On Primitive Roots Conjecture for Certain Two-Dimensional Tori

04/24/00

Yen-Mei J. Chen and Jing Yu

Dept. of Math., Tamkang University, Tamshui, Taipei, Taiwan

Institute of Math., Academia Sinica, Nankang, Taipei, Taiwan

and National Center for Theoretical Sciences, Hsinchu, Taiwan

E-mail: ymjchen@mail.tku.edu.tw

E-mail: yu@math.sinica.edu.tw

We prove an analogue of Artin's primitive roots conjecture for 2-dimensional tori \(\text{Res}_{K/\mathbb{Q}} \mathbb{G}_m \) under Generalized Riemann Hypothesis, where \(K \) are imaginary quadratic fields. As a consequence, we are able to derive a precise density formula for a given non-supersingular elliptic curves over a finite field which tells how often the Galois extension of the base field obtained by adjoining all coordinates of \(\ell \)-torsion has degree \(\ell^2 - 1 \) as \(\ell \) running through rational primes. It turns out the density in question is essentially independent of the curves, even independent of the characteristic \(p \) if \(p \not\equiv 1 \) (mod 4).

§1.

Given an elliptic curve \(E/\mathbb{F}_p \), we are interested in the Galois representations on \(\ell \)-torsion \(E[\ell] \subset E(\mathbb{F}_p) \) for various rational prime numbers \(\ell \). Let \(\mathbb{F}_p(E[\ell]) \) be the Galois extension of \(\mathbb{F}_p \) obtained by adjoining all coordinates of points in \(E[\ell] \). A basic question is: how often the degree \([\mathbb{F}_p(E[\ell]) : \mathbb{F}_p] \) can be the largest possible, in other words, is equal to \(\ell^2 - 1 \) ?

If the given curve \(E/\mathbb{F}_p \) is supersingular, one can deduce easily that for almost all \(\ell \), the degree of \(\mathbb{F}_p(E[\ell])/\mathbb{F}_p \) is \(\leq 2(\ell - 1) \). Thus for our purpose it suffices to consider non-supersingular elliptic curves. We study the following set associated to a given non-supersingular \(E/\mathbb{F}_p \):

\[
M_E = \{ \ell \mid \ell \text{ prime}, \ [\mathbb{F}_p(E[\ell]) : \mathbb{F}_p] = \ell^2 - 1 \}.
\]

The result we obtain is that, under generalized Riemann Hypothesis (GRH), these sets \(M_E \) always have positive density. Furthermore the value of this density \(\text{den}(M_E) \) can be given precisely in terms of a universal constant \(C_2 \):

\[
C_2 = \frac{1}{4} \prod_{q\neq 2 \text{ prime}} (1 - \frac{2}{q(q-1)}) = 0.133776 \cdots
\]

Typeset by \LaTeX
If \(p \not\equiv 1 \pmod{4} \), then always \(\text{den}(M_E) = C_2 \). On the other hand, if \(p \equiv 1 \pmod{4} \), then \(\text{den}(M_E) = (1 - \frac{2}{p(p-1)})^{-1}C_2 \) unless in certain exceptional cases where \(\text{den}(M_E) \) are still equal to \(C_2 \) (c.f. Theorem 4.3).

Our approach is based on a variation of Artin’s primitive roots problem for a family of two-dimensional tori over \(\mathbb{Q} \). Let \(\text{End}_E \) denote the endomorphism ring of the elliptic curve \(E \) and let \(\alpha \in \text{End}_E \) be the Frobenius endomorphism. If \(E \) is not supersingular, \(\mathbb{Z}[\alpha] \subset \text{End}_E \) is identified with an order in an imaginary quadratic field \(K = K_E \). Then \(\mathbb{Z}[\alpha] \subset \mathcal{O}_K \), the ring of integers in \(K \). The torus in question is the one obtained from \(\mathbb{G}_{m/K} \) via restriction of scalars: \(T = \text{Res}_{K/\mathbb{Q}} \mathbb{G}_{m/K} \). We have \(\alpha \in K^* = T(\mathbb{Q}) \) non-torsion and what we are searching are the rational primes \(\ell \) which stay prime in \(K \) and \(\alpha \) modulo \(\ell \) is primitive, i.e. \(\alpha \) modulo \(\ell \) is a generator of the cyclic group \((\mathcal{O}_K/\ell\mathcal{O}_K)^* \).

