Title

YANG-MILLS THEORY IN EINSTEIN-WEYL GEOMETRY AND AFFINE GEOMETRY (Lie Groups, Geometric Structures and Differential Equations : One Hundred Years after Sophus Lie)

Author(s)

Urakawa, Hajime

Citation

数理解析研究所講究録 (2000), 1150: 82-92

Issue Date

2000-04

URL

http://hdl.handle.net/2433/64055

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
YANG-MILLS THEORY IN EINSTEIN-WEYL GEOMETRY AND AFFINE GEOMETRY

Hajime Urakawa

Keywords: Yang-Mills connection, conjugate connection, Einstein-Weyl structure, affine immersion

Mathematics Subject Classification (1991): 53 C 07, 53 C 15, 53 C 42

§1. Introduction.

This is an expository paper which explains our recent work on Yang-Mills theory, Weyl geometry, and affine differential geometry, based on [U1], [U2], [U3], [U4], [IFU], [DIU].

Yang-Mills theory and the other variational theory as Seiberg-Witten theory have been developed greatly and influenced to topology and physics, especially in the case of 4-dimensional manifolds. The aim of this paper is to see relationships between Yang-Mills theory and differential geometry, and to give a new insight on Yang-Mills theory, and apply it to the theory of Weyl geometry and affine differential geometry.

2.1. Yang-Mills theory appeared in differential geometry as Riemannian manifolds with harmonic curvature (cf. [Bo], [Be, p. 443]). This means that Riemannian manifolds (M,g) of which curvature tensor R of the Levi-Civita connection ∇ satisfies $\delta R = 0$, i.e., ∇ is a Yang-Mills connection, taking $E = TM$, the tangent bundle of M, and $h = g$ as in §4. For recent works, see [De1], [De2], [O], [KN], [Um].

2.2. In this subsection, we see the relationship between Yang-Mills theory and Kähler geometry. In 1985, Donaldson showed a stable holomorphic vector bundle over a projective surface admits a unique hermitian Yang-Mills connection (cf. [Do]). Kobayashi formulated this theorem for a holomorphic vector bundle E over a compact Kähler manifold (M,g) with a hermitian metric h as follows (cf. [Ko]). A connection D of (E,h) is hermitian if it satisfies that

(i) $D_X s = \overline{\partial}_X s, \quad X \in \Gamma(T^{0,1}M), \ s \in \Gamma(E),$
(ii) \(Xh(s, t) = h(D_X s, t) + h(s, Dx t), \quad X \in \Gamma(T^CM), s, t \in \Gamma(E), \)
where \(\overline{\partial} \) is the holomorphic structure of \(E \), \(T^CM \) is the complexification of \(TM \) which decomposed into \(T^CM = T^{1,0}M \oplus T^{0,1}M \), \(\overline{X} \) is the complex conjugate of \(X \in T^CM \), and \(\Gamma(E) \) is the space of smooth sections of \(E \). Then the curvature tensor \(R^D \) belongs to the space \(A^{1,1}(\operatorname{End}(E)) \) of 2-forms on \(M \) with values in \(\operatorname{End}(E) \) of type \((1,1)\). We can define the trace \(\Lambda R^D \) of \(R^D \) naturally by

\[
\sqrt{-1} \Lambda R^D = \sum_{i=1}^{n} R^D(e_i, \overline{e_i}),
\]
where \(\{e_i\}_{i=1}^{n} \) is a basis of \(T^{1,0}M \) satisfying \(g(e_i, \overline{e_j}) = \delta_{ij} \). Kobayashi defined for a hermitian connection \(D \), to be Einstein-Hermitian connection by

\[
(2.1) \quad \sqrt{-1} \Lambda R^D = c \operatorname{Id},
\]
for some constant \(c \), where \(\operatorname{Id} \) is the identity operator of \(\operatorname{End}(E) \), and showed that \(D \) is a Yang-Mills connection of \((E, h) \) if \(D \) is Einstein-Hermitian (cf. [Ko]). Furthermore, it holds (cf. [Ko], [UY], and see also [Su]) that

Theorem 2.2. Let \(E \) be a holomorphic vector bundle with a hermitian metric \(h \) over a compact Kähler manifold \((M, g) \). Then there exists a unique Einstein-Hermitian connection \(D \) if and only if \(E \) is stable in the sense of algebraic geometry.

