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Principal blocks with -extra-special defect groups of order 27

Yoko Usami H’f 'f 75. % 7% 5‘

Ochanomizu University , Department of Mathematics

Abstract. The groups PGU(3,q2) defined over the finite field GF(qZ)
satisfying ¢ = 2 or 5 ( mod 9 ) have a common Sylow 3—5ubgroup P isomorphic
to the extra-special group of order 27 of exponent 3. Their principal
3-blocks are Morita equivalent to one another. The groups PGL(3,q)
satisfying q = 4 or 7 ( mod 9 ) have also a common Sylow 3-subgroup P above.
Their principal 3-blocks are Morita equivalent to one another. This paper
also contains an improved result on the classification pf principal 3-blocks
with extra-special defect groups of order 27 of exponent 3 with respect fo

the existence of perfect isometries and isotypies.
§1. PGU(3,q%) and PGL(3,q)

1.1. In modular representation theory there is an important conjecture
due to M. Broué (Question 6.2 in [6] ). This conjecture can be stated like the
following:

Brouée's conjecture. Let B and B' be p-blocks of finite groups G and G'
having the same Brauer category and in particulér having a common defect group

P. If P is abelian, is it true that B and B' are derived equivalent?



99

It is known that if P is not abelian, this is not true and as counter examples
there exist some principal blocks ( see section 6 in [6] ). Nevertheless,

it seems that there are not so many derived category equivalence classes among
the principal p-blocks baving a fixed common Brauer category. Keeping this

in mind, in this paper we offer two examples of principal 3-blocks of

an infinite series of groups having the séme Brauer category and the same

non abelian defect group and also belonging to the same defived category
equivalence class.

1.2. Note that if we consider only -principal p-blocks, their defect
groups are Sylow p-subgroups and their Brauer categories are equivalent to the
Frovenius categories of the corresponding groups ( i.e., we can assume
that the above P is a Sylow p-subgroup of each group and as a Brauer

cétegory we have only to consider the fusion of p-subgroups of P in each

group). Note that having the sameé Frobenius category is equivalent to having
the same p-local structure. See the Definition in 4 in [18] : Finite groups G
and H have the same p-local structure if they have a common Sylow p-subgroup
P such that whenever Q1 and Q2 are subgroups of P and f: Ql—-)»Q2 is an iso-

morphism, then there is an element g& G such that f(x)

it

x® for all xé‘Q1

xh for all xéQl.

[l

if and only if there is an element h&€ H such that f(x)

Let ( X, O, k) be a splitting p-modular system for all subgroups of

the considering groups, that is, Ois a complete discrete valuation ring with
unique maximal ideal P , K is its quotient field of characteristic zero
and 4 is its residue field 0o/P of prime characteristic p and we
assume that X and 4k are big enough such that they are splitting fields for

all subgroups of the considering groups ( see §6 in Chapter 3 in [16] ).
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We denote by Zn a cyclic group of order n and by NXYL a semi-direct
product of a group N by a group L. Let Bo(G) denote the principal p-block
of a group G ( i.e. the indecomposable two sided ideal of the group

algebra of G over 0 to which the trivial module belongs). We set
B,(G) = £&®B (6) .

" modules " always mean finitely generated modules -

In this paper
They are left modules, unless stated otherwise. For a subgroup H of a group
‘G, let U and V be 0G- and OH—modulés. We write U+H for the restriction of

U to H , namely
U+H‘, =0H.0G %U
and V+ G for the induction of V to G , namely

v . e @v .

06 OH
We use the similar notation for 4AG-modules and AH-modules and even
for ordinary characters. Let 1G be the trivial OG-module and kG be the
trivial AG-module. For other notation and terminology we follow the books
of Benson [4] , Landrock [13] and Nagao-Tsushima [16] . Since the

Brauer homomorphism plays an important role in this paper, we state its

definition here.

Definition 1.3 ( 1 in-[S], 6.C. in [7] ) For an 0OG-module V and a

" p—subgroup P of G , we set

Brp(V) = V/ (] Trg(VQ) + AP ) (1.1)
QC P

where VP denotes the set of fixed points of V under P and Q runs over all
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proper subgroups of P and

Trg (v) = T x(v) (1.2
x€P/Q

for a p-subgroup Q of P and veVQ .

