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We prove an analogue of Artin’s primitive roots conjecture for 2-dimensional
tori Resg/q G under Generalized Riemann Hypothesis, where K are imag-
inary quadratic fields. As a consequence, we are able to derive a precise
density formula for a given non-supersingular elliptic curves over a finite
field which tells how often the Galois extension of the base field obtained by
adjoining all coordinates of /-torsion has degree £? — 1 as £ running through
rational primes. It turns out the density in question is essentially indepen-
dent of the curves, even independent of the characteristic p if p Z 1 (mod 4).

§1.

Given an elliptic curve E/p,, we are interested in the Galois representa-
tions on f-torsion E[¢] C E(F,) for various rational prime numbers ¢. Let
F,(E[{]) be the Galois extension of F,, obtained by adjoining all coordinates
of points in E[f]. A basic question is: how often the degree [F,(E[(]) : )
can be the largest possible, in other words, is equal to £2 — 1 ?

If the given curve E/p, is supersingular, one can deduce easily that for
almost all £, the degree of F,(E[{])/F, is < 2(¢ —1). Thus for our purpose it
suffices to consider non-supersingular elliptic curves. We study the following
set associated to a given non-supersingular F/p_:

Mg = {£| £ prime, [F,(E[f]):F,]=¢*-1}.

The result we obtain is that, under generalized Riemann Hypothesis (GRH),
these sets Mg always have positive density. Furthermore the value of this
density den(MEg) can be given precisely in terms of a universal constant Co:

1 2
C:=7 [ Q-—p5)=0133776---,

q#2 prime Q(q o 1)
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If p # 1 (mod 4), then always den(Mg) = C5. On the other hand, if p =1
(mod 4), then den(Mg) = (1 — p(zf_l))‘ng unless in certain exceptional
cases where den(MEg) are still equal to Cs (c.f. Theorem 4.3).

Our approach is based on a variation of Artin’s primitive roots problem for
a family of two-dimensional tori over Q. Let Endg denote the endomorphism
- ring of the elliptic curve E and let @ € Endg be the Frobenius endomorphism.
If E is not supersingular, Z[a] C Endg is identified with an order in an
imaginary quadratic field K = Kg. Then Z[a] C Ok, the ring of integers
in K. The torus in question is the one obtained from G,k via restriction
of scalars : T = Resk/qQGm k. We have a € K* = T(Q) non-torsion and
what we are searching are the rational primes ¢ which stay prime in K and
a modulo £ is primitive, i.e. @ modulo ¢ is a generator of the cyclic group

(O /€OK)*.

§2.

Let K be a fixed imaginary quadratic number field, with ring of integers
Ok C K. We use 7 to denote complex conjugation and ¢ always stands
for a rational prime number which stay prime in K. For a # 0 € Ok,
N(a) = aa” denotes its absolute norm, @& denotes the coset in (O /€0 )*
containing o if ordy(a) = 0 = ord(1/a), and o;(c) denotes the order of &
inside (Ok /lOk)*. The set of all rational prime numbers is denoted by P.
Given o € OF, we set u = u(a) = a” /a. Our starting point is:

Proposition 2.1. Let £ € P be a prime which is inert(stays prime) in

K and £} o . Then og(a) = ¢2 — 1 if and only if 0,(N(a)) = £ — 1 and
op(u) =20+ 1.

Consider

My={{eP:{ isinertin K, £{a, opla) =£*—-1}
={le€P:/{ isinert in K, & generate T(F,)}.

Notations: Let g, ¢’ denote elements of P with ¢’ odd. We set
=K, E,=Q.
ity = the group of g-th roots of unity.
E, = Q(uq’ V N(a))
E,, = H E,, for square free m.
glm
Fy = K(pg, q\l/a)
F, = H F,, for square free odd n.
"In
Lon :q |Ean for m,n square free and n is odd.
Gmn = Gal(Lpy,, /Q).
dmn = #Gmn-
Crmn = {0 € Gnn : 0|k =7, 0|E,, =id,0|g,) = 7, and ¢? =id}.
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cnn = #Cmn-
(¢, E/Q) denotes Artin symbol, where E/Q is finite Galois extension.

The following Proposition is crucial:

Proposition 2.2. Let ¢ be a rational prime which is inert in K /Q and
£ {a. Then { € M, if and only if (¢,L41/Q) ¢ C, for all prime q and
(€,L14/Q) € Cyq for all odd prime ¢'.

A detailed study of the Galois family L,,,, together with computation of
Cmn, is needed. We have the following technical lemmas.