2.3. In the case of odd dimensional manifolds, one can also formulate a similar theory. Let \(M \) be a smooth manifold of dimension \(2n+1 \). \(M \) is called to be a CR manifold if there exists an \(n \)-dimensional subbundle \(S \) of \(T^CM \) satisfying that

(i) \(S \cap \overline{S} = \{0\} \), and (ii) \([X,Y] \in \Gamma(S) \) for all \(X, Y \in \Gamma(S) \).

Then there exist a subbundle \(P \) of \(TM \) and a bundle map \(I \) of \(P \) satisfying that \(P^C = S \oplus \overline{S}, I^2 = -\operatorname{Id} \) and \(S = \{X - \sqrt{-1}IX; X \in P\} \). We assume a contact 1-form \(\theta \) on \(M \) whose anihilater in \(T_2M \) coincides with \(P_2 \) for all \(x \in M \), and \(\omega = -d\theta \) is non-degenerate everywhere on \(M \). There exists a unique vector field \(\xi \) on \(M \) satisfying \(\theta(\xi) = 1, \omega(\xi, \bullet) = 0 \), and \([\xi, X] \in \Gamma(P) \) for all \(X \in \Gamma(P) \). Then \(T_2M = \mathbb{R}\xi \oplus P_2, x \in M \). A contact CR manifold \((M, \theta) \) is strongly pseudoconvex if the Levi form \(L \) defined by \(L(X,Y) = \omega(IX,Y), X, Y \in P_2, x \in M \), is positive definite everywhere on \(M \). Putting \(L(\xi, \bullet) = 0 \), we can define a Riemannian metric \(g \) by

\[
g(X,Y) = L(X,Y) + \theta(X)\theta(Y), \quad X, Y \in T_2M, x \in M.
\]

In 1975, Tanaka (cf. [T]) introduced the notion of holomorphic vector bundle over this strongly pseudoconver CR manifold \((M, g) \). A complex vector bundle \(E \) over \(M \) is holomorphic if there exists a differential operator \(\overline{\partial} \) of \(E \) satisfying that

(i) \(\overline{X}(fs) = \overline{X}f s + f \overline{X}s, \quad f \in C^\infty(M), \overline{X} \in \Gamma(S) \),

(ii) \([\overline{X}, \overline{Y}]s = \overline{X}(\overline{Y}s) - \overline{Y}(\overline{X}s), \quad \overline{X}, \overline{Y} \in \Gamma(S) \).

Then one can define by the same way, the notion of hermitian connection as the case of Kähler manifolds. Furthermore, Tanaka (cf. [T]) showed
Theorem 2.3. There exists a unique hermitian connection (called Tanaka's connection) D on a holomorphic vector bundle E with a hermitian metric h over a compact strongly pseudoconvex CR manifold (M, g) satisfying that

$$\sqrt{-1} AR^D = \sum_{i=1}^{n} R^D(e_i, \overline{e_i}) = 0,$$

where $\{e_i\}_{i=1}^{n}$ is a basis of S_x satisfying $g(e_i, \overline{e_j}) = \delta_{ij} (x \in M)$.

Then we obtain (cf. [U1])

Theorem 2.4. Assume that (E, h) is as in Theorem 2.3 and D is a hermitian connection whose curvature R^D is of $(1, 1)$ type, i.e., $R^D \in \Gamma(S^* \otimes \overline{S^*} \otimes \text{End}(E))$. Then D is a Yang-Mills connection if and only if D is Tanaka's connection.

The moduli space theory of Yang-Mills connections over compact strongly pseudoconvex CR manifolds (M, g) can be obtained as in the case of Kähler manifolds (cf. [Ko], [U1]).

§3 Affine differential geometry and Weyl geometry.

Weyl geometry was formulated by H. Weyl to initiate the gauge theory, and affine differential geometry was initiated by W. Blaschke, and recently they have been developed extensively (cf. [NS]). Due to Rao and Amari (cf. [R], [A]), it turns out that the affine differential geometry is closely related to statistics.