1.4. In section 1 we consider only the groups which
(i) have a Sylow 3-subgroup isomorphic to M(3), an extra-special
group of order 27 of exponent 3 |
and also
(ii) have a Frobenius category equivalent to that of
(Z3XZ3))<ISL(2,3) , the semi-direct product of the
elementary abelian group of order 9 by SL(2,3) with the
faithful action.
When we consider a principal p-block of a group, we may assume that the
maximal normal p'-subgroup is trivial, since it is contained in the kernel
of each module in a principal p-block. Hence we may add the assumption that
(iii) the maximal normal 3'-subgroup is trivial.

PGU(B,qZ) defined over the finite field GF(qZ) with q=2 or 5 ( mod 9 ) has
properties (i), (ii) and (iii) , and especially PGU(3,4) is isomorphic to

the semi-direct product(23>(23)w SL(2,3) above in (ii) . PGL(3,q) defined
over the finite field GF(q) with q¢ = 4 or 7 ( mod 9 ) also has properties (i),

(ii) and (iii). We remark that these projective general unitary and linear

groups have a common Sylow 3-subgroup P which is satbilized as a group by any

field automorphism. Using the classification of finite simple groups to find
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the groups having property (i), we know that
. the groups PGU(3,q2) defined over the finite field GF(qz) satisfying 3

qz 2o0r 5(mod 9 ) and extensions of them by field automorphisms

which fix all the eléments of P,
and r(1.3)

+ the groups PGL(3,q) defined over the finite field GF(q) satisfying

qZ4 or 7 ( mod 9 ) and extensions of them by field automorphisms

which fix all the elements of P ‘J
are the only groups having properties (i), (ii) and (iii). OQur aim in section
1 is to show the similarity of the module categories of the principal
3-blocks of these groups in (1.3). Here we state a definition of a special
type of equivalence of module categories introduced by Broué (5.A in [7])

and Rickard (5.5 in [17]). After that we will state our main theorem.

Definition 1.5 ( Definition 1.1 in [14]). Let A and B be OU-algebras,
M (= AMB ) an (A,B)-bimodule, N (= BNA ) a (B,A)-bimodule. We say M and N

induce a stable equivalence of Morita type between B and A , if

(i) M is projective as a left A-module and as a right B-module,
(ii) N is projective as a left B-module and as a right A-module,
(iii) MQ@N = A @ X for a projective (A,A)-bimodule X and N®M =
B A
B® Y for a projective (B,B)-bimodule Y.

For k-algebras we define a stable equivalence of Morita type similarly.

Theorem: 1.6 ( Kunugi and Usami ) - Set

F, = {PU(3,q%) defined over the finite field GF(q?) q=2 or 5 (mod 9) }

and



103

~—

Fy = { PGL(3,q) q =4 or 7 (mod 9) } .

Then the groups G in- 71 v 72 and their principal 3-blocks Bo(G) have

the following properties.

(i) These groups in /71 v 72 have a common Sylow 3-subgroup P isomorphic
to M(3), the extra-special group of order 27 of ekponent 3 , and also have
common normalizer of P isomorphic to the semi-direct product of P by a
cyclic group 22 of order 2 with the faithful action on P not fixing Z(P).
(ii) P contains a subgroup Q isomorphic to the elementary abelian group
Z3X Z3 of order 9 such that these groups in ?1 v 72 have a common
normalizer H of Q. This H is isomorphic to the semi-direct product of

2, X2

3 3
Furthermore, H belongs to 71 as PGU(3,4)

by SL(2,3) with the faithful action, and we have 0H = BO(H).

(iii) In each group G in 71 v/ 72 , H( = NG(Q) ) contains NG(P) and
H controls the fusion of 3-subgroups of P in G. Then the groups iﬁ 71
V) 72 have a common Frobenius category.

