On Primitive Roots Conjecture for Certain Two-Dimensional Tori

04/24/00

Yen-Mei J. Chen and Jing Yu

Dept. of Math., Tamkang University, Tamshui, Taipei, Taiwan Institute of Math., Academia Sinica, Nankang, Taipei, Taiwan and National Center for Theoretical Sciences, Hsinchu, Taiwan

E-mail: ymjchen@mail.tku.edu.tw

E-mail: yu@math.sinica.edu.tw

We prove an analogue of Artin's primitive roots conjecture for 2-dimensional tori $\operatorname{Res}_{K/\mathbb Q} \mathbb G_m$ under Generalized Riemann Hypothesis, where K are imaginary quadratic fields. As a consequence, we are able to derive a precise density formula for a given non-supersingular elliptic curves over a finite field which tells how often the Galois extension of the base field obtained by adjoining all coordinates of ℓ -torsion has degree $\ell^2 - 1$ as ℓ running through rational primes. It turns out the density in question is essentially independent of the curves, even independent of the characteristic p if $p \not\equiv 1 \pmod 4$.

§1.

Given an elliptic curve $E_{/\mathbb{F}_p}$, we are interested in the Galois representations on ℓ -torsion $E[\ell] \subset E(\mathbb{F}_p)$ for various rational prime numbers ℓ . Let $\mathbb{F}_p(E[\ell])$ be the Galois extension of \mathbb{F}_p obtained by adjoining all coordinates of points in $E[\ell]$. A basic question is: how often the degree $[\mathbb{F}_p(E[\ell]) : \mathbb{F}_p]$ can be the largest possible, in other words, is equal to $\ell^2 - 1$?

If the given curve $E_{/\mathbb{F}_p}$ is supersingular, one can deduce easily that for almost all ℓ , the degree of $\mathbb{F}_p(E[\ell])/\mathbb{F}_p$ is $\leq 2(\ell-1)$. Thus for our purpose it suffices to consider non-supersingular elliptic curves. We study the following set associated to a given non-supersingular $E_{/\mathbb{F}_p}$:

$$M_E = \{\ell \mid \ell \text{ prime}, \ [\mathbb{F}_p(E[\ell]) : \mathbb{F}_p] = \ell^2 - 1\}.$$

The result we obtain is that, under generalized Riemann Hypothesis (GRH), these sets M_E always have positive density. Furthermore the value of this density $den(M_E)$ can be given precisely in terms of a universal constant C_2 :

$$C_2 = \frac{1}{4} \prod_{q \neq 2 \text{ prime}} \left(1 - \frac{2}{q(q-1)}\right) = 0.133776 \cdots,$$

If $p \not\equiv 1 \pmod{4}$, then always $\operatorname{den}(M_E) = C_2$. On the other hand, if $p \equiv 1 \pmod{4}$, then $\operatorname{den}(M_E) = (1 - \frac{2}{p(p-1)})^{-1}C_2$ unless in certain exceptional cases where $\operatorname{den}(M_E)$ are still equal to C_2 (c.f. Theorem 4.3).

Our approach is based on a variation of Artin's primitive roots problem for a family of two-dimensional tori over \mathbb{Q} . Let End_E denote the endomorphism ring of the elliptic curve E and let $\alpha \in \operatorname{End}_E$ be the Frobenius endomorphism. If E is not supersingular, $\mathbb{Z}[\alpha] \subset \operatorname{End}_E$ is identified with an order in an imaginary quadratic field $K = K_E$. Then $\mathbb{Z}[\alpha] \subset \mathcal{O}_K$, the ring of integers in K. The torus in question is the one obtained from $\mathbb{G}_{m/K}$ via restriction of scalars: $\mathbb{T} = \operatorname{Res}_{K/\mathbb{Q}} \mathbb{G}_{m/K}$. We have $\alpha \in K^* = \mathbb{T}(\mathbb{Q})$ non-torsion and what we are searching are the rational primes ℓ which stay prime in K and α modulo ℓ is primitive, i.e. α modulo ℓ is a generator of the cyclic group $(\mathcal{O}_K/\ell\mathcal{O}_K)^*$.

