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1 Introduction
This note is based on talks I gave in Paris, Osaka, and Kyoto in 1998. Its aim
is to discuss a question of Brauer and present a reduction theorem obtained
by my student Olav D\"uvel in his $\mathrm{P}\mathrm{h}\mathrm{D}$ thesis [4]. In the final section, I shall
relate Brauer’s question to Donovan’s conjecture.

Throughout this article, $k$ denotes an algebraically closed field of charac-
teristic $p>0$ . Moreover, $G$ is a finite group, $kG$ its group algebra over $k$ and
$\mathrm{m}\mathrm{o}\mathrm{d}- kG$ the category of finitely generated right $kG$-modules.

Brauer’s question belongs to a whole class of problems, namely to relate
numerical invariants of $G$ with cohomological invariants of $\mathrm{m}\mathrm{o}\mathrm{d}- kG$. An
example for a numerical invariant of $G$ is $|G|_{\mathrm{p}}$ , the $p$-part of the order of $G$ .
A cohomological invariant of $\mathrm{m}\mathrm{o}\mathrm{d}- kG$ is $c(kG)$ , the largest Cartan invariant
of $kG$ , i.e.,

$c(kG)= \max${ $\dim_{k}\mathrm{H}\mathrm{o}\mathrm{m}_{kG}(P,$ $Q)|P,$ $Q\in \mathrm{m}\mathrm{o}\mathrm{d}- kG$ PIMs},

where a PIM is a projective indecomposable $kG$-module. A relation between
the two invariants is implied by Maschke’s theorem: $|G|_{p}=1$ if and only
if $c(kG)=1$ . Next consider the case that $|G|_{p}=p$ . This implies that a
Sylow $p$-subgroup of $G$ is cyclic. Then, by results of Brauer and others, $kG$

is representation finite and $c(kG)\leq p=|G|_{p}$ .
These results and further examples might have motivated the following

question of Brauer.

Question 1.1 (Brauer [2], Problem 22) Is it true that $c(kG)\leq|G|_{p}$ for all
finite groups $G$?
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In [11], Landrock showed that the Suzuki group $Sz(8)$ for $p=2$ provides a
negative answer to Brauer’s question.

Brauer’s original question is asking for a particular bound for the Cartan
invariants of $kG$ in terms of $|G|_{p}$ . It is natural to modify Brauer’s original
question by just asking for some bound.

Question 1.2 Is there a function $f_{p}$ : $\mathrm{N}arrow \mathrm{N}$ such that $c(kG)\leq f_{p}(\log_{p}|G|_{p})$

for all finite groups $G$?

2 Blocks and some of their invariants
Brauer’s question can be refined by looking at blocks. We have a direct sum
decomposition

$kG= \bigoplus_{B}B$ ,

into indecomposable two-sided ideals $B$ of $kG$ , the blocks of $kG$ . Correspond-
ingly, we have a direct sum decomposition of the module category

$\mathrm{m}\mathrm{o}\mathrm{d}- kG=\bigoplus_{B}$
mod-B.

The problem now is to compare numerical invariants of a block $B$ with coho-
mological invariants of mod-B. First one has to define the “right” numer-
ical invariants of blocks. To a block $B$ one associates a conjugacy class of
$p$-subgroups of $G$ , the defect groups of $B$ . If $D$ is such a defect group for $B$ ,

$d(B):=\log_{p}(|D|)$

is called the defect of $B$ (replacing $\log_{p}(|G|_{p})$ in the previous example).
In the following, a block is a finite dimensional $k$-algebra which is isomor-

phic to a block of $kG$ for some finite group $G$ . We consider the following
invariants of a block $B$ .

$\bullet$ $C(B):=\mathrm{C}\mathrm{a}\mathrm{r}\tan$ matrix of $B$ ( $=\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}$ of Cartan invariants).

$\bullet$ $c(B):=\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t}$ entry of $C(B)$ .

$\bullet$ $\ell(B):=\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}$ of simple $B$-modules (up to isomorphism).

22



$\bullet$ $LL(B):= \min\{0\neq n\in \mathrm{N}|J(B)^{n}=0\}$ (the Loewy length of $B$).

$\bullet$ $e(B):= \max${ $\dim_{k}\mathrm{E}\mathrm{x}\mathrm{t}_{B}^{1}(S,$ $T)|S,$ $T$ simple B-modules}.

Note that all these invariants are invariants of the Morita equivalence class
of $B$ . It is well known that $C(B)$ is a symmetric matrix whose determinant
is a power of $p$ . Moreover, $p^{d(B)}$ is the unique largest invariant factor of $C(B)$

[ $12$ , Corollary III.8.13], such that $d(B)$ can be recovered from mod-B.