(iv) Fix any group G in 71 V) 72 . Let M be the Green correspondent of
an 0(Gx G)-module BO(G) with respect to ( GXG, A(P) , GXH ). Then

M is an indecomposable direct summand of lA(P;~GXH (1.4)

where A(P) means the diagonal group of P in GXG. Let N be the

Green correspondent of an 0(G X G)-module BO(G) with respect to (GxG ,

A(P), HXG). Then

N is an indecomposable direct summand of lA(P5+HXG (1.5)

Furthermore, M and N induce a stable equivalence of Morita type
between BO(H) and Bo(G) as a (BO(G),BO(H))—bimodule and a (BO(H),BO(G))—

bimodule respectively.
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(v) If G is in 71 , then M and N in (iv) induce a Morita equivalence

between BO(H) and Bd(G)'

{vi) Let G be any fixed group in 72 "and set

6, = PGL(3,4) . G, =G , Mp= M and N> = N

as (iv) and let M; and N; be bimodules defined for G; like M and N for

G. Then the unique non-projective indecomposable direct summand M, of

M, ® N

B (H)

induces a Morita equivalence between BO(Gl) and BO(Gz)- Furthermore

+G2X G,y

.

Mg is a direct summand of lA(P) (1.6)

Remark 1.7. Let F be a functor which induces a Morita equivalence
between blocks B and B' and M be a (B',B)-bimodule such that F is
realized by

M® -
B
Then by Theorem 22.1 in [3] the inverse functor of F is given by a
(B,B')~-bimodule

HomB,(M,B')

and by 3.A.3 in [7] this bimodule is isomorphic to

E-3

M = Hom,(M.0) ( i.e. O-dual of M ).
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Then a Morita equivalence in Theorem 1.6 (v) is induced by bimodules M and
M* and furthermore, M is satisfying (1.4). Also a Morita equivalence in
Theorem 1.6 (vi) is induced by bimodules M; and Mo* and furthermore, M,
is satisfying (1.6). Then by Puig and Scott's Theorem 1.6 in Marcus's
paper [15] , each of these Morita equivélences is a so-called Puig
equivalence ( i.e. it implies the coincidence of their source algebras ).

On the other hand, for any extension G in (1.3) of a group Go in 71LJ 72

EO(G) and EO(GO) are Morita equivalent to each other by a bimodule

e EO(G)_ ( i.e. the restriction )
B,(6) ° ° B(6)

by Alperin and Dade's isomorphic blocks ( see Theorem 2 in [1] ),

where e, is the central idempotent corresponding to Eo(Go)' As we

will explain a similar case in 1.13 below , this bimodule is a A(P)-
projective trivial source module and then liftable. Hence the uniquely
lifted bimodule

e,B (G)
B_(G,) ° B, (G)

and its O0O-dual induce a Morita equivalence between BO(G ) and BO(GO)

( Furthermore, this is also a Puig equivalence by the same reason as

above . )V Hence if we use the classification of finite simple groups

as in 1.4 , we can conclude that there are at most two derived equivalence
classes of principal 3-blocks having the same Brauer ( Frobenius )
category as that of (ZBX 23))4 SL(2,3) with the faithful actj_on. Here

we remark that all of theée blocks have the same number ot irreducible
ordinary characters and the same number of simple modules. Furthermore,
there is a perfect isometry befween the principal 3-blocks of PGL(3,4)

and PGU(3,4).
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1.8. This work is subsequent to Koshitani and Kunugi's papers [10],
[12] and the main task is to determine the Green correspondents of simple
modules and for this task we use the same tools effectively such as Scott's
result that a trivial source module is liftable ( Theorem 12.4 in II in
[13] and Theorem 14.8 in I in [13] or Lemma 1.2 in [10] ) and Robinson's

lemma ( Theorem 3 in [19] or Lemma 1.4 in [10] ) and Knorr's relatively

projective cover ([11] or section 2 in [12]). As for Theorem 1.6, assuming (i)
through (iii) which we can prove by direct calculations, we will explain the
frame of the proof of (iv) through (vi). For (iv) we need Broué's Theorem 6.3

in [7] in special situation stated in Theorem 1.9 below. But in order to

state it we need the Brauer homomorphisms defined in two ways. Note that for

any non-trivial p-subgroup R of P and for any p-block with defect group P
we have the following. Here we state them only for the principal block BO(G).
First . with an action of R by a conjugation in (1.2) we have

