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The problem
The purpose of this contribution is to give a short introduction to the recent papers of
the author and A. Deitmar [3], [4] on limit multiplicities and to comment on the relations
with the similar problem of Weyl asymptotics for arithmetic quotients.

Let $G$ be a connected reductive $\Phi \mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ . We denote by $A_{G}$ the greatest $\mathbb{Q}-$-split torus
in the center of $G$ . In the group $G(\mathbb{R})$ of $\mathbb{R}$-rational points, which we also denote by
$G$ for simplicity of notation, we choose a maximal compact subgroup $K$ . The center of
the universal enveloping algebra of the complexification of the Lie algebra $\mathrm{g}$ of $G$ will be
denoted by 3.

Given an arithmetic subgroup $\Gamma$ of $G(\mathbb{Q})$ , a finite-dimensional unitary representation $\tau$

of $K$ on a hermitian vector space $W_{\tau}$ and a Gvalued linear functional $\lambda$ on the Lie algebra
$a_{G}$ of $A_{G}(\mathbb{R})$ , we consider the corresponding space $A(\Gamma, \tau, \lambda)$ of automorphic forms. These
are the smooth slowly increasing 3-finite functions $\phi$ : $\Gamma\backslash Garrow W_{\tau}$ satisfying

$\phi(\exp(Z)gk)=e^{\lambda(Z)}\tau(k)\phi(g)$ for all $k\in K,$ $Z\in \mathfrak{a}_{G}$ .

For simplicity, we usually assume that $\mathrm{A}_{G}=\{1\}$ and omit the argument $\lambda$ . We denote
by $A^{2}(\Gamma, \tau)$ the subspace of square-integrable automorphic forms, i.e., those satisfying

$\int_{\Gamma\backslash G/K}|\phi(g)|^{2}dg<\infty$ .

Due to Chevalley’s structure theorem about 3, the set of all infinitesimal characters

$V_{\mathbb{C}}:=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{C}-\mathrm{a}}(3, \mathbb{C})$

can be endowed with a non-canonical structure of an affine space (whose dimension is the
absolute rank of $G$). We have an $\mathbb{R}$-structure (complex conjugation) on $\mathfrak{g}_{\mathbb{C}}$ , which induces
$\mathbb{R}$-structures (involutions) on 3 and on $V_{\mathbb{C}}$ , and a suitable chosen affine structure on $V_{\mathbb{C}}$

is preserved by this involution. In any case, the real subspace $V$ of $V_{\mathbb{C}}$ is well-defined. As
a very special case of a theorem of Langlands [6], we have a direct sum decomposition

$A^{2}( \Gamma, \tau)=\bigoplus_{\chi\in V}A^{2}(\Gamma, \tau, \chi)$
,
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where each summand on the right-hand side has finite dimension and is characterised by
the condition $T\phi=\chi(T)\phi$ for all $T\in 3$ . One is interested in the dimensions

$N( \Gamma, \tau, S):=\sum_{\chi\in S}\dim A^{2}(\Gamma, \tau, \chi)$
,

where $S$ is a subset of $V$ . Since a precise formula cannot be obtained in general, one
studies the asymptotic of this function

(A) as $\Gamma$ tends to the trivial subgroup {1} or

(B) as $S$ tends to the full space $V$ .

Problem (B) asks for a generalization of the Weyl asymptotic law as applied to the
locally-symmetric space $\Gamma\backslash G/K$ . In fact, the elements of $A(\Gamma, \tau)$ can be identified with
smooth sections of the bundle $\Gamma\backslash G\mathrm{x}_{K}W_{\tau}$ over this space, and the Casimir element $\omega\in 3$

acts as the Laplacian shifted by a multiple of the identity. Now

$N(\Gamma, \tau, t):=N(\Gamma, \tau, S_{t})$ with $S_{t}=\{\chi\in V|-\chi(\omega)\leq t\}$ , $t\geq 0$ ,

is just the spectral counting function of this Laplacian.
Problem (A) is a contained in the question about limit multiplicities in the following

setting. The group $G$ acts by right translations in the Hilbert space $\mathcal{H}(\Gamma)=L^{2}(\Gamma\backslash G)$ .
Let $\mathcal{H}_{\mathrm{d}\mathrm{i}\mathrm{s}}(\Gamma)$ be the closure of the sum of all irreducible closed invariant subspaces and
$\mathcal{H}_{\mathrm{c}\mathrm{o}\mathrm{n}}(\Gamma)$ its orthogonal complement. Then $A^{2}(\Gamma, \tau)$ is dense in the subspace of K-invariant
elements of $\mathcal{H}_{\mathrm{d}\mathrm{i}\mathrm{s}}(\Gamma)\otimes W_{\tau}$. The theorem of Langlands cited above in fact implies that

