<table>
<thead>
<tr>
<th>Title</th>
<th>DADE'S CONJECTURE FOR FINITE SPECIAL LINEAR GROUPS (Representation Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sukizaki, Hideki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2000), 1149: 76-79</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64031</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
DADE'S CONJECTURE FOR
FINITE SPECIAL LINEAR GROUPS

Hideki Sukizaki
(Osaka University)

1. DADE'S CONJECTURE

Let p be a prime number, and let G a finite group. A p-chain C of G is any strictly increasing chain

\[(1-1) \quad C : U_0 < U_1 < \cdots < U_m \]

of p-subgroups U_i of G. We denote the length m of C by $|C|$. If K is any group acting (exponentially) as automorphisms of G, then any $g \in K$ sends the p-chain C to the p-chain

\[(1-2) \quad C^g : U_0^g < U_1^g < \cdots < U_m^g \]

of G. The normalizer $N_K(C)$ of C in K is the subgroup of all $g \in K$ such that $C = C^g$, i.e.,

\[N_K(C) = \bigcap_{i=0}^{m} N_K(U_i).\]

We say that the p-chain C in (1-1) is radical (with respect with G) if U_0 is the largest normal p-subgroup $O_p(G)$ of G and

\[U_i = O_p(\bigcap_{j=0}^{i} N_G(U_j)) \quad \text{for} \quad i = 1, 2, \cdots, m.\]

We denote by $\mathfrak{R}(G)$ the set of all radical p-chains of G. The set $\mathfrak{R}(G)$ is closed under the conjugation action (1-2) of G on its p-chains. We denote by $\mathfrak{R}(G)/G$ any complete representatives for the G-conjugacy classes in $\mathfrak{R}(G)$.

For a p-block B of G and a non negative integer d, we denote by $\text{Irr}(H, B, d)$ the set of complex irreducible characters ψ of H such that

(i) the p-part of $|H|/\psi(1)$ is p^d, and
(ii) ψ lies in a p-block b of H such that $b^G = B$.

In [D1], E. C. Dade gives the following conjecture.
Conjecture 1 (Dade’s ordinary conjecture). If $O_p(G) = 1$ and the defect of B is positive, then

$$\sum_{C \in \mathfrak{R}(G)/G} (-1)^{|C|} |\text{Irr}(N_G(C), B, d)| = 0.$$

We mention a stronger conjecture.

Let E be a finite group such that $G \triangleleft E$. By the conjugation action of E on G, we define an action (1-2) of E on the p-chains C of G. So any such C has a normalizer $N_E(C)$ in E, and we have $N_G(C) \triangleleft N_E(C)$. Thus $N_E(C)$ acts by conjugation on $\text{Irr}(N_G(C))$. For $\phi \in \text{Irr}(N_G(C))$, we write

$$T_{N_E(C)}(\phi) = \{g \in N_E(C) | \phi^g = \phi\}.$$

For $\overline{F} \triangleleft E/G$, we denote by $\text{Irr}(N_G(C), B, d, \overline{F})$ the set of $\phi \in \text{Irr}(N_G(C), B, d)$ such that

(iii) $G \cdot T_{N_E(C)}(\phi)/G = \overline{F}$.

The following conjecture is given in [D2].

Conjecture 2 (Dade’s invariant conjecture). If $O_p(G) = 1$ and the defect of B is positive, then

$$\sum_{C \in \mathfrak{R}(G)/G} (-1)^{|C|} |\text{Irr}(N_G(C), B, d, \overline{F})| = 0.$$

Here, we treat a verification of Dade's invariant conjecture for $G = SL(n, q)$ and $E = GL(n, q)$ with $p | q$. This implies Dade’s invariant conjecture for $G = PSL(n, q)$ and $E = PGL(n, q)$.