Following [NS], we first explain affine differential geometry. Let $f : M^n \to \mathbb{R}^{n+1}$ be an immersion, and take a transversal vector field ξ on M, i.e.,

$$T_{f(x)} \mathbb{R}^{n+1} = f_* T_x M + R \xi_x, \quad x \in M.$$

We denote by D_0 the standard affine connection on \mathbb{R}^{n+1}. Then we have

$$(D_0)_{X} f_* Y = f_*(D_X Y) + h(X, Y) \xi, \quad X, Y \in \Gamma(TM),$$

where D is a torsion free affine connection on M and h is a symmetric bilinear form on M, called the affine second fundamental form. We always assume that h is non-degenerate. An immersion $f : M \to \mathbb{R}^{n+1}$ is called centro-affine if the transversal vector field ξ is given by $\xi_x = f(x), \ x \in M$.

Recently, Shima showed (cf. [Sh]) that

Theorem 3.1. Let $M = G/K$ be a homogeneous space. Then M admits a G-invariant projectively flat affine connection D if and only if there exists an equivariant centro-affine immersion $f : M^n \to \mathbb{R}^{n+1}$.

Here D is called to be projectively flat if in a neighborhood of each point of M, D is projectively equivalent to an affine connection whose curvature tensor vanishes. Then we classified all Riemannian symmetric spaces admitting invariant projectively flat affine connections (cf. [U4]).
Theorem 3.2. Let $M = G/K$ be a Riemannian symmetric space. Then M admits an invariant projectively flat affine connection if and only if M is one of the following:

1. $S^n = SO(n+1)/SO(n)$, $n \geq 2$,
2. $H^n = SO_0(n,1)/SO(n)$, $n \geq 2$,
3. $SL(n,\mathbb{R})/SO(n)$, $n \geq 3$,
4. $SL(n,\mathbb{C})/SU(n)$, $n \geq 2$,
5. $SL(n,\mathbb{H})/Sp(n) = SU^*(2n)/Sp(n)$, $n \geq 3$,

We also obtained (cf. [U4])

Theorem 3.3. Let G be a real simple Lie group. Then G admits a left invariant projectively flat affine connection if and only if the Lie algebra \mathfrak{g} is one of the following:

1. $\mathfrak{o}(3)$,
2. $\mathfrak{sl}(n+1,\mathbb{R})$, $n \geq 1$,
3. $\mathfrak{su}^*(2n)$, $n \geq 2$,
4. $\mathfrak{su}(r,s)$ ($r+s$: even \geq 4), $\mathfrak{o}(3,4)$, $\mathfrak{o}(1,9)$, $\mathfrak{o}(5,5)$, $\mathfrak{o}(3,11)$, $\mathfrak{o}(7,7)$.

Remark 3.4. In the cases (a) ~ (c), G admits a left invariant projectively flat affine connection. We do not know whether G admits the one for the case (d).

Let us recall for a pair (D, g) of a torsion free affine connection D and a Riemannian metric g to be a Weyl structure if $D_X g = \omega(X) g$ for all $X \in \Gamma(TM)$, for some 1-form ω on M. A Weyl structure (D, g) is called to be Einstein-Weyl if the symmetrization of Ricci tensor of D coincides with g up to a multiple by a C^∞ function on M. It is known that

Theorem 3.5. (cf. [PPS]) Let M be a 4 dimensional closed manifold, and (D, g) be a Weyl structure with $Dg = \omega \otimes g$ for some 1-form ω on M. Then the following two conditions are equivalent:

1. The connection D attains the minimum, $4\pi^2 |p_1(TM)|$, of the functional $(D, g) \mapsto \frac{1}{2} \int_M \|R^D\|^2 v_g$ among the set of Weyl structures.
2. (D, g) is Einstein-Weyl and $d\omega = 0$.

4.1. Let us recall the framework of Yang-Mills theory which has been introduced by physicists. Let E be a vector bundle with an inner product h over a Riemannian manifold (M, g). Let C_E^0 be the set of all connections D of E satisfying the metric condition, that is,

\[Xh(s,t) = h(D_Xs,t) + h(s,D_Xt), \quad s, t \in \Gamma(E), \quad X \in \Gamma(TM). \]

We consider the Yang-Mills functional \mathcal{YM} on C_E^0, which is given as usually (cf. [BL]) by

\[\mathcal{YM}(D) = \frac{1}{2} \int_M \|R^D\|^2 v_g, \]
where R^D is the curvature of D. Then a connection $D \in C^0_E$ is a Yang-Mills connection, if for all smooth deformation D_t of D in C^0_E with $D_0 = D$,

\[(4.3) \quad \left. \frac{d}{dt} \right|_{t=0} \mathcal{YM}(D_t) = 0.\]