$\mathcal{H}_{\mathrm{d}\mathrm{i}\mathrm{s}}(\Gamma)\cong\bigoplus_{\pi\in\Pi(G)}H_{\pi}^{N(\Gamma,\pi)}$
(Hilbertian direct sum)

as unitary $G$-modules, where $\Pi(G)$ denotes the set of equivalence classes of irreducible
unitary representations of $G$ , each $\pi$ is realised on a Hilbert space $H_{\pi}$ , and the $N(\Gamma, \pi)$

are certain natural numbers called multiplicities. Since

$N( \Gamma, \tau, S)=\sum_{(\pi\in\prod_{\in}G)}[\pi|_{K}:\check{\tau}]N(\Gamma, \pi)$

,

where $\chi_{\pi}$ is the infinitesimal character of $\pi$ and $\check{\tau}$ the contragredient of $\tau$ , our problems
are special cases of the question about the asymptotics of

$N( \Gamma, \Omega):=\sum_{\pi\in\Omega}N(\Gamma, \pi)$

as the set $\Omega\subset\Pi(G)$ exhausts (a connected component of) $\Pi(G)$ or as $\Gamma$ shrinks to {1}.
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Results for $\Gamma\backslash G$ compact
In the case when $\Gamma\backslash G$ is compact, one has the most complete results, which we recall in
this section. First we consider problem (A). Usually, one restricts attention to decreasing
sequences $\Gamma_{1}\supset\Gamma_{2}\supset\ldots$ of normal subgroups of finite index in $\Gamma$ such that the intersection
of all $\Gamma_{j},$ $j\in \mathbb{N}$ , is the trivial subgroup {1}. In this situation, $\mathrm{D}\mathrm{e}\mathrm{G}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{g}\mathrm{e}$ and Wallach [2]
have proved that

$\lim_{jarrow\infty}\frac{N(\Gamma_{j},\pi)}{\mathrm{v}\mathrm{o}1(\Gamma_{j}\backslash G)}=d_{\pi}$, (1)

where $d_{\pi}$ denotes the formal dimension of $\pi\in\Pi(G)$ corresponding to the choice of Haar
measure which is implicit in the volume appearing in the denominator. Note that $d_{\pi}\neq 0$

iff $\pi$ belongs to the discrete series $\Pi_{\mathrm{d}\mathrm{i}\mathrm{s}}(G)$ . If $\pi$ is integrable (i.e., if its $K$-finite matrix
coefficients are integrable over $G$) and $\Gamma$ is torsion-free then, by a well-known result of
Langlands, the formula is true without passing to the limit.

More generally, for $\Omega\subset\Pi(G)$ open, relatively compact and with regular boundary,
Delorme [5] has proved that

$\lim_{jarrow\infty}\frac{N(\Gamma_{j},\Omega)}{\mathrm{v}\mathrm{o}1(\Gamma_{j}\backslash G)}=\mu(\Omega)$ ,

where $\mu$ is the Plancherel measure corresponding to the above choice of Haar measure. Of
course, the preceding result is a special case, since $d_{\pi}=\mu(\{\pi\})$ . Note that the support
of $\mu$ is the set $\Pi_{\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}}(G)$ of tempered $\pi\in\Pi(G)$ .

As indicated in the first section, these results about limit multiplicities easily imply
asymptotic formulas for the dimensions of spaces of automorphic forms. If we define a
measure $\mu_{\tau}$ on $V$ by

$\mu_{\tau}(S)=\int_{\Omega_{S}}[\pi|_{K} : \check{\tau}]d\mu(\pi)$ , where $\Omega_{S}=\{\pi\in\Pi(G)|\chi_{\pi}\in S\}$ ,

then, for $S\subset V$ subject to the same requirements as $\Omega$ above,

$\lim_{jarrow\infty}\frac{N(\Gamma_{j},\tau,S)}{\mathrm{v}\mathrm{o}1(\Gamma_{j}\backslash G)}=\mu_{\tau}(S)$ . (2)

Now we come to problem (B). In the same paper [5], Delorme has shown that, if $G$

has a single conjugacy class of Cartan subgroups and $\Gamma$ is torsion-free, then