\[\text{§2.} \]

Let \(K \) be a fixed imaginary quadratic number field, with ring of integers \(\mathcal{O}_K \subset K \). We use \(\tau \) to denote complex conjugation and \(\ell \) always stands for a rational prime number which stay prime in \(K \). For \(\alpha \neq 0 \in \mathcal{O}_K \), \(N(\alpha) = \alpha\bar{\alpha}^\tau \) denotes its absolute norm, \(\bar{\alpha} \) denotes the coset in \((\mathcal{O}_K/\ell\mathcal{O}_K)^* \) containing \(\alpha \) if \(\text{ord}_\ell(\alpha) = 0 = \text{ord}_\ell(1/\alpha) \), and \(o_\ell(\alpha) \) denotes the order of \(\alpha \) in \((\mathcal{O}_K/\ell\mathcal{O}_K)^* \). The set of all rational prime numbers is denoted by \(\mathbb{P} \). Given \(\alpha \in \mathcal{O}_K^* \), we set \(u = u(\alpha) = \alpha^\tau/\alpha \). Our starting point is:

Proposition 2.1. Let \(\ell \in \mathbb{P} \) be a prime which is inert(stays prime) in \(K \) and \(\ell \nmid \alpha \). Then \(o_\ell(\alpha) = \ell^2 - 1 \) if and only if \(o_\ell(N(\alpha)) = \ell - 1 \) and \(o_\ell(u) = \ell + 1 \).

Consider

\[
M_\alpha = \{ \ell \in \mathbb{P} : \ell \text{ is inert in } K, \ \ell \nmid \alpha, \ o_\ell(\alpha) = \ell^2 - 1 \} \\
= \{ \ell \in \mathbb{P} : \ell \text{ is inert in } K, \ \bar{\alpha} \text{ generate } T(F_\ell) \}.
\]

Notations: Let \(q, q' \) denote elements of \(\mathbb{P} \) with \(q' \) odd. We set

- \(F_1 = K, \ E_1 = \mathbb{Q} \).
- \(\mu_q \) = the group of \(q \)-th roots of unity.
- \(E_q = \mathbb{Q}(\mu_q, \sqrt{N(\alpha)}) \).
- \(E_m = \prod_{q|m} E_q \), for square free \(m \).
- \(F_{q'} = K(\mu_{q'}, \sqrt[2]{u}) \).
- \(F_n = \prod_{q'|n} F_{q'} \), for square free odd \(n \).
- \(L_{mn} = E_m F_n \) for \(m, n \) square free and \(n \) is odd.
- \(G_{mn} = \text{Gal}(L_{mn}/\mathbb{Q}) \).
- \(d_{mn} = \#G_{mn} \).
- \(C_{mn} = \{ \sigma \in G_{mn} : \sigma|_K = \tau, \ \sigma|_{E_m} = \text{id}, \sigma|_{\mathbb{Q}(\mu_n)} = \tau, \text{ and } \sigma^2 = \text{id} \} \).
\[c_{nn} = \# C_{mn}. \]

\((\ell, E/\mathbb{Q})\) denotes Artin symbol, where \(E/\mathbb{Q} \) is finite Galois extension.

The following Proposition is crucial:

Proposition 2.2. Let \(\ell \) be a rational prime which is inert in \(K/\mathbb{Q} \) and \(\ell \nmid \alpha \). Then \(\ell \in M_{\alpha} \) if and only if \((\ell, L_{q1}/\mathbb{Q}) \nsubseteq C_{q1} \) for all prime \(q \) and \((\ell, L_{1q'}/\mathbb{Q}) \nsubseteq C_{1q'} \) for all odd prime \(q' \).