§2.

Let K be a fixed imaginary quadratic number field, with ring of integers $\mathcal{O}_K \subset K$. We use τ to denote complex conjugation and ℓ always stands for a rational prime number which stay prime in K. For $\alpha \neq 0 \in \mathcal{O}_K$, $N(\alpha) = \alpha \alpha^{\tau}$ denotes its absolute norm, $\bar{\alpha}$ denotes the coset in $(\mathcal{O}_K/\ell\mathcal{O}_K)^*$ containing α if $\operatorname{ord}_{\ell}(\alpha) = 0 = \operatorname{ord}_{\ell}(1/\alpha)$, and $o_{\ell}(\alpha)$ denotes the order of $\bar{\alpha}$ inside $(\mathcal{O}_K/\ell\mathcal{O}_K)^*$. The set of all rational prime numbers is denoted by \mathbb{P} . Given $\alpha \in \mathcal{O}_K^*$, we set $u = u(\alpha) = \alpha^{\tau}/\alpha$. Our starting point is:

Proposition 2.1. Let $\ell \in \mathbb{P}$ be a prime which is inert(stays prime) in K and $\ell \nmid \alpha$. Then $o_{\ell}(\alpha) = \ell^2 - 1$ if and only if $o_{\ell}(N(\alpha)) = \ell - 1$ and $o_{\ell}(u) = \ell + 1$.

Consider

$$M_{\alpha} = \{ \ell \in \mathbb{P} : \ell \text{ is inert in } K, \ \ell \nmid \alpha, \ o_{\ell}(\alpha) = \ell^2 - 1 \}$$
$$= \{ \ell \in \mathbb{P} : \ell \text{ is inert in } K, \ \bar{\alpha} \text{ generate } \mathbb{T}(\mathbb{F}_{\ell}) \}.$$

Notations: Let q, q' denote elements of \mathbb{P} with q' odd. We set $F_1 = K, E_1 = \mathbb{Q}$. $\mu_q = \text{the group of } q\text{-th roots of unity.}$ $E_q = \mathbb{Q}(\mu_q, \sqrt[q]{N(\alpha)}).$ $E_m = \prod_{q|m} E_q$, for square free m. $F_{q'} = K(\mu_{q'}, \sqrt[q]{u}).$ $F_n = \prod_{q'|n} F_{q'}$, for square free odd n. $L_{mn} = E_m F_n$ for m, n square free and n is odd. $G_{mn} = \text{Gal}(L_{mn}/\mathbb{Q}).$ $d_{mn} = \#G_{mn}.$ $C_{mn} = \{\sigma \in G_{mn} : \sigma|_K = \tau, \sigma|_{E_m} = \text{id}, \sigma|_{\mathbb{Q}(\mu_n)} = \tau, \text{ and } \sigma^2 = \text{id}\}.$

 $c_{nn} = \#C_{mn}.$

 $(\ell, E/\mathbb{Q})$ denotes Artin symbol, where E/\mathbb{Q} is finite Galois extension.

The following Proposition is crucial:

Proposition 2.2. Let ℓ be a rational prime which is inert in K/\mathbb{Q} and $\ell \nmid \alpha$. Then $\ell \in M_{\alpha}$ if and only if $(\ell, L_{q1}/\mathbb{Q}) \nsubseteq C_{q1}$ for all prime q and $(\ell, L_{1q'}/\mathbb{Q}) \nsubseteq C_{1q'}$ for all odd prime q'.

A detailed study of the Galois family L_{mn} , together with computation of c_{mn} , is needed. We have the following technical lemmas.