It is well known (cf. [BL]) that the left hand side of (4.3) is calculated as

\[
\left. \frac{d}{dt} \right|_{t=0} \mathcal{YM}(D_t) = \int_M \langle d^D \beta, R^D \rangle v_g = \int_M \langle \beta, \delta^D R^D \rangle v_g,
\]

where $\beta = \left. \frac{d}{dt} \right|_{t=0} D_t \in A^1(\text{End}(E))$.

Therefore, D_t is a Yang-Mills connection if and only if

\[(4.4) \quad \delta^D R^D = 0.\]

Here, $A^p(\text{End}(E))$ is the space of p forms on M with valued in the vector bundle $\text{End}(E)$ of endomorphisms of E, d^D is the exterior differentiation which is given by

\[(4.5) \quad (d^D \psi)(X_1, \ldots, X_{p+1}) = \sum_{k=1}^{p+1} (-1)^k (D_{X_k} \psi)(X_1, \ldots, X_{k}, \ldots, X_{p+1}),\]

and δ^D is the formal adjoint of d^D, i.e., for $\psi \in A^p(\text{End}(E))$ and $\varphi \in A^{p+1}(\text{End}(E))$,

\[(\delta^D \varphi, \psi) = (\varphi, d^D \psi).\]

It holds that

\[(\delta^D \varphi)(X_1, \ldots, X_p) = - \sum_{j=1}^{n} (D_{e_j} \varphi)(e_j, X_1, \ldots, X_p),\]

\[\delta^D \varphi = (-1)^{p+1} (-1)^{p} d^D \ast \varphi = -(-1)^{np} \ast d^D \ast \varphi.\]

In particular,

\[\delta^D R^D(X) = \ast^{-1} d^D \ast R^D(X) = - \sum_{j=1}^{n} (D_{e_j} R^D)(e_j, X), \quad X \in \Gamma(TM).\]

Notice here that these calculations are valid only for connections $D \in C^0_E$.

The following due to Atiyah, Hitchin and Singer is well known:

Theorem 4.6. Let (M, g) be a four dimensional closed Riemannian manifold, and ∇, the Levi-Civita connection on $E = TM$. Then the following three conditions are equivalent:

1. ∇ is a minimizer of the functional \mathcal{YM}, i.e., $\mathcal{YM}(\nabla) = 4\pi^2 |p_1(TM)|$, where $p_1(TM)$ is the first Pontryagin number of the tangent bundle TM.
2. The Riemannian metric g is Einstein.
3. The Levi-Civita connection ∇ of g is (anti-)self-dual, i.e., $\ast R^\nabla = \pm R^\nabla$.

4.2. Comparing Theorems 3.5 and 4.6, the condition (3) in Theorem 4.6 is missing in Theorem 3.5. In order to fill this lack and apply Yang-Mills theory to affine geometry, we have to relax the metric condition in the frame work of Yang-Mills theory. To overcome the above difficulty, we consider the conjugate connection.
Definition 4.7. Let F be a vector bundle over a Riemannian manifold (M,g) admitting the inner product h and D, a connection of F. The conjugate connection (or the dual connection) \overline{D} for D is the unique connection satisfying the condition (cf. [A] or [DNV]):

$$Xh(s,t) = h(D_Xs,t) + h(s,\overline{D}_Xt), \ s, t \in \Gamma(F), \ X \in \Gamma(TM).$$

The connection D on F together with the Levi-Civita connection ∇ of g in $\wedge^p T^*M$ induces a tensor product connection in $\wedge^p T^*M \otimes F$ which we denote by D. Using this connection, we define the exterior differentiation $d^D : A^p(F) \to A^{p+1}(F)$ as usual on the space $A^p(F) = \Gamma(\wedge^p T^*M \otimes F)$ of differential p-forms on M with values in F by the same way as (4.5).