A detailed study of the Galois family \(L_{mn} \), together with computation of \(c_{mn} \), is needed. We have the following technical lemmas.

Lemma 2.3. Let \(m, n \) be square-free positive integers with \(n \) odd. Let \(s \) be the largest integer with the property that \(N(\alpha) \in (\mathbb{Q}^{*})^{s} \) (then \((\alpha) = \mathfrak{a}^{s} \) for some ideal \(\mathfrak{a} \) in \(\mathcal{O}_{K} \)). Let \(m_{1} = m/\gcd(s, m) \) and \(n_{2} = n/\gcd(s, n) \) where \(o \) is the order of \(\mathfrak{a} \) in the ideal class group of \(K \). Suppose \(\gcd(\alpha, \alpha^{\tau}) = 1 \) and \(\gcd(s, 6) = 1 \). Then

\[(a) \quad [E_{m} : \mathbb{Q}] = \frac{m_{1} \phi(m)}{[k_{m} \cap \mathbb{Q}(\mu_{m}) : \mathbb{Q}]}, \]

where \(k_{m} = \mathbb{Q} \) (resp. \(\mathbb{Q}(\sqrt{N(\alpha)}) \)) if \(2 \nmid m \) (resp. \(2 \mid m \)).

\[(b) \quad [F_{n} : \mathbb{Q}] = \begin{cases} \frac{2n_{2} \phi(n)}{3[k_{n} \cap \mathbb{Q}(\mu_{n}) : \mathbb{Q}]} & \text{if } K = \mathbb{Q}(\sqrt{-3}), \; 3 \mid n, \; \text{and } u \in (K(\mu_{n})^{*})^{3}, \\ \frac{2n_{2} \phi(n)}{[k_{n} \cap \mathbb{Q}(\mu_{n}) : \mathbb{Q}]} & \text{otherwise.} \end{cases} \]

Lemma 2.4. Let \(m, n \) be square-free positive integers with \(n \) odd and \(\gcd(m, n) = 1 \). Suppose further that \(\alpha \) satisfies all the conditions in Lemma 2.3. If \(K = \mathbb{Q}(\sqrt{-3}), \; 3 \mid n \) and \(u \in (K(\mu_{mn})^{*})^{3} - (K(\mu_{n})^{*})^{3} \), then \(E_{m} \cap F_{n} = k_{m}(\mu_{m}) \cap K(\mu_{n}, \sqrt[3]{u}) \) and

\[[E_{m} \cap F_{n} : \mathbb{Q}] = \frac{3[k_{m} \cap \mathbb{Q}(\mu_{mn}) : \mathbb{Q}]}{[k_{m} \cap \mathbb{Q}(\mu_{m}) : \mathbb{Q}][K \cap \mathbb{Q}(\mu_{n}) : \mathbb{Q}]} . \]

Otherwise, \(E_{m} \cap F_{n} = k_{m}(\mu_{m}) \cap K(\mu_{n}) \) and

\[[E_{m} \cap F_{n} : \mathbb{Q}] = \frac{[k_{m} \cap \mathbb{Q}(\mu_{mn}) : \mathbb{Q}]}{[k_{m} \cap \mathbb{Q}(\mu_{m}) : \mathbb{Q}][K \cap \mathbb{Q}(\mu_{n}) : \mathbb{Q}]} . \]

Lemma 2.5. Let \(m, n \) be square-free positive integers with \(n \) odd. Suppose further that \(\alpha \) satisfies all the conditions in Lemma 2.3. Then

\[c_{mn} = \begin{cases} 1 & \text{if } \gcd(m, n) = 1 \text{ and } E_{m} \cap F_{n} \text{ is totally real}, \\ 0 & \text{otherwise.} \end{cases} \]
Lemma 2.6. Let \(m, n \) be square-free positive integers with \(n \) odd and \(\gcd(m, n) = 1 \). Suppose further that \(\alpha \) satisfies all the conditions in Lemma 2.3. Then

\[
d_{mn} = \begin{cases}
\frac{2m_{1}n_{2}\phi(mn)}{3[Kk_{m}\cap \mathbb{Q}(\mu_{mn}) : \mathbb{Q}]} & \text{if } K = \mathbb{Q}(\sqrt{-3}), 3 \mid n, \text{ and } u \in (K(\mu_{mn}))^{3}, \\
\frac{2m_{1}n_{2}\phi(mn)}{[Kk_{m}\cap \mathbb{Q}(\mu_{mn}) : \mathbb{Q}]} & \text{otherwise}.
\end{cases}
\]

\[\text{§3.}\]