Bro(0G ) = AC(R) and Bry(B,(6)) = kCG(R)EO(R) = B (Cg(R)  (1.7)
where SO(R) is the block idempotent of kCG(R) corresponding to the principal

p-block by Theorem 3.13 (2) in [2]. This implies that we have

BrA(-.R)(O G ) = /cCG(R) and BrA(R)(Bo(G)) = Eo(CG(R)) R (1.8)

( Since the proof of Theorem 6.3 was omitted in [7], we show an outline of

the proof of Theorem 1.9 here. By assumption (ii) and the argument in page 344
. * ~ M M o~ r Rt . ]
in [18], BrA(R)(M %M)—HokaG(R)(MR,MR) kCH(R)bR . Since BrA(NP(R))(bR)

# 0 by Corollary 4.5 in [2] , non-projective indecomposable direct summand
of M%?Plis unique and it has vertex A(P) by Theorem 3.2 in [5] - By assump-
tion (i) B is a summand of MY? M as it is the unique indecomposable direct

summand of A+HXH with vertex A(P). From Theorem 2.1 in [18] the conclusion

follows.) Theorem 1.6 (v) and (vi) are based on a Linckelmann's theorem.
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Theorem 1.9 (cf. Broué, Theorem 6.3 in [7] ). Let G be a finite group
with a Sylow p-subgroup P and H be a subgroup of G containing NG(P). Assume
that G and H have the same fusion on p-subgroups contained in P. Let b and b'
be central idempotents of OG and OH respectively such that there is a Brauer
correspondence between

A =0Gb and B = OHb'

having common defect group P. For a subgroup R of P , set

bR = BrR(b) , B'R = BrR(b') . (1.9)

Let M be an (A,B)-bimodule and N be a (B,A)-bimodule. For eacn subgroup R

of P set

MR = BrA(R)(M) and NR = BrA(R) ¢)) (1.10)
Assume that
(i) M is a direct summand of the restriction of A from GXG to GXH.
(ii) For each non-trivial subgroup R of P , MR and NR induce a Morita

equivalence between kCH(R)B' and kCG(R)ER .

R

Then M and its O-dual induce a stable equivalence of Morita type between

B and A.

Theorem 1.10 ( Linckelmann , Theorem 2.1 in [14] ). Let G and H
be two finite groups and b and b' be central idempotents of 0G and OH

respectively. Set

A=0Gb ,B=0Hb', A= kAk®A and B= A®B .
0 0

Let.M be an (A,B)-bimodule which is projective as left and right module,

such that the functor

M& -
B
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induces an O-stable equivalence between B and A.
(i) Up to isomorphism, M has the unique indecomposable non-projective direct

summand M'as-an (A,B)-bimodule and then k%M' is , up to isomorphism , the

unique indecomposable non-projective direct summand of k@ M as a
(&,B)-bimodule. |

(ii) If M is indecomposable, for any simple B—modqle S , the A-module M%S
is indecomposable and non-projective as .an A-module,

(iii) If for any simple B-module 'S‘ , the A-module M%S is simple , then

the functor M%— is a Morita equivalence.

1.11. Fix any groﬁp G in 71 v 72 and set
H = N,(Q)
as in Theorem 1.6(ii) and then we have
OH = BO(H) . (1.11)
Note that a G xG-module BO(G) has a vertex A(P) and the source lA(P)’
and GXH contains NGXG( A(P)). Then there exists the Green correspondent

M of BO(G) with respect to ( GXG ., A(P) , GXH ) and M satisfies (1.4)
( and then it satisfies Theorem 6.3 (i) in [7] with X = 1A(P) ) and

M is a direct summand of the restriction of BO(G) to GxH .(1.12)
Similarly we can define N. We will apply Theorem 1.9 for BO(G), BO(H) and
M ( and N ). Let R be a non-trivial subgroup of P. By (1.8) and ‘(1.10)

MR is a direct summand of a (BO(CG(R),Bo(‘CH(R))—bimodule

B (C(R)) (1.13)

and
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NR is a direct summand of a (BO(CH(R)), EO(CG(R))')—bimodule

EO(CG(R)) (1.14)
and by (1.7) and (1.9) the second condition in Theorem 1.9 is equivalent
to the following:

For each non-trivial subgroup R of P, ﬁR and NR induce a

Morita equivalence between BO(CH(R)) and EO(CG(R)), (1.15)
which will be proved locally. Then we will conclude that M and N induce
a stable equivalence of Morita type between BO(H) and BO(G) by Theorem

1.9 and then Theorem 1.6 (iv) will follow. Set

M=4ir@M and N=kA®N .
0 0

Note that each of M and N is projective as left and right module and by
definition a stable equivalence of Morita type between BO(H) and BO(G) by
bimodules M and N guarantees a stable equivalence of Morita type between
ﬁo(H) and EO(G) by bimodules M and N . Also note that M and N are in-

decomposable by Theorem 1.10 (i).