Lemma 2.3. Let m,n be square-free positive integers with n odd. Let s
be the largest integer with the property that N(a) € (Q*)°(then (o) = a®
for some ideal a in Ok ). Let my = m/ged(s,m) and ny = n/ged(2,n) where
o is the order of a in the ideal class group of K. Suppose ged(a, a™) =1 and
ged(s,6) = 1. Then

(a)

m14(m)
[km N Q(pm) : Q]

where kp, = Q (resp. Q(1/N(a))) ff2 {m (resp. 2 | m).
(b)

[Em : Q] =

[Fn:Q] = { TRt K =Q(V=3), 3| n, and u € (K (un)")?,

[K?\%&: )q othersiwe.

Lemma 2.4. Let m,n be square-free positive integers with n odd and
ged(m,n) = 1. Suppose further that « satisfies all the conditions in Lemma
2.3. IfK = Q(v/-3), 3| nand u € (K (fmn)*)?— (K (tn)*)3, then E,,NF,, =
km(Bm) N K (pin, ¥/u) and

3[Kkm N Q(Bmn) : Q]
[km N QM) : QI[K NQ(kn) : Q]

Otherwise, Ep, N F, = k() N K (1) and

[Kkm N Q(tmy) : Q]
[km N Q) : QK NQ(un) : Q)

[EmnFn:Q]:

[EmNF,:Q]=

Lemma 2.5. Let m,n be square-free positive integers with n odd. Suppose
further that « satisfies all the conditions in Lemma 2.3. Then

{ 1 if ged(m,n) =1 and E,, N F,, is totally real,
Cmn = .
0 otherwise.
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Lemma 2.6. Let m,n be square-free posifive integers with n odd and
ged(m,n) = 1. Suppose further that o satisfies all the conditions in Lemma
2.3. Then

o = { ket i K =Q(V=3),3|n, and u € (K (pmn)")’,

2ming p(mn) .
K kmlrwé( tmn )0 othersiwe.

§3.
The existence of density for M, is contained in the following

Theorem 3.1. Given o # 0 € Ok with ged(a,a™) = 1. Let s be the
largest integer such that N(a) € (Q*)°. Assume that gcd(s,6) = 1 and
furthermore GRH holds. Then den(M,,) exists and is given by

m)u(n)c
den(Ma) — ZN( )#( ) mn’
dmn
m,n
where in the sum m, n runs through all square free positive integers, n is
required to be odd.

The proof of the above Theorem is based on analytic method originated
from Hooley [3], which uses effective Chebotarev Density Theorem and as-
sumes GRH. For the detail of the proof, we refer to [2].

We are particularly interested in the case N(a) = p®, where p is a prime
splitting in the imaginary quadratic field K. The case K = Q(v/—3) = K (u3)
requires special attention. Suppose that K = Q(v/=3) and a # 0 € Ok,
ged(a,@™) = 1, and N(a) = p°, with s an integer prime to 6. Then the
principal ideal («) is equal to (3)® for some primary prime of Ok lying
above p. There is an unique integer §(a) modulo 6 with a = cg‘“) 3°. From
the classical theory of cubic Gauss sums (c.f. [4], Chap. 9), one knows
that p8 € K (up)*3. Then it follows that for any square-free odd integer n,
u= ‘L—T € K(pn)** if and only if 3 | §(c) and p | n. We call an imaginary
quadratic integer a exceptional if @ € K, and o = +(3° with § primary
prime. All other imaginary quadratic integers are called nonexceptional.

Let h denotes the class number of K. For any positive integer ¢, define
fle)=#{qgeP:q]ec, qis odd.}. Our main theorem is

Theorem 3.2. Assume GRH holds. Suppose a # 0 € Ok, ged(a,0™) =1
and N(o) = p®, where p is a prime splitting in K, s is an integer satisfying
ged(6, ) = 1 and f(s) = f(m). Then M, has positive density given by

H -y I 0= ifp=1 (mod 4) and a
q|s ap (q >3 ,fps q(q —1)’ nonexceptional

—H ) H (1- )) otherwise.

q>3,qts

den(M,) =
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The proof is divided into various cases according to K = Q(v/=3) or K #
Q(+/=3), according to p (mod 4), as well as the discriminant Dy (mod 8).
We refer to [2] for details. Here we shall present only one simple case: suppose
that p=1 (mod 4) and Dg =0 (mod 4).

By Lemma 2.4 for relatively prime square free positive integer m, n with
n odd, we have

Q(vp) if2|mandp|n,

Q otherwise,

Then from Lemma 2.5 and 2.6, we obtain

minip(mn)  if 2p | mn,
cmn = 1 and d,,,, = )
2minip(mn)  otherwise.