The existence of density for \(M_{\alpha} \) is contained in the following

Theorem 3.1. Given \(\alpha \neq 0 \in \mathcal{O}_{K} \) with \(\gcd(\alpha, \alpha^{\tau}) = 1 \). Let \(s \) be the largest integer such that \(N(\alpha) \in (\mathbb{Q}^{\times})^{s} \). Assume that \(\gcd(s, 6) = 1 \) and furthermore GRH holds. Then \(\text{den}(M_{\alpha}) \) exists and is given by

\[
\text{den}(M_{\alpha}) = \sum_{m, n} \frac{\mu(m)\mu(n)c_{mn}}{d_{mn}},
\]

where in the sum \(m, n \) runs through all square free positive integers, \(n \) is required to be odd.

The proof of the above Theorem is based on analytic method originated from Hooley [3], which uses effective Chebotarev Density Theorem and assumes GRH. For the detail of the proof, we refer to [2].

We are particularly interested in the case \(N(\alpha) = p^{s} \), where \(p \) is a prime splitting in the imaginary quadratic field \(K \). The case \(K = \mathbb{Q}(\sqrt{-3}) = \mathbb{K}_{3} \) requires special attention. Suppose that \(K = \mathbb{Q}(\sqrt{-3}) \) and \(\alpha \neq 0 \in \mathcal{O}_{K} \), \(\gcd(\alpha, \alpha^{\tau}) = 1 \), and \(N(\alpha) = p^{s} \), with \(s \) an integer prime to \(6 \). Then the principal ideal \((\alpha) \) is equal to \((\beta)^{s}\) for some primary prime of \(\mathcal{O}_{K} \) lying above \(p \). There is an unique integer \(\delta(\alpha) \) modulo \(6 \) with \(\alpha = \zeta_{6}^{\delta(\alpha)} \beta^{s} \). From the classical theory of cubic Gauss sums (c.f. [4], Chap. 9), one knows that \(p\beta \in (\mathbb{K}_{p})^{3} \). Then it follows that for any square-free odd integer \(n \),

\[
u = \frac{\alpha^{\tau}}{\alpha} \in (\mathbb{K}_{n})^{3}
\]

if and only if \(3 \mid \delta(\alpha) \) and \(p \mid n \). We call an imaginary quadratic integer \(\alpha \) exceptional if \(\alpha \in \mathcal{O}_{K} \), and \(\alpha = \pm \beta^{s} \) with \(\beta \) primary prime. All other imaginary quadratic integers are called nonexceptional.

Let \(h \) denotes the class number of \(K \). For any positive integer \(c \), define \(f(c) = \# \{ q \in \mathbb{P} : q \mid c, \text{ } q \text{ is odd} \} \). Our main theorem is

Theorem 3.2. Assume GRH holds. Suppose \(\alpha \neq 0 \in \mathcal{O}_{K} \), \(\gcd(\alpha, \alpha^{\tau}) = 1 \) and \(N(\alpha) = p^{s} \), where \(p \) is a prime splitting in \(K \), \(s \) is an integer satisfying \(\gcd(6, s) = 1 \) and \(f(s) = f(\frac{s}{\gcd(s, h)}) \). Then \(M_{\alpha} \) has positive density given by