$\frac{N(\Gamma,\Omega_{t})}{\mathrm{v}\mathrm{o}1(\Gamma\backslash G)}\sim\mu(\Omega_{t})$ as $tarrow\infty$

for suitable expanding families of subsets $\Omega_{t}\subset\square (G),$ $t>0$ , like the following one. Let
$M$ be a minimal Levi subgroup, $A$ the greatest $\mathbb{R}$-split torus in its center and $\sigma\in\Pi(M)$

trivial on $\exp$ a. Then one can take
$\Omega_{t}=\{\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}(\sigma_{\lambda})|\lambda\subset t\Omega\}$

for any open, relatively compact set $\Omega\subset i\alpha^{*}$ with regular boundary. Here $P$ is a parabolic
subgroup of $G$ with Levi component $M$ and $\sigma_{\lambda}$ is the usual twist of $\sigma$ by the character
$\exp H\vdasharrow e^{\lambda(H)}$ of $\exp\alpha$ considered as a character of $M$ . In this case, $\mu(\Omega_{t})\sim Ct^{n}$ , where
$n=\dim(G/K)$ . It should be noted that all results in the present section do not use the
assumption that $\Gamma$ is arithmetic.
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Results for $\mathrm{I}^{\neg}\backslash G$ noncompact
In the case when $\Gamma\backslash G$ is non-compact, all results on problem (A) are proved only under an
additional assumption about the tower of subgroups $\Gamma_{j}$ . Let $\rho:Garrow \mathrm{G}\mathrm{L}(n)$ be a faithful
$\Phi \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ representation, and let $\Gamma_{n}(N)$ be the principal congruent subgroup of level
$N\in \mathbb{N}$ consisting of all $\gamma\in \mathrm{G}\mathrm{L}(n, \mathbb{Z})$ such that the matrix entries of $\gamma-\mathrm{I}\mathrm{d}$ are divisible
by $N$ . Under the condition that there exist numbers $N_{j}$ such that $\rho(\Gamma_{j})=\rho(G)\cap\Gamma_{n}(N_{j})$

for all $j\in \mathbb{N}$, Savin [10] has proved that the limit formula (1) still holds. The assumption
depends on the choice of $\rho$ , but it should be possible to replace it by the condition that
the tower has bounded depth in the following sense (cf. [3]).

Definition The tower of normal subgroups $\Gamma_{j}$ is called a tower of bounded depth if ihere
are natural numbers $N_{j},$ $D$ such that $\rho(\Gamma_{j})\subset\Gamma(N_{j})$ and

$[\rho(G)\cap\Gamma(N_{j}) : \rho(\Gamma_{j})]\leq D$

for all $j\in \mathbb{N}$ and for some (hence for any) faithful $\mathbb{Q}$-rational representation $\rho$ .

Note that $\Gamma\backslash G$ is compact iff the $\Phi \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}$ of $G$ is zero. The results we are going to
describe generalise formula (2) to the case when the $\mathbb{Q}-$-rank of $G$ is one. First let us recall
the decomposition of $\mathcal{H}_{\mathrm{c}\mathrm{o}\mathrm{n}}(\Gamma)$ in this situation. If $M$ is a Levi component of a parabolic
subgroup $P$ of $G$ (everything defined over $\mathbb{Q}$), we obtain an arithmetic subgroup $\Gamma_{P}$ of $M$

by projecting $\Gamma\cap P$ along the unipotent radical of $P$ . Denoting by $3_{M},$ $V_{M}$ the analogues
of 3 and $V$ for $M$ , we have the Harish-Chandra homomorphism $3arrow 3_{M}$ , which induces
a map $p_{M}$ : $V_{M}arrow V$ . The direct product decomposition $M=M^{1}\cross\exp a_{M}$ , where $M^{1}$ is
the intersection of the kernels of all $\mathrm{K}_{\vdash}$ -valued characters of $M$ , induces a decomposition
$V_{M}=V_{M}^{1}\cross ia_{M}^{*}$ . Note that $\dim\alpha_{M}=1$ according to our assumption on the rank of $G$ .