We define an inner product $<,>$ in $\wedge^p T^*_xM \otimes F_x$ by

$$<\psi, \varphi> = \sum_{i_1 < \cdots < i_p} h(\psi(e_{i_1}, \cdots, e_{i_p}), \varphi(e_{i_1}, \cdots, e_{i_p})),
$$

where $\{e_1, \ldots, e_n\}$ is an orthonormal basis of T_xM with respect to g_x. Integrating this pointwise inner product over M with respect to the volume element v_g of g gives a global inner product $(,)$ on $A^p(F)$. Then we can again define the operator $\delta^D; A^{p+1}(F) \to A^p(F)$ to be the formal adjoint of the operator d^D. Then we have

Proposition 4.9. For $\varphi \in A^{p+1}(F)$ and $X_i \in \Gamma(TM)$, $i = 1, \ldots, p$,

$$<\psi, \varphi> = \sum_{i_1 < \cdots < i_p} h(\psi(e_{i_1}, \cdots, e_{i_p}), \varphi(e_{i_1}, \cdots, e_{i_p})),
$$

where \overline{D} is the conjugate connection of D and $*; A^q(F) \to A^{n-q}(F)$ is the star operator with respect to g.

Proof. Let $\{\theta^i\}_{i=1}^n$ be the dual basis to an orthonormal local frame field $\{e_i\}_{i=1}^n$ on M with respect to g. Then each $\xi \in A^p(F)$ can be written as $\xi = \sum_{I} \theta^I \otimes u_I$, where $\theta^I = \theta^i_1 \wedge \cdots \wedge \theta^i_p$ with $u_I = u_{i_1 \cdots i_p} \in \Gamma(F)$ and also $\eta \in A^{p+1}(F)$ can be written as $\eta = \sum_{J} \theta^J \otimes v_J$, where $\theta^J = \theta^j_1 \wedge \cdots \wedge \theta^j_{p+1}$ with $v_J \in \Gamma(F)$. Let us define $<\xi \wedge \eta> = \sum_{I,J} h(u_I, v_J) \theta^I \wedge \theta^J \in A^{n-1}(M)$, where $h(u_I, v_J)$ is a function defined locally on M. Then we have, by the definition of \overline{D},

$$d(h(u_I, v_J)) = h(Du_I, v_J) + h(u_I, \overline{D}v_J).$$

Therefore, we have

$$d <\xi \wedge \eta> = <d^D \xi \wedge \eta> + (-1)^p <(\xi \wedge * \eta)*, \eta>.$$

Integrating this over M and δ^D being (4.11), we have

$$0 = \int_M d <\xi \wedge \eta> v_g = (d^D \xi, \eta) - (\xi, \delta^D \eta).$$
Calculating (4.11), we have (4.10).

Let $F = \text{End}(E)$ be the endomorphism bundle of a given vector bundle E with the inner product h. The connection D of E induces a natural connection on $\text{End}(E)$ by

$$(\nabla_X \varphi)(\sigma) = \nabla_X (\varphi(\sigma)) - \varphi(\nabla_X \sigma)$$

for $X \in \Gamma(TM)$, $\varphi \in \Gamma(\text{End}(E))$ and $\sigma \in \Gamma(E)$. Furthermore, the inner product h on E can be extended to $\text{End}(E)$ by $h(\psi, \phi) = \sum_{i=1}^{r} h(\psi(\sigma_i), \phi(\sigma_i))$, for two sections ψ and ϕ of $\text{End}(E)$ and an orthonormal basis $\{\sigma_i\}_{i=1}^{r}$ of E_x with respect to h_x, $x \in M$, where r is rank of E.

We define the connections D and \overline{D} for $\psi \in \Gamma(\text{End}(E))$, by

$$(D_X \psi)(Y) = D_X (\psi(Y)) - \psi(D_X Y), \quad (\overline{D}_X \psi)(Y) = \overline{D}_X (\psi(Y)) - \psi(\overline{D}_X Y).$$

Then the connection \overline{D} is conjugate to D, i.e.,

$$Xh(\psi, \varphi) = h(D_X \psi, \varphi) + h(\psi, \overline{D}_X \varphi), \quad \psi, \varphi \in \Gamma(\text{End}(E)), \quad X \in \Gamma(TM).$$