\[
\text{den}(M_{\alpha}) = \begin{cases}
\frac{1}{4} \prod_{q|s, q \neq p} \left(1 - \frac{2}{(q-1)} \right) \prod_{q \geq \delta, q|p^{s}} \left(1 - \frac{2}{q(q-1)} \right) & \text{if } p \equiv 1 \text{ (mod 4) and } \alpha \text{ nonexceptional} \\
\frac{1}{4} \prod_{q|s} \left(1 - \frac{2}{(q-1)} \right) \prod_{q \geq \delta, q|p} \left(1 - \frac{2}{q(q-1)} \right) & \text{otherwise}.
\end{cases}
\]
The proof is divided into various cases according to $K = \mathbb{Q}(\sqrt{-3})$ or $K \neq \mathbb{Q}(\sqrt{-3})$, according to $p \pmod{4}$, as well as the discriminant $D_k \pmod{8}$. We refer to [2] for details. Here we shall present only one simple case: suppose that $p \equiv 1 \pmod{4}$ and $D_K \equiv 0 \pmod{4}$.

By Lemma 2.4 for relatively prime square free positive integer m, n with n odd, we have

$$E_m \cap F_n = \begin{cases} \mathbb{Q}(\sqrt{p}) & \text{if } 2 \mid m \text{ and } p \mid n, \\ \mathbb{Q} & \text{otherwise,} \end{cases}$$

Then from Lemma 2.5 and 2.6, we obtain

$$c_{mn} = 1 \text{ and } d_{mn} = \begin{cases} m_1n_1\phi(mn) & \text{if } 2p \mid mn, \\ 2m_1n_1\phi(mn) & \text{otherwise.} \end{cases}$$

Applying Theorem 3.1, we have

$$\text{den}(M_\alpha) = \sum_{m, n, 2p\mid mn} \frac{\mu(mn)}{2m_1n_1\phi(mn)} + \sum_{m, n, 2p\mid mn} \frac{\mu(mn)}{m_1n_1\phi(mn)}$$

$$= \sum_{2p\mid c} \frac{2^{f(c)}\mu(c)}{2c_1\phi(c)} + \sum_{2p\mid c} \frac{2^{f(c)}\mu(c)}{c_1\phi(c)}$$

$$= \frac{1}{4} \prod_{q \geq 3} \left(1 - \frac{2}{q_1(q-1)}\right) + \frac{1}{2p_1(p-1)} \prod_{q \geq 3, q \neq p} \left(1 - \frac{2}{q_1(q-1)}\right)$$

$$= \frac{1}{4} \prod_{q \geq 3, q \neq p} \left(1 - \frac{2}{q_1(q-1)}\right)$$

$$= \frac{1}{4} \prod_{q \mid s, q \neq p} \left(1 - \frac{2}{q(q-1)}\right) \prod_{q \geq 3, q \mid p} \left(1 - \frac{2}{q(q-1)}\right) > 0.$$

§4. Let \mathbb{F}_r denote a finite field of characteristic p with $r = p^s$ elements. Given an elliptic curve E defined over \mathbb{F}_r, we would like to know the size of the Galois extension of \mathbb{F}_r obtained through adjoining all coordinates of ℓ-torsion points where ℓ is a prime. The size in question is the degree $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ which equals to the order of the Frobenius endomorphism acting on $E[\ell]$. If the curve E is not supersingular, it is well-known that $\mathbb{Z}[\alpha] \subset \text{End}_E$ which can be identified with an order in an imaginary quadratic field $K = K_E$. If E is supersingular, it may happen that $\alpha_E \in \mathbb{Z}$, or else $\mathbb{Z}[\alpha]$ is still contained in an imaginary quadratic field $K = K_E$. We let $\text{disc}(\alpha)$ be the discriminant of $\mathbb{Z}[\alpha]$. The following proposition bounds $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ in the non supersingular case:
Proposition 4.1. Given non-supersingular elliptic curve $E_{/\mathbb{F}}$, with (geometric) Frobenius endomorphism α in imaginary quadratic field K. Let e_2 be the largest divisor of 24 such that $\alpha \in (K^*)^{e_2}$, and $e_1 = 2$, or 1 according as whether α is a square in K. Suppose prime $\ell > 3$ and $\ell \nmid p \text{disc}(\alpha)$. Then

$$[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r] \leq \begin{cases} \frac{\ell^2 - 1}{e_2}, & \text{if } \ell \text{ is inert in } K/\mathbb{Q} \\ \frac{\ell - 1}{e_1}, & \text{if } \ell \text{ splits in } K/\mathbb{Q} \end{cases}$$