Lemma 2.3. Let m, n be square-free positive integers with n odd. Let s be the largest integer with the property that $N(\alpha) \in (\mathbb{Q}^*)^s$ (then $(\alpha) = \mathfrak{a}^s$ for some ideal \mathfrak{a} in \mathcal{O}_K). Let $m_1 = m/\gcd(s, m)$ and $n_2 = n/\gcd(\frac{s}{o}, n)$ where o is the order of \mathfrak{a} in the ideal class group of K. Suppose $\gcd(\alpha, \alpha^{\tau}) = 1$ and $\gcd(s, 6) = 1$. Then

(a)

$$[E_m:\mathbb{Q}] = \frac{m_1\phi(m)}{[k_m\cap\mathbb{Q}(\mu_m):\mathbb{Q}]},$$

where $k_m = \mathbb{Q}$ (resp. $\mathbb{Q}(\sqrt{N(\alpha)})$) if $2 \nmid m$ (resp. $2 \mid m$). (b)

$$[F_n:\mathbb{Q}] = \begin{cases} \frac{2n_2\phi(n)}{3[K\cap\mathbb{Q}(\mu_n):\mathbb{Q}]} & \text{if } K = \mathbb{Q}(\sqrt{-3}), \ 3\mid n, \text{ and } u \in (K(\boldsymbol{\mu}_n)^*)^3, \\ \frac{2n_2\phi(n)}{[K\cap\mathbb{Q}(\mu_n):\mathbb{Q}]} & \text{othersiwe.} \end{cases}$$

Lemma 2.4. Let m, n be square-free positive integers with n odd and gcd(m,n)=1. Suppose further that α satisfies all the conditions in Lemma 2.3. If $K=\mathbb{Q}(\sqrt{-3})$, $3\mid n$ and $u\in (K(\mu_{mn})^*)^3-(K(\mu_n)^*)^3$, then $E_m\cap F_n=k_m(\mu_m)\cap K(\mu_n,\sqrt[3]{u})$ and

$$[E_m \cap F_n : \mathbb{Q}] = \frac{3[Kk_m \cap \mathbb{Q}(\boldsymbol{\mu}_{mn}) : \mathbb{Q}]}{[k_m \cap \mathbb{Q}(\boldsymbol{\mu}_m) : \mathbb{Q}][K \cap \mathbb{Q}(\boldsymbol{\mu}_n) : \mathbb{Q}]}.$$

Otherwise, $E_m \cap F_n = k_m(\mu_m) \cap K(\mu_n)$ and

$$[E_m \cap F_n : \mathbb{Q}] = \frac{[Kk_m \cap \mathbb{Q}(\boldsymbol{\mu}_{mn}) : \mathbb{Q}]}{[k_m \cap \mathbb{Q}(\boldsymbol{\mu}_m) : \mathbb{Q}][K \cap \mathbb{Q}(\boldsymbol{\mu}_n) : \mathbb{Q}]}.$$

Lemma 2.5. Let m, n be square-free positive integers with n odd. Suppose further that α satisfies all the conditions in Lemma 2.3. Then

$$c_{mn} = \begin{cases} 1 & \text{if } \gcd(m,n) = 1 \text{ and } E_m \cap F_n \text{ is totally real,} \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.6. Let m, n be square-free positive integers with n odd and gcd(m, n) = 1. Suppose further that α satisfies all the conditions in Lemma 2.3. Then

$$d_{mn} = \begin{cases} \frac{2m_1n_2\phi(mn)}{3[Kk_m \cap \mathbb{Q}(\boldsymbol{\mu}_{mn}):\mathbb{Q}]} & \text{if } K = \mathbb{Q}(\sqrt{-3}), \ 3 \mid n, \ \text{and } u \in (K(\boldsymbol{\mu}_{mn})^*)^3, \\ \frac{2m_1n_2\phi(mn)}{[Kk_m \cap \mathbb{Q}(\boldsymbol{\mu}_{mn}):\mathbb{Q}]} & \text{othersiwe.} \end{cases}$$

§3.