3 More questions and $\mathrm{D}\ddot{\mathrm{u}}\mathrm{v}\mathrm{e}1^{2}\mathrm{s}$ reduction
In view of Brauer’s question one may ask whether $d(B)$ bounds the invari-
ants of $B$ introduced in the previous section. More precisely, do there exist
functions $f_{i,p}$ : $\mathrm{N}arrow \mathrm{N},$ $i=1,$ $\ldots$ , 4, such that the following hold for all
blocks $B$ ?

(1) $\ell(B)\leq f_{1,p}(d(B))$ ,

(2) $LL(B)\leq f_{2,p}(d(B))$ ,

(3) $e(B)\leq f_{3,p}(d(B))$ ,

(4) $c(B)\leq f_{4,p}(d(B))$ ?

Of course, Question (4) is just the block version of Question 1.2.

Remarks 3.1 (a) By a result of Brauer and Feit (see [5, Theorem IV.4.18])
Question (1) has a positive answer, namely $\ell(B)\leq\frac{1}{4}p^{2d(B)}+1$ .

(b) In view of this, a positive answer to Question (4) is equivalent to a
simultaneous positive answer to Questions (2) and (3).

(c) If $B$ is replaced by $kG$ (and $d(B)$ by $\log_{p}(|G|_{p})$ ) in Question (1), then
this question does not have a positive answer. To reduce Question (4) to the
two Questions (2) and (3), it is therefore essential to turn to blocks.

(d) It has been conjectured by Kiyota and Wada [9], that $LL(B)\leq$

$\rho(C(B))$ , where $\rho(C(B))$ is the largest eigenvalue of $C(B)$ .

Donovan has formulated a conjecture which appears to go far beyond Brauer’s
question.
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Conjecture 3.2 (Donovan, see [1], Conjecture M) The number of Morita
equivalence classes of blocks of a given defect is finite.

It is obvious that the truth of Donovan’s conjecture would imply a positive
answer to Questions (1) $-(4)$ above. To weaken Donovan’s conjecture, let $C$

be a class of finite groups. Say that Donovan’s conjecture holds for $C$ , if the
number of Morita equivalence classes among the blocks of a given defect of
the group algebras $kG$ for $G\in C$ , is finite. Scopes has proved in [15] that
Donovan’s conjecture holds for the symmetric groups, the results of Kessar
[8] imply that Donovan’s conjecture holds for the alternating groups. In
[10] K\"ulshammer has proved that in order to verify Donovan’s conjecture, it
suffices to consider blocks of groups generated by the defect groups of the
blocks.

In the final section of this note a condition will be introduced allowing to
derive the truth of Donovan’s conjecture for a class of groups from a positive
answer to Brauer’s question for this class.

We are now going to state D\"uvel’s reduction theorem, but need to intro-
duce some more notation. First of all, put

$\mathcal{E}_{p’}\wedge:=$ { $\hat{G}|\hat{G}$ perfect, finite group, $Z:=Z(\hat{G})$ cyclic , $p\parallel|Z|,\hat{G}/Z$ simple}.

The following definitions are due to D\"uvel.

Definition 3.3 (a) For $d\in \mathrm{N}$ let

$\overline{LL}_{p}(d):=\sup${$LL(B)|B$ block of $k\hat{G},\hat{G}\in \mathcal{E}_{p’},$$d(B)\wedge\leq d$} $\in \mathrm{N}\cup\{\infty\}$ ,

and

$\overline{e}_{p}(d):=\sup${$e(B)|B$ block of $k\hat{G},\hat{G}\in \mathcal{E}_{p’},$$d(B)\wedge\leq d$} $\in \mathrm{N}\cup\{\infty\}$ .

(b) Define the maps $LL_{p},$ $e_{p}$ : $\mathrm{N}arrow \mathrm{N}$ recursively by

$LL_{p}(0):=1,$ $LL_{p}(n):= \max\{\overline{LL}_{p}(n), LL_{p}(i)LL_{p}(n-i)|0<i<n\},$ $n>0$ ,

and

$e_{p}(0):=0,$ $e_{p}(n):= \max\{\overline{e}_{p}(n), e_{p}(i)+e_{p}(n-i)|0<i<n\},$ $n>0$ .

With these notations we can now formulate D\"uvel’s reduction theorem.
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Theorem 3.4 ([4, Theorem 3.2]) Let $G$ be a finite group, $B$ a block of $kG$

of defect $d$ . Then $LL(B)\leq LL_{p}(d)$ and $e(B)\leq e_{p}(d)\ell(B)$ .

Remark 3.5 Let $d\in \mathrm{N}$ . It follows from results of many authors that

$\sup$ {$LL(B),$ $e(B)|B$ block of $kG,$ $d(B)\leq d,$ $G\in C$ }

is finite for a large class $C$ of finite Chevalley groups containing, for example,
all general linear groups [3], the symmetric and alternating groups $[15, 8]$ ,
the 4-dimensional symplectic groups [14], the Suzuki groups (cyclic defect)
and the “small” Ree groups [13]. We hope to be able to extend the class $C$

in the future. The aim is, of course, to show that if we replace $C$ by $\mathcal{E}_{p’}\wedge$ then
the above number is still finite.

