is irreducible as an ordinary character, this irreducible character $\varphi = \varphi_{SB}$ is also irreducible as a Brauer character.

Let \mathcal{B} be a block which contains φ . Let \widetilde{S} be a simple FB-module which is corresponding to the character φ . This \widetilde{S} is only simple module which belongs in block \mathcal{B} . The defect group $\delta(\mathcal{B})$ of block \mathcal{B} is a cyclic group with its order r^a . So any indecomposable modules in block \mathcal{B} is uniserial. Moreover the projective cover $P(\widetilde{S})$ is uniserial of Loewy length r^a . Let we denote $\{\theta_{q^2-q}^{(0)}, \theta_{q^2-q}^{(s)}, \ldots, \theta_{q^2-q}^{(s(r^a-1))}\}$ r^a ordinary irreducible characters in block \mathcal{B} .

Lemma 3.1 For any non-projective indecomposable FB_0 -module M, M^B has only one non-projective indecomposable summand.

Proof: This is Green correspondence of M. So this lemma is followed by lemma 2.4. For FB-module M, \mathcal{B} -part of M means direct summands of M which belong in \mathcal{B} .

Lemma 3.2 i) $I_H{}^B = I_B \oplus Y \oplus Z$ where

$$Y = \mathcal{B} ext{-part of } I_H{}^B = \left(egin{array}{c} \widetilde{S} \ \widetilde{S} \ dots \ \widetilde{S} \end{array}
ight)$$

is uniserial with Loewy length $r^a - 1$ and Z is projective.

- ii) Let Y_i be a submodule of Y with Loewy length i, then dim $Inv_H(Y_i) = i$
- iii) dim $Inv_H(Z) = q + 2 r^a$

Proof: From calculations of characters,

- $k_H^{B_0} = k_{B_0} + \theta_0$ (θ_0 is an irreducible Brauer character.)
- $k_{B_0}{}^B = k_B + \theta_{q^2-1}$ (θ_{q^2-1} is an irreducible projective character.)
- $\theta_0^B = \sum_{u=1}^q \theta_{q^2-q}^{(u)}$

Since $\theta_{q^2-q}^{(0)}$ isn't in θ_0^B , (i) is followed by lemma 3.1.

The restriction of short exact sequence

$$0 \to \widetilde{S} \to P(\widetilde{S}) \to Y \to 0$$

to B_0 shows that the Green correspondence of \widetilde{S} is uniserisal FB_0 -module with Loewy length r^a-1 and all composition factors are isomorphic to simple module $\widetilde{S_0}$ corresponding to θ_0 . Let \mathcal{B}_0 be a block which contains θ_0 .

Lemma 3.1 shows that the \mathcal{B}_0 -part of the restriction of Y_i to B_0 is a direct sum of the uniserisal module Y_i' with Loewy length $r^a - i$ and i - 1 projective indecomposable modules which are isomorphic to the projective cover $P(\widetilde{S_0})$.

From $k_H^{B_0} = k_{B_0} + \theta_0$,

$$\begin{aligned} \dim \operatorname{Inv}_H(Y_i) &= \dim \operatorname{Hom}_H(I_H, Y_{iH}) \\ &= \dim \operatorname{Hom}_{B_0}(I_H^{B_0}, Y_{iB_0}) \\ &= \dim \operatorname{Hom}_{B_0}(\widetilde{S_0}, Y_{iB_0}) \\ &= \dim \operatorname{Hom}_{B_0}(\widetilde{S_0}, Y_i') + (i-1)\dim \operatorname{Hom}_{B_0}(\widetilde{S_0}, P(\widetilde{S_0})) \\ &= 1 + (i-1) = i \end{aligned}$$

So (ii) is proved. Finally,

$$\dim \operatorname{Inv}_{H}(I_{H}^{B}) = \dim \operatorname{Hom}_{H}(I_{H}, I_{H}^{B}_{H})$$

$$= \dim \operatorname{Hom}_{B_{0}}(I_{H}^{B}, I_{H}^{B})$$

$$= q + 2$$

So from (i),
$$\dim \operatorname{Inv}_H(Z) = \dim \operatorname{Inv}_H(I_H{}^B) - \dim \operatorname{Inv}_H(Y) - 1$$

$$= (q+2) - (r^a-1) - 1 = q+2 - r^a$$

4 The Number α

Theorem 4.1 If the center of $SU(3,q^2)$ is trivial, then α in Theorem 0.1 is 2.

Proof: From theorem 0.1, composition factors of $I_B{}^G$ is $2 \times I_G + \alpha \times S + T$. Remember the homomorphism $f: I_L{}^G \to I_B{}^G$ in section 5 of [1], the composition factors of $\mathrm{Im}(f)$ is $I_G + \alpha/2 \times S + T$. The correspondence between notations of [1] and one of this paper about $I_L{}^G = \hat{L}FG, \ I_B{}^G = \hat{B}FG$ are the following. $v_\infty \leftrightarrow \hat{B}, \ v_{0,0} \leftrightarrow \hat{B}t, \ \delta(v_\infty, v_{0,0}) \leftrightarrow \hat{L}$, and a set $\delta(v_\infty, v_{0,0})$ has elements $\{\langle v_\infty \rangle, \langle v_\infty tu \rangle \mid u \in U_0\}$. This correspondence shows that

$$f(\widehat{L}) \leftrightarrow f(\delta(v_{\infty}, v_{0,0}))$$

$$= v_{\infty} + \sum_{u \in U_0} v_{\infty} t u$$

$$\leftrightarrow \widehat{B} + \sum_{u \in U_0} \widehat{B} t u$$

$$= \widehat{B} + \widehat{B} t \widehat{U}_0$$

$$= \widehat{BL}$$

Thus, $\operatorname{Im}(f) = f(I_L{}^G) = f(\widehat{L})FG = \widehat{BL}FG$. From lemma 3.2 i), $\widehat{B}FG_B = I_B{}^G{}_B = I_B \oplus I_B$

$$\operatorname{Im}(f)_B = I_B \oplus Y_{r^a - 1 - \alpha/2} \oplus Z.$$

From lemma 2.6, both \widehat{BL} and $\sum_{h\in H_0\setminus H} \gamma(b)h$ are in $\operatorname{Im}(f)=\widehat{BL}FG$. Since the action of H on these linearly independent elements is trivial, dim $\operatorname{Inv}_H(\operatorname{Im}(f)) \geq q+1$. So from lemma 3.2 ii) and iii),

$$1 + r^a - 1 - \alpha/2 + q + 2 - r^a \ge q + 1.$$

We can get $\alpha = 2$ from $\alpha \ge 2$ in theorem 0.1.

References

- [1] Meinolf Geck, Irreducible Brauer characters of the 3-dimensional special unitary groups in non-defining characteristic, Communications in Algebra 18(2), 563–584, 1990
- [2] Tetsuro Okuyama, Katsushi Waki, Decomposition Numbers of Sp(4,q) J. Alg., 1997