The existence of density for M_{α} is contained in the following

Theorem 3.1. Given $\alpha \neq 0 \in \mathcal{O}_K$ with $\gcd(\alpha, \alpha^{\tau}) = 1$. Let s be the largest integer such that $N(\alpha) \in (\mathbb{Q}^*)^s$. Assume that $\gcd(s, 6) = 1$ and furthermore GRH holds. Then $\operatorname{den}(M_{\alpha})$ exists and is given by

$$\operatorname{den}(M_{\alpha}) = \sum_{m,n} \frac{\mu(m)\mu(n)c_{mn}}{d_{mn}},$$

where in the sum m, n runs through all square free positive integers, n is required to be odd.

The proof of the above Theorem is based on analytic method originated from Hooley [3], which uses effective Chebotarev Density Theorem and assumes GRH. For the detail of the proof, we refer to [2].

We are particularly interested in the case $N(\alpha) = p^s$, where p is a prime splitting in the imaginary quadratic field K. The case $K = \mathbb{Q}(\sqrt{-3}) = K(\mu_3)$ requires special attention. Suppose that $K = \mathbb{Q}(\sqrt{-3})$ and $\alpha \neq 0 \in \mathcal{O}_K$, $\gcd(\alpha, \alpha^\tau) = 1$, and $N(\alpha) = p^s$, with s an integer prime to 6. Then the principal ideal (α) is equal to $(\beta)^s$ for some primary prime of \mathcal{O}_K lying above p. There is an unique integer $\delta(\alpha)$ modulo 6 with $\alpha = \zeta_6^{\delta(\alpha)}\beta^s$. From the classical theory of cubic Gauss sums (c.f. [4], Chap. 9), one knows that $p\beta \in K(\mu_p)^{*3}$. Then it follows that for any square-free odd integer n, $u = \frac{\alpha^\tau}{\alpha} \in K(\mu_n)^{*3}$ if and only if $3 \mid \delta(\alpha)$ and $p \mid n$. We call an imaginary quadratic integer α exceptional if $\alpha \in K$, and $\alpha = \pm \beta^s$ with β primary prime. All other imaginary quadratic integers are called nonexceptional.

Let h denotes the class number of K. For any positive integer c, define $f(c) = \#\{q \in \mathbb{P} : q \mid c, q \text{ is odd.}\}$. Our main theorem is

Theorem 3.2. Assume GRH holds. Suppose $\alpha \neq 0 \in \mathcal{O}_K$, $\gcd(\alpha, \alpha^{\tau}) = 1$ and $N(\alpha) = p^s$, where p is a prime splitting in K, s is an integer satisfying $\gcd(6, s) = 1$ and $f(s) = f(\frac{s}{\gcd(s, h)})$. Then M_{α} has positive density given by

$$\det(M_{\alpha}) = \begin{cases} \frac{1}{4} \prod_{q \mid s, \ q \neq p} (1 - \frac{2}{(q-1)}) \prod_{q \geq 3, \ q \nmid ps} (1 - \frac{2}{q(q-1)}) & \text{if } p \equiv 1 \pmod{4} \text{ and } \alpha \\ \frac{1}{4} \prod_{q \mid s} (1 - \frac{2}{(q-1)}) \prod_{q \geq 3, \ q \nmid s} (1 - \frac{2}{q(q-1)}) & \text{otherwise.} \end{cases}$$

The proof is divided into various cases according to $K = \mathbb{Q}(\sqrt{-3})$ or $K \neq \mathbb{Q}(\sqrt{-3})$, according to $p \pmod{4}$, as well as the discriminant $D_k \pmod{8}$. We refer to [2] for details. Here we shall present only one simple case: suppose that $p \equiv 1 \pmod{4}$ and $D_K \equiv 0 \pmod{4}$.