We are interested in the distribution of the degrees $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ as the prime number ℓ varies. In particular, how often the Galois extension degree $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ can be the largest possible, in other words, is equal to $(\ell^2 - 1)/e_2$? We consider therefore the following set of primes:

$$M_E = \{ \ell \mid \ell \in \mathbb{P}, \ [\mathbb{F}_r(E[\ell]) : \mathbb{F}_r] = (\ell^2 - 1)/e_2 \}.$$

We have

Theorem 4.2. Assume GRH holds, and suppose $\gcd(s, 6) = 1$. Let $E_{/\mathbb{F}}$ be any elliptic curve which is not supersingular. Then the set M_E always has positive density.

Proof. Let $K = K_E$, with h equals to the class number of O_K. First, we apply Theorem 3.1 to the Frobenius $\alpha = \alpha_E$. This shows that the set M_E has a density, since it differs from M_α only by a finite set. Next we can multiply s by suitable powers of those prime factors of h not dividing 6 so that s' and $s'/\gcd(s', h)$ has the same set of odd prime factors. Extending the base field to $\mathbb{F}_{p^{s'}}$, and replacing the given curve E by $E'_{/\mathbb{F}_{p^{s'}}}$. Then the Frobenius $\alpha' = \alpha_{E'}$ satisfies the hypothesis of Theorem 3.2. It follows that the set $M_{E'}$ has positive density. To finish the proof, it suffices to show that $M_{\alpha'} \subseteq M_\alpha$. This follows from the fact that the order of α modulo ℓ is at least the order of α' modulo ℓ because ℓ is a power of α. \qed

For prime fields $\mathbb{F}_r = \mathbb{F}_p$, precise value of the density can be given. Since $\text{den}(M_E) = \text{den}(M_\alpha)$ in this case ($s=1$), the desired formula follows from Theorem 3.2 immediately.

Theorem 4.3. Given elliptic curve $E_{/\mathbb{F}_p}$ which is not supersingular. Suppose GRH holds. Then the density of M_E is:

$$\text{den}(M_E) = \begin{cases} (1 - \frac{2}{p(p-1)})^{-1}C_2 & \text{if } p \equiv 1 \pmod{4} \text{ and } \alpha \text{ nonexceptional} \\ C_2 & \text{otherwise} \end{cases}$$

If the curve E is supersingular, bounds on $[\mathbb{F}_r(E[\ell]) : \mathbb{F}_r]$ is

...
Proposition 4.4. Suppose $E_{/\mathbb{F}_r}$ is supersingular and ℓ does not divide $\text{disc}(\alpha)$. Then

$$[\mathbb{F}_r(E[\ell]): \mathbb{F}_r] \leq \begin{cases}
(\ell - 1), & \text{if } t_E = \pm 2\sqrt{r}, \text{ and } s \text{ even} \\
2(\ell - 1), & \text{if } t_E = 0 \\
3(\ell - 1), & \text{if } t_E = \pm \sqrt{r}, \text{ and } s \text{ even} \\
4(\ell - 1), & \text{if } t_E = \pm p^{(s+1)/2}, s \text{ odd, and } p = 2 \\
6(\ell - 1), & \text{if } t_E = \pm p^{(s+1)/2}, s \text{ odd, and } p = 3
\end{cases}$$

where $t_E \in \mathbb{Z}$ is the trace of the Frobenius endomorphism.

We obtain therefore the following characterization of supersingular elliptic curves:

Corollary 4.5. Assume GRH holds. Then $E_{/\mathbb{F}_p}$ is supersingular if and only if $[\mathbb{F}_p(E[\ell]): \mathbb{F}_p] = O(\ell - 1)$ as ℓ runs through the rational primes.

References