1.12. This M for G in 71 ( respectively, N for G in 72 ) sends
a simple module to an indecomposable module by Theorem 1.10 (ii) and
furthermore we claim that this module is its Green correspondent with

respect to (G,P,H) over 4 . In order'to prove this claim;first we will

assure that

H = Ny(Q) D Ny(P)
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from the explicit structure of G , and that any simple EO(H)—module has vertex
P or Q and that any simple EO(G)—module has vertex P'or Q for G in ;2' By the
definition of a stable equivalence of Morita type our claim will follow.
Using this claim effectively we will prove Theorem 1.6 (v) and (vi)
separatedly. We remark that by definition ( see (1.4) and (1.5) ), M,

N, M and N are trivial source modules.

1.13. Fix any group in 71 . In order to show Theorem 1.6 (v) ,

it suffices to show that
M and N induce a Mprita equivalence between ﬁo(H) and
EO(G) . (1.16)
Indeed , by the remark in 1.12 they are trivial source modules and they
are liftable to M and N. Then M and N induce a Morita equivalence between
BO(H) and BO(G) ( see Rickard § 5 in [18] ). 1In order to prove (1.16) we
will show that the Green correspondent of a simple module is also simple

from character calculation. Then from our claim in 1.12 we can conclude

that M induces a Morita equivalence between EO(H) and EO(G) by Theorem 1.10
(iii) ( for M ). More precisely, M and. its k-dual N induce it as a pair of

bimodules and (1.16) will follow.

1.14. : For G  in Fy the method is little bit different. We will
show that the set of Green correspondents of the simple EO(G)—modules in

kH do not depend on q ( i.e. the choice of G in o ). Using this fact

we will find a suitable bimodule from the direct summands of

B,(6) ©B,(FGL(3,4))
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§ 2. Classification

2.1. Do the principal p-blocks of two groups having the same p-local
structure have the same number of irreducible ordinary characters and the
same number of simple modules ? As a test case for this question , the
author and M.Kiyota classified the principal 3-bldcks with extra-special
defect groups of order 27 of exponent 3 , according to their 3-local
structures and obtained an affirmative answer for this case, using the
classification of finite simple groups ( see Theorems 1 and 2 in [22] ).

We add some results to this investigation.

Theorem 2.2 ( Using the classification of finite simple groups for the
latter case with EQ.-Z8 ). Let G be a finite group with an extra-special Sylow
3-subgroup P of order 27 of exponent 3. If NG(P) C CG(Z(P)) or Z(P) is

normal in G , then BO(G) and Bo(ijE) are isotypic with E = NG(P)/PCG(P).

Proposition 2.3. The groups in (i) ( respectively (ii), (diii) and (iv) )
have the same 3-local structure with Sylow 3-subgroup P in Theorem 2.2 and
there is a perfect isometry between the principal 3-blocks of any two of them.

(i) M He , Aut(He) ( with the author's student M. Nakabayashi )

24
(ii) Aut(M;,) , Aut(PSL(3,3))

(iii) Ru , J ( by M. Nakabayashi )

4

(iv) Gz(q) q=3k=z=*1 (3,k)=1 ( with M. Nakabayashi ),
On the other hand, the groups in (i)' ( respectively (ii)',(iii)' and (iv)')
have the same 3-local structure with Sylow 3-subgroup P in Theorem 2.2, but
there is no perfect isometry between their principal 3-blocks.

(ii)' Ru , 2F4(2)
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(1i1)' 6,(2) , Aut(J,)
(iv)' Aut(Jz) , PX SD16 with the faithful action ( SD16 denotes the

semidihedral group of order 16 . ).

( Here we check only perfect isometries which send the trivial character to

the trivial character. )

10.
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