By Lemma 2.4 for relatively prime square free positive integer m, n with n odd, we have

$$E_m \cap F_n = \begin{cases} \mathbb{Q}(\sqrt{p}) & \text{if } 2 \mid m \text{ and } p \mid n, \\ \mathbb{Q} & \text{otherwise,} \end{cases}$$

Then from Lemma 2.5 and 2.6, we obtain

$$c_{mn}=1 ext{ and } d_{mn}=\left\{egin{array}{ll} m_1n_1\phi(mn) & ext{ if } 2p\mid mn, \ 2m_1n_1\phi(mn) & ext{ otherwise.} \end{array}
ight.$$

Applying Theorem 3.1, we have

$$\begin{split} \operatorname{den}(M_{\alpha}) &= \sum_{\substack{m,n \ 2p \nmid mn}} \frac{\mu(mn)}{2m_{1}n_{1}\phi(mn)} + \sum_{\substack{m,n \ 2p \mid mn}} \frac{\mu(mn)}{m_{1}n_{1}\phi(mn)} \\ &= \sum_{\substack{2p \nmid c}} \frac{2^{f(c)}\mu(c)}{2c_{1}\phi(c)} + \sum_{\substack{2p \mid c}} \frac{2^{f(c)}\mu(c)}{c_{1}\phi(c)} \\ &= \sum_{c} \frac{2^{f(c)}\mu(c)}{2c_{1}\phi(c)} + \sum_{\substack{2p \mid c}} \frac{2^{f(c)}\mu(c)}{2c_{1}\phi(c)} \\ &= \frac{1}{4} \prod_{\substack{q \geq 3}} (1 - \frac{2}{q_{1}(q-1)}) + \frac{1}{2p_{1}(p-1)} \prod_{\substack{q \geq 3, \ q \neq p}} (1 - \frac{2}{q_{1}(q-1)}) \\ &= \frac{1}{4} \prod_{\substack{q \geq 3, \ q \neq p}} (1 - \frac{2}{q_{1}(q-1)}) \\ &= \frac{1}{4} \prod_{\substack{q \mid s, \ q \neq p}} (1 - \frac{2}{(q-1)}) \prod_{\substack{q \geq 3, \ d \nmid ps}} (1 - \frac{2}{q(q-1)}) > 0. \end{split}$$

§4. Let \mathbb{F}_r denote a finite field of characteristic p with $r=p^s$ elements. Given an elliptic curve E defined over \mathbb{F}_r , we would like to know the size of the Galois extension of \mathbb{F}_r obtained through adjoining all coordinates of ℓ -torsion points where ℓ is a prime. The size in question is the degree $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ which equals to the order of the Frobenius endomorphism acting on $E[\ell]$. If the curve E is not supersingular, it is well-known that $\mathbb{Z}[\alpha] \subset \operatorname{End}_E$ which can be identified with an order in an imaginary quadratic field $K = K_E$. If E is supersingular, it may happen that $\alpha_E \in \mathbb{Z}$, or else $\mathbb{Z}[\alpha]$ is still contained in an imaginary quadratic field $K = K_E$. We let $\operatorname{disc}(\alpha)$ be the discriminant of $\mathbb{Z}[\alpha]$. The following proposition bounds $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ in the non supersingular case:

Proposition 4.1. Given non-supersingular elliptic curve $E_{/\mathbb{F}_r}$ with (geometric) Frobenius endomorphism α in imaginary quadratic field K. Let e_2 be the largest divisor of 24 such that $\alpha \in (K^*)^{e_2}$, and $e_1 = 2$, or 1 according as whether α is a square in K. Suppose prime $\ell > 3$ and $\ell \nmid p \operatorname{disc}(\alpha)$. Then

$$\left[\mathbb{F}_r(E[\ell]): \mathbb{F}_r\right] \leq \left\{ \begin{array}{ll} \frac{\ell^2 - 1}{e_2}, & \text{if ℓ is inert in K/\mathbb{Q}} \\ \frac{\ell - 1}{e_1}, & \text{if ℓ splits in K/\mathbb{Q}} \end{array} \right.$$

We are interested in the distribution of the degrees $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ as the prime number ℓ varies. In particular, how often the Galois extension degree $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ can be the largest possible, in other words, is equal to $(\ell^2 - 1)/e_2$? We consider therefore the following set of primes:

$$M_E = \{\ell \mid \ell \in \mathbb{P}, \ [\mathbb{F}_r(E[\ell]) : \mathbb{F}_r] = (\ell^2 - 1)/e_2\}.$$

We have

Theorem 4.2. Assume GRH holds, and suppose gcd(s, 6) = 1. Let $E_{/\mathbb{F}_r}$ be any elliptic curve which is not supersingular. Then the set M_E always has positive density.