Applying Theorem 3.1; we have

_ oy __pmn) __plmn)
den(Mo) = ; 2mini¢p(mn) " ; mini$(mn)
2ptmn 2p|mn

 ~2@u(0) 27 y(c)
B % 2c16(c) * Z

c1¢(c)
_ 2 u(e) 27 p(c)

B Z 2c1¢(c) +Z 2¢19(c)

c 2p|c

2p|c

1 2 1 2
=0- o 5 1l 0-i=p)

q>3 923, g#p
1 2
=; II a-—
4 4>3, gsp 41(q 1)
1 2 2
T4 (1_((1—1)) 11 (1*(1(q—1))>0'
qls,g#p q2>3, gfps

§4. Let F, denote a finite field of characteristic p with r = p® elements.
Given an elliptic curve F defined over F,, we would like to know the size
of the Galois extension of F, obtained through adjoining all coordinates
of ¢-torsion points where £ is a prime. The size in question is the degree
[F.(E[£)) : F,] which equals to the order of the Frobenius endomorphism
acting on E[{]. If the curve E is not supersingular, it is well-known that
Z|a] C Endg which can be identified with an order in an imaginary quadratic
field K = Kg. If E is supersingular, it may happen that ag € Z, or else Z|[«]
is still contained in an imaginary quadratic field K = K. We let disc(a) be
the discriminant of Z[a]. The following proposition bounds [F,.(E[f]) : F,] in
the non supersingular case:



Proposition 4.1. Given non-supersingular elliptic curve E g, with (geo-
metric) Frobenius endomorphism o in imaginary quadratic field K. Let ey
be the largest divisor of 24 such that a € (K*)®2, and e; = 2, or 1 according
as whether a is a square in K. Suppose prime £ > 3 and £} pdisc(a). Then

-1 jf¢ is inert in K/Q
F(Bl):E]<q B DR
o, If€ splitsin K/Q
We are interested in the distribution of the degrees [F.(E[f]) : F,] as
the prime number ¢ varies. In particular, how often the Galois extension
degree [F,(E[{]) : F,] can be the largest possible, in other words, is equal to
(€2 —1)/es ? We consider therefore the following set of primes :

Mg ={£|£eP, [F.(E[f]):F,]=(¢%—1)/es)}.

We have

Theorem 4.2. Assume GRH holds, and suppose gcd(s,6) = 1. Let E/p,
be any elliptic curve which is not supersingular . Then the set Mg always
has positive density.

Proof. Let K = Kg, with h equals to the class number of Q. First, we
apply Theorem 3.1 to the Frobenius a = ag. This shows that the set Mg
has a density, since it differs from M, only by a finite set. Next we can
multiply s by suitable powers of those prime factors of A not dividing 6 so
that s’ and s’/ ged(s’, k) has the same set of odd prime factors. Extending
the base field to F,./, and replacing the given curve E by E;Fs,. Then the
Frobenius o/ = ap satisfies the hypothesis of Theorem 3.2. It follows that
the set ME has positive density. To finish the proof, it suffices to show that
My C M,. This follows from the fact that the order of o modulo £ is at

least the order of o/ modulo £ because o' is a power of a. O

For prime fields F, = F,, precise value of the density can be given. Since
den(MEg) = den(M,) in this case (s=1), the desired formula follows from
Theorem 3.2 immediately.

Theorem 4.3. Given elliptic curve Ep, which is not supersingular. Sup-
pose GRH holds. Then the density of Mg is :

(1— —2 )1 ifp=1 (mod 4) and «
den(MEg) = p(p—1) > nonexceptional
Cy otherwise,

If the curve E is supersingular, bounds on [F,.(E[{]) : F,] is
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Proposition 4.4. Suppose E/, is supersingular and { does not divide
disc(a). Then

r (£—1), iftg==2/r, and s even
206-1), iftg=0
[F.(E[€]) :F,] <{ 3((—1), iftg==+/F, and s even
4(£—1), iftg=4ptt/2 5 0dd, andp =2
{ 6(£—1), iftp=+pt*tD/2 s odd, and p =3

where tg € Z is the trace of the Frobenius endomorphism.

We obtain therefore the following characterization of supersingular elliptic
curves:

Corollary 4.5. Assume GRH holds. Then E/p, is supersingular if and
only if [Fp(E[f]) : Fp] = O(£ — 1) as £ runs through the rational primes.
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