4 Idea of $\mathrm{D}\ddot{\mathrm{u}}\mathrm{v}\mathrm{e}1^{2}\mathrm{s}$ reduction
It is perhaps not surprising to the experts that D\"uvel uses a generalized ver-
sion of Fong reduction–with control of defects of blocks–based on Clifford
theory \‘a la Dade, to obtain his theorem. Without going into details, some
of the main points of D\"uvel’s reduction will now be sketched. This section is
based on D\"uvel’s thesis [4].

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$ .

(1) Define a full subcategory $S_{G}(N)$ of $\mathrm{m}\mathrm{o}\mathrm{d}- kG$ consisting of those finite
dimensional $kG$-modules whose restriction to $N$ is semisimple. Then
every $kG$-module $M$ has a filtration, of length at most $LL(kN)$ , with
factors in $S_{G}(N)$ .

(2) Let $V_{1},$
$\ldots$ , $V_{t}$ represent the $G$-orbits of the isomorphism classes of the

simple $kN$-modules. For $1\leq i\leq t$ let $G_{i}$ denote the stabilizer of $V_{i}$

in $G$ . We then have a direct sum decomposition

$S_{G}(N)= \bigoplus_{i=1}^{t}S_{G}(N, V_{i})$ ,

where $S_{G}(N, V_{i})$ is the full subcategory of $S_{G}(N)$ consisting of those kG-
modules whose restriction to $N$ is a direct sum of modules G-conjugate
to $V_{i}$ .
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5Towards Donovan’s conjecture
In the final section a few ideas will be sketched which allow to approach
Donovan’s conjecture for certain classes of groups, provided Brauer’s question
has a positive answer for these groups.

Proposition 5.1 Let $B$ be a set of blocks. Suppose there exist positive in-
tegers $d$ and $c$ and a finite field $k_{0}\subset k$ such that for all blocks $B\in B$ the
following conditions are satisfied.

(a) $d(B)\leq d$ ,

(b) $c(B)\leq c$,

(c) $B\cong B_{0}\otimes_{k_{0}}k$ for some split $k_{0}$ -algebra $B_{0}$ .

Then there are only finitely many Morita equivalence classes among the blocks
in $B$ .

Proof. Let $B\in B$ . By the results of Brauer and Feit, $\ell(B)\leq p^{2d}/4+1$ . By
Assumption (b), the sum of the entries of $C(B)$ is at most $c(p^{2d}/\mathit{4}+1)^{2}$ .

Let $P_{1},$
$\ldots$ , $P_{n}$ denote a set of representatives for the isomorphism classes

of the PIMs of $B_{0}$ and let $M:=P_{1}\oplus\cdots\oplus P_{n}$ . Put $A_{0}:=\mathrm{E}\mathrm{n}\mathrm{d}_{B_{0}}(M)$ .
Since $k_{0}$ is a splitting field for $B_{0}$ by assumption, the projective B-module
$P_{i}\otimes_{k_{0}}k$ is indecomposable. Thus $P_{1}\otimes_{k_{0}}k,$

$\ldots$ , $P_{n}\otimes_{k_{0}}k$ is a complete set
of representatives for the PIMs of $B$ . It follows that $A:=A_{0}\otimes_{k_{0}}k\cong$

$\mathrm{E}\mathrm{n}\mathrm{d}_{B}(M\otimes_{k_{0}}k)$ is a basic algebra for $B$ . By the first paragraph of the proof,
$\dim_{k_{\mathrm{O}}}A_{0}=\dim_{k}A\leq c(p^{2d}/4+1)^{2}$ .

Since there are only finitely many isomorphism classes among the $k_{0^{-}}$

algebras of fixed, bounded dimension, the above implies that there are only
finitely many isomorphism classes among the basic algebras of the blocks
in $B$ . Since two $k$-algebras are Morita equivalent if and only if their basic
algebras are isomorphic, the result follows.

Proposition 5.2 Let $G$ be a finite group and $B$ a block of $kG$ . Let $\varphi_{1},$ $\ldots$ , $\varphi_{n}$

denote the $k$ -characters of the simple $B$ -modules. If $k_{0}$ is the finite field
containing the $\phi_{i}(g),$ $i=1,$ $\ldots$ , $n,$ $g\in G$ , then there is a $k_{0}$ -algebra $B_{0}$ with
$B\cong B_{0}\otimes_{k_{0}}k$ . Moreover, $k_{0}$ is a splitting field for $B_{0}$ .
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(3) Fix an integer $i$ with 1 $\leq i\leq t$ . Then there is a cyclic central $p’-$

extension
$1arrow Z_{i}arrow\overline{G_{i}/N}arrow G_{i}/Narrow 1$

and a simple $kZ_{i}$-module $X_{i}$ such that $S_{G}(N, V_{i})$ is Morita equivalent
to $S_{\overline{G_{i}/N}}(Z_{i}, X_{i})$ .