Proof. Let $K = K_E$, with h equals to the class number of \mathcal{O}_K . First, we apply Theorem 3.1 to the Frobenius $\alpha = \alpha_E$. This shows that the set M_E has a density, since it differs from M_{α} only by a finite set. Next we can multiply s by suitable powers of those prime factors of h not dividing 6 so that s' and $s'/\gcd(s',h)$ has the same set of odd prime factors. Extending the base field to $\mathbb{F}_{p^{s'}}$, and replacing the given curve E by $E'_{/\mathbb{F}^{s'}}$. Then the Frobenius $\alpha' = \alpha_{E'}$ satisfies the hypothesis of Theorem 3.2. It follows that the set $M_{E'}$ has positive density. To finish the proof, it suffices to show that $M_{\alpha'} \subseteq M_{\alpha}$. This follows from the fact that the order of α modulo ℓ is at least the order of α' modulo ℓ because α' is a power of α . \square

For prime fields $\mathbb{F}_r = \mathbb{F}_p$, precise value of the density can be given. Since $den(M_E) = den(M_{\alpha})$ in this case (s=1), the desired formula follows from Theorem 3.2 immediately.

Theorem 4.3. Given elliptic curve $E_{/\mathbb{F}_p}$ which is not supersingular. Suppose GRH holds. Then the density of M_E is:

$$\operatorname{den}(M_E) = \begin{cases} (1 - \frac{2}{p(p-1)})^{-1} C_2 & \text{if } p \equiv 1 \pmod{4} \text{ and } \alpha \\ C_2 & \text{nonexceptional} \end{cases}$$

If the curve E is supersingular, bounds on $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ is

Proposition 4.4. Suppose $E_{/\mathbb{F}_r}$ is supersingular and ℓ does not divide $\operatorname{disc}(\alpha)$. Then

$$[\mathbb{F}_r(E[\ell]):\mathbb{F}_r] \leq \begin{cases} (\ell-1), & \text{if } t_E = \pm 2\sqrt{r}, \text{ and } s \text{ even} \\ 2(\ell-1), & \text{if } t_E = 0 \\ 3(\ell-1), & \text{if } t_E = \pm \sqrt{r}, \text{ and } s \text{ even} \\ 4(\ell-1), & \text{if } t_E = \pm p^{(s+1)/2}, s \text{ odd, and } p = 2 \\ 6(\ell-1), & \text{if } t_E = \pm p^{(s+1)/2}, s \text{ odd, and } p = 3 \end{cases}$$

where $t_E \in \mathbb{Z}$ is the trace of the Frobenius endomorphism.

We obtain therefore the following characterization of supersingular elliptic curves:

Corollary 4.5. Assume GRH holds. Then $E_{/\mathbb{F}_p}$ is supersingular if and only if $[\mathbb{F}_p(E[\ell]) : \mathbb{F}_p] = O(\ell - 1)$ as ℓ runs through the rational primes.

References

- [1] Y.-M. J. Chen, Y. Kitaoka, and J. Yu, Diatributions of units of real quadratic number fields, Nagoya Math. J., to appear.
- [2] Y.-M. J. Chen, and J. Yu, On a density problem for elliptic curves over finite fields, Preprint, 2000.
- [3] C. Hooley, On Artin's conjecture, J. reine angew Math. 225(1967), 209-220.
- [4] K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York 1982.
- [5] H.W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Inventiones math. 42, 201-224(1977).
- [6] M.R. Murty, On Artin's conjecture, Journal of Number Theory 16, 147-168(1983).
- [7] J.-P. Serre, Quelques applications du Théorème de densité de Chebotarev, Publ. Math. IHES, 54(1981), 123-201.
- [8] W. C. Waterhouse, Abelian varieties over finite fields, Ann. scient. EC. Norm. Sup., 2(1969), 521-560.