2. ON RADICAL p-CHAINS OF A CHEVALLEY GROUP

In this section, let G be a Chevalley group and let the defining field of G characteristic p. Then $\mathfrak{R}(G)$ is the set of p-chains consisting of unipotent radicals of parabolic subgroups of G [BT] [BW]. Now we fix a Borel subgroup U. Then we may take $\mathfrak{R}(G)/G$ to be the set of p-chains consisting of unipotent radicals of parabolic subgroups of G containing U. Thus, for any $C \in \mathfrak{R}(G)/G$, $N_G(C)$ is some parabolic subgroup of G containing U.

It is well known that the set of all parabolic subgroups of G containing U is parametrized by the set of subsets of a fundamental root system I of G. Thus we denote by P_J the parabolic subgroup corresponding to $J \subseteq I$.

By the above argument and [W] [KR], Conjecture 2 is equivalent to the following.

Conjecture 3. If $O_p(G) = 1$ and the defect of B is positive, then

$$\sum_{J \subseteq I} (-1)^{|I \setminus J|} |\text{Irr}(P_J, B, d, \overline{F})| = 0.$$
3. The Case for $G = SL(n, q)$ and $E = GL(n, q)$ ($p|q$)

We consider the case for $G = SL(n, q)$ and $E = GL(n, q)$ with $p|q$.

We take $I = \{1, 2, \cdots, n-1\}$ as a fundamental root system and take the subgroup U of lower triangular matrices in $GL(n, q)$ as a Borel subgroup of $GL(n, q)$. Then, if $J \subseteq I$ satisfying $\Gamma \setminus J = \{a_1, \cdots, a_k\}$, the parabolic subgroup P_J of $GL(n, q)$ is

$$\{(p_{ij}) \in GL(n, q) | \text{If some } k \text{ satisfies } i \leq a_k \text{ and } j > a_k \text{, then } p_{ij} = 0\}.$$

Moreover $U \cap SL(n, q)$ is a Borel subgroup of $SL(n, q)$ and $P_J \cap SL(n, q)$ is a parabolic subgroup of $SL(n, q)$ containing $U \cap SL(n, q)$.

Here we restate Dade conjecture for $SL(n, q)$ to a statement on $GL(n, q)$. For a positive integer s, we denote by $\text{Irr}(J, B, d, s)$ the set of irreducible characters ψ in $\text{Irr}(P_J \cap SL(n, q), B, d)$ such that the $GL(n, q)$-conjugacy class containing ψ has s elements. Because $GL(n, q)/SL(n, q)$ is cyclic and its order is relatively prime to p, Conjecture 3 for $G = SL(n, q)$ and $E = GL(n, q)$ is equivalent to the following: For any p-block B of $SL(n, q)$ whose defect is positive, any non negative integer d and any positive integer s,

$$\sum_{J \subseteq I}(-1)^{|I \setminus J|} \left| \text{Irr}(J, B, d, s) \right| = 0.$$

For a positive integer s and a p-block \tilde{B} of $GL(n, q)$, we denote by $\tilde{\text{Irr}}(J, \tilde{B}, d, s)$ the set of irreducible characters ϕ in $\text{Irr}(P_J \cap SL(n, q), \tilde{B}, d)$ such that the restriction of ϕ to $P_J \cap SL(n, q)$ has s irreducible constituents. Then, we have the following theorem on $GL(n, q)$, slightly stronger than the above statement.

Theorem [S]. For any p-block \tilde{B} of $GL(n, q)$ whose defect is positive, any non negative integer d and positive integer s, the following holds:

$$\sum_{J \subseteq I}(-1)^{|I \setminus J|} \left| \tilde{\text{Irr}}(J, \tilde{B}, d, s) \right| = 0.$$

The proof of this theorem is an extension of the proof of Dade's ordinary conjecture for $GL(n, q)$ [OU].

Thus, we have

Corollary. If $p|q$, Conjecture 3 for $G = SL(n, q)$ and $E = GL(n, q)$ is true. Moreover conjecture 3 for $G = PSL(n, q)$ and $E = PGL(n, q)$ is true.

References