(4) Let $M$ be an indecomposable $kG$-module and $B$ the block of $kG$ con-
taining $M$ . Next, let $M’$ be an indecomposable subquotient (a factor
module of a submodule) of $M$ contained in $S_{G}(N)$ .
Since $M’$ is indecomposable, it is contained in $S_{G}(N, V_{i})$ for a unique $i$ .
By (3), $M’$ determines a block $B_{i}$ of $\overline{G_{i}/N}$ . Finally, let $b_{i}$ denote the
$kN$-block containing $V_{i}$ . Then

$d(B_{i})+d(b_{i})\leq d(B)$ .

(5) The proof bounding the Loewy length proceeds as follows. Let $B$ be
a block of $kG$ and let $b_{1},$

$\ldots$ , $b_{s}$ be the blocks of $kN$ covered by $B$ .
Then, since these are conjugate in $G$ , all of the $b_{i}\mathrm{s}$ have the same
Loewy length. Now let $M$ be a PIM of $B$ of maximal Loewy length.
Among all indecomposable subquotients of $M’$ of $M$ which lie in $S_{G}(N)$ ,
choose one such that $LL(B_{i})$ is maximal, where $B_{i}$ is the block $\mathrm{o}\mathrm{f}\overline{G_{i}/N}$

determined by $M’$ as in (4). Then, by (4), $d(B_{i})+d(b_{i})\leq d(B)$ .
By induction on the order of $G/O_{p’}(G)$ one may assume that either $G$

is in the class $\mathcal{E}_{p’}\wedge$ , or else that $b_{i}$ and $B_{i}$ belong to groups $H$ with
$|H/O_{p’}(H)|<|G/O_{p’}(G)|$ . Then

$LL(B)$ $\leq$ $LL(b_{i})LL(B_{i})$

$\leq$ $LL_{p}(d(b_{i}))LL_{p}(d(B_{i}))$

$\leq$ $LL_{p}(d(b_{i}))LL_{p}(d(B)-d(b_{i}))$

$\leq$ $LL_{p}(d(B))$ .

Here, the first inequality follows by filtering $M$ with at most $LL(b_{i})$

factors of $S_{G}(N)$ and the choice of $M’$ , the second by induction, and
the third and fourth by properties of the function $LL_{p}$ .
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Proof. Let $e\in Z(kG)$ be the central idempotent with $B=kGe$ . By Osima’s
theorem and Brauer reciprocity it follows that $e\in k_{0}G$ (see [12, Theorem
III.2.9]). Hence $B=B_{0}\otimes_{k_{0}}k$ with $B_{0}:=k_{0}Ge$ . Also, by [6, Corollary 9.23],
every $B$-module is realizable over $k_{0}$ and hence $k_{0}$ is a splitting field for $B_{0}$ .

We conclude this section with an example.

Example 5.3 (Unipotent blocks of $GL_{n}(q)$ ). Let $d\in \mathrm{N}$ .
(1) For $0\neq n\in \mathrm{N}$ let $B_{n,d}$ denote the set of unipotent blocks of $kGL_{n}(q)$

of defect $d$ , where $q$ runs through the prime $\mathrm{p}^{-}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}\mathrm{s}$ not divisible by $p$ . Then
Assumption (a) of Proposition 5.1 is trivially satisfied. By results of Dipper
and James [3] on the decomposition numbers of the general linear groups, (b)
is also satisfied. All unipotent characters of $GL_{n}(q)$ are rational valued. The
same is true for the irreducible Brauer characters of the unipotent blocks.
By Proposition 5.2, Assumption (c) is satisfied with $k_{0}=\mathrm{F}_{p}$ .

(2) Next, fix a prime power $q$ not divisible by $p$ . The results of Jost [7,
Theorem 6.2] imply that there is a bound $N$ , depending only on $d$ and $p$ , but
not on $q$ , such that every unipotent block of defect $d$ of $kGL_{m}(q)$ for some
$0\neq m\in \mathrm{N}$ is Morita equivalent to a unipotent block of the same defect of
$kGL_{n}(q)$ for some $n\leq N$ .

(3) By first using (2) and then applying (1) for $1\leq n\leq N$ , it follows that
there are only finitely many Morita equivalence classes of unipotent blocks
of defect $d$ among the unipotent blocks of $kGL_{n}(q)$ , where $n$ runs through
the positive integers and $q$ through the prime powers not divisible by $p$ .
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