4.3 Now we define the Yang-Mills functional on the space C_E of all connections of E by

$$(4.12) \quad \mathcal{YM}(D) = \frac{1}{2} \int_M \|R^D\|^2 v_g,$$

where $\|\|$ is the pointwise norm induced from the above pointwise inner product $\langle \cdot, \cdot \rangle$ of the bundle $\wedge^2 TM \otimes \text{End}(E)$ over M, and $R^D \in A^2(\text{End}(E))$ is the curvature tensor of D. For a fixed $D \in C_E$ and a smooth one-parameter family of connections D^t, $-\epsilon < t < \epsilon$, such that $D^0 = D$, we write $D^t = D + A^t$, where $A^t \in A^2(\text{End}(E))$ for $|t| < \epsilon$ and $A^0 = 0$. Then the curvature R^{D^t} is given by

$$(4.13) \quad R^{D^t}(X, Y) = R^D(X, Y) + d^D A^t(X, Y) + \frac{1}{2} [A^t \wedge A^t](X, Y),$$

where $[\psi \wedge \phi](X, Y) := [\psi(X), \phi(Y)] - [\psi(Y), \phi(X)]$.

Theorem 4.14. The first variation of the Yang-Mills functional is given by

$$\frac{d}{dt} \bigg|_{t=0} \mathcal{YM}(D^t) = \int_M <d^D \beta, R^D> v_g = \int_M <\beta, \delta^D R^D> v_g,$$

where $\beta = \frac{d}{dt} \bigg|_{t=0} D^t = \frac{d}{dt} \bigg|_{t=0} A^t \in A^1(\text{End}(E))$.

Consequently, D is a Yang-Mills connection if and only if

$$(4.15) \quad \delta^D R^D = 0.$$
In the case of a non-compact or semi-Riemannian manifold \((M, g)\), we take any relatively compact open domain \(U\) in \(M\), and consider the functional

\[
\mathcal{Y}_M(U)(D) = \frac{1}{2} \int_U \|R^D\|^2 v_g.
\]

For a fixed \(D \in C_E\) and smooth one-parameter family of connections \(D^t, -\epsilon < t < \epsilon\), such that \(D^0 = D\), and \(D^t = D + A^t\), where \(A^t \in A^1(\text{End}(E))\) have all their support in \(U\) for \(|t| < \epsilon\) and \(A^0 = 0\),

\[
\left. \frac{d}{dt} \right|_{t=0} \mathcal{Y}_M(U)(D^t) = \int_U <d^D\beta, R^D > v_g = \int_M <\beta, \delta^D R^D > v_g,
\]

where \(\beta = \frac{d}{dt}|_{t=0}A^t \in A^1(\text{End}(E))\) with support in \(U\).

Therefore, \(D\) is a Yang-Mills connection if and only if \(\delta^D R^D = 0\) everywhere on \(M\).

Since the second Bianchi identity for \(D\), \(d^D R^D = 0\), (4.15) is equivalent to

\[
\Delta^D R^D = 0,
\]

where the Laplacian \(\Delta^D\) on \(A^2(\text{End}(E))\) is given by \(\Delta^D = d^D \delta^D + \delta^D d^D\).

§ 5. Four dimensional manifolds.

For four dimensional closed Riemannian manifold \((M, g)\), we define for a connection \(D\) of \(E\) to be (anti-)self-dual if \(*R^D = \pm R^{\overline{D}}\), where \(*\) is the Hodge star operator and \(R^{\overline{D}}\) is the curvature of the conjugate connection \(\overline{D}\).

Note that the (anti-)self-dual connection \(D\) is a Yang-Mills connection, because

\[
\delta^D R^D = *^{-1}d^{\overline{D}} * D = \pm *^{-1} d^{\overline{D}} R^{\overline{D}} = 0,
\]

since the second Bianchi identity for \(\overline{D}\), \(d^{\overline{D}} R^{\overline{D}} = 0\).

For a torsion free affine connection \(D\), we consider the affine connection \(\hat{D}\) defined by \(\hat{D} = \frac{1}{2}(D + \overline{D})\). Then we have (cf. [DIU])

Proposition 5.1. Assume that \(\dim M = 4\). Let \((D, g)\) be a Weyl structure with \(Dg = \omega \otimes g\) for some 1-form \(\omega\). Then the following are equivalent:

1. \(*R^D = \pm R^{\overline{D}}\),
2. \(*R^D = \pm R^{\overline{D}}\) and \(*d\omega = 0\),
3. \(*R^D = \pm R^{\overline{D}}\) and \(d\omega = 0\),

where the sign \(\pm\) corresponds to each other, respectively.

We obtain (cf. [DIU])

Theorem 5.2. Let \(M\) be a 4 dimensional closed manifold, and \((D, g)\) be a Weyl structure with \(Dg = \omega \otimes g\) for some 1-form \(\omega\) on \(M\). Then the following four conditions are equivalent:

1. \(\mathcal{Y}_M(D) = 4\pi^2 |p_1(TM)|\),
2. \(\mathcal{Y}_M(\hat{D}) = 4\pi^2 |p_1(TM)|\) and \(d\omega = 0\),
3. \(*R^D = \pm R^{\overline{D}}\),
4. \(\hat{D}\) is (anti-)self-dual and \(d\omega = 0\).

Furthermore, our Yang-Mills theory can be applied to affine differential geometry. It is known (cf. [NS]) that

Theorem 6.1. Let \(f : M \to \mathbb{R}^{n+1} \) be a nondegenerate affine hypersurface \((n \geq 2)\). Then we can choose a transversal vector field \(\xi \) on \(M \) for \(D, h \) and \(S \) satisfying the following seven conditions:

1. (Gauss) \(R^{D}(X, Y)Z = h(Y, Z)SX - h(X, Z)SY \),
2. (Codazzi for \(h \)) \((D_{X}h)(Y, Z) = (D_{Y}h)(X, Z) \),
3. (Codazzi for \(S \)) \((D_{X}S)(Y) = (D_{Y}S)(X) \),
4. (Ricci) \(h(SX, Y) = h(X, SY) \),
5. (equiaffine condition) \(D\theta = 0 \), i.e., \(\tau = 0 \),
6. (volume condition) \(\theta = \omega_{h} \), and
7. (apolarity condition) \(D\omega_{h} = 0 \).

Here \(\theta \) is the induced volume form on \(M \) by the immersion \(f \), \(\xi \) and the standard volume form on \(\mathbb{R}^{n+1} \), and \(\omega_{h} \) is the volume form on \(M \) corresponding to \(h \).

Proposition 6.2. ([NS]) The apolarity condition (7) in Theorem 6.1 is equivalent to the following condition (7'):

(7') For all \(X \in T_{x}M \), the trace \(\text{Tr}_{h}(D_{X}h) \) vanishes.

Here \(\text{Tr}_{h}(D_{X}h) \) is defined by

\[
\text{Tr}_{h}(D_{X}h) := \text{Trace}\{(Y, Z) \mapsto (D_{X}h)(Y, Z)\} = \sum_{j=1}^{n} \epsilon_{j}(D_{X}h)(e_{j}, e_{j}),
\]

where \(g(e_{i}, e_{j}) = \epsilon_{i}\delta_{ij} \), and \(\epsilon_{ij} = \pm 1 \).

Now our theorem is (cf. [DIU])

Theorem 6.3. Let \(f : M \to \mathbb{R}^{n+1} \) be a non-degenerate affine immersion, \(D \), the induced connection on \(M \) from the standard connection of \(\mathbb{R}^{n+1} \) via \(f \), and \(S \), the affine shape operator. Assume that a transversal vector field \(\xi \) is chosen such as for \(D, h \) and \(S \) satisfy all the conditions in Theorem 6.1. Then \(D \) is a Yang-Mills connection with respect to \(h \) if and only if \(\overline{D}_{X}(SY) = S(D_{X}Y) \) for \(X, Y \in \Gamma(TM) \). Here \(\overline{D} \) is the conjugate connection of \(D \) with respect to \(h \).

As an application, we have (cf. [DIU])

Corollary 6.4. Let \(f : M \to \mathbb{R}^{n+1} \) be a non-degenerate affine immersion and \(\xi \) satisfy as in Theorem 6.1. Furthermore, assume that \(S = \lambda \text{Id} \) for some non-zero constant \(\lambda \). Then \(D \) is a Yang-Mills connection with respect to \(h \) if and only if \(f(M) \) is a quadratic hypersurface of \(\mathbb{R}^{n+1} \).
REFERENCES

Mathematics Laboratories, Graduate School of Information Sciences, Tohoku University, Katahira2-1-1, Sendai, 980-8577, Japan.
(e-mail: urakawa@math.is.tohoku.ac.jp)