Langlands’ spectral theory [6] provides an isomorphism of unitary G-modules

$\mathcal{H}_{\mathrm{c}\mathrm{o}\mathrm{n}}(\Gamma)\cong\frac{1}{2\pi}\bigoplus_{\chi\in V_{M}^{1}}\int_{ia_{M}^{*}/\pm 1}\{P\}$

$\oplus \mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}\mathcal{H}(\Gamma_{P}, \chi, \lambda)d\lambda$,

where the right-hand side is a Hilbertian direct integral over $(\chi, \lambda)\in V_{M}$ modulo the ac-
tion of the (two-element) Weyl group of $(\mathrm{g}, a_{M})$ and the inner sum is over all $\Gamma$-conjugacy
classes of proper parabolic $\Phi \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{s}P$ of $G$ , whose Levi components $M$ can be iden-
tified with each other by $G$-conjugation. The justification for taking the integral over the
quotient by the Weyl group is provided by the intertwining operator

$M(\chi, \lambda)$ :
$\bigoplus_{\{P\}}\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}\mathcal{H}(\Gamma_{P}, \chi, \lambda)arrow\bigoplus_{\{P\}}\mathrm{I}\mathrm{n}\mathrm{d}_{P}^{G}\mathcal{H}(\Gamma_{P}, \chi, -\lambda)$

,

which comes from the constant terms of Eisenstein series and may also be interpreted
as a scattering matrix. This operator is unitary for $\lambda\in ia_{M}^{*}$ , and after restriction to
$K$-finite vectors it extends meromorphically to $a_{M,\mathbb{C}}^{*}$ satisfying $M(\chi, \lambda)M(\chi, -\lambda)=$ Id.
If we tensor both domain and range with $W_{\tau}$ and extend the operator $M(\chi, \lambda)$ by the
identity, it restricts to a map $M(\tau, \chi, \lambda)$ between the corresponding (finite-dimensional)
subspaces of K-invariants.
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Our main object of interest is the measure $N(\Gamma, \tau, S)$ on $V$ , which counts the multi-
plicities of infinitesimal characters in the discrete subspace. However, we would also like
to define an analogous measure for the continuous subspace by

$N_{\mathrm{c}\mathrm{o}\mathrm{n}}( \Gamma, \tau, S)=\frac{1}{4\pi}\sum_{\chi\in V_{M}^{1}}\int_{\{\lambda\in ia_{M}^{*}|p_{M}(\chi,\lambda)\in S\}}$tr $(M(\tau, \chi, \lambda)^{-1}M’(\tau, \chi, \lambda))d\lambda$

and a total measure by

$\tilde{N}(\Gamma, \tau, S)=N(\Gamma, \tau, S)+N_{\mathrm{c}\mathrm{o}\mathrm{n}}(\Gamma, \tau, S)$.

Unless the real rank of $G$ is one, we can only show at present that the latter is defined as
a tempered distribution of order 1, i.e., the characteristic function of $S$ has to be replaced
by a function which, together with its first derivatives, is rapidly decreasing on $V$ .

The inclusion of the continuous subspace can be best motivated in the setting of
problem (B). For $G=\mathrm{S}\mathrm{L}(2, \mathbb{R})$ , trivial $\tau$ , and $\Gamma$ not necessarily arithmetic, Selberg ([11],
p. 668) has proved the generalisation of the Weyl asymptotic law

$\tilde{N}(\Gamma, \tau, t)$

$\overline{\mathrm{v}\mathrm{o}\mathrm{l}(\Gamma\backslash G)}\sim\frac{t}{4\pi}$ as $tarrow\infty$ .

If $\Gamma$ is a congruence $\mathrm{s}\iota^{-}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ , one can calculate $M(\tau, \lambda)$ (note that $V_{M}^{1}=\{1\}$ in this
case) in terms of $\mathrm{D}\mathrm{i}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}_{\perp^{1}}.\mathrm{t}L$ -series, and it follows that this asymptotic is also true with $\tilde{N}$

replaced by $N$ . For nonarithmetic $\Gamma$ , however, $N(\Gamma, \tau, t)$ is conjecturally bounded, see [8].
Now we return to problem (A). The main result of [4] is as follows.

Theorem 1 Let $G$ be of $\mathbb{Q}$-rank one and $(\Gamma_{j})$ a tower of bounded depth. Then

$\lim_{jarrow\infty}\frac{\tilde{N}(\Gamma_{j},\tau)}{\mathrm{v}\mathrm{o}1(\Gamma_{j}\backslash G)}=\mu_{\tau}$

as a tempered distribution on $V$ of order one.

This result raises several questions. One may ask, e.g., whether the restriction to
towers of bounded depth is necessary. If the answer is affirmative, then one stays in
the range of arithmetic lattices, and in analogy to problem (B) one might hope that the
result is true with $\tilde{N}$ replaced by $N$ (see [4], Conjecture 3.10). For a tower of principal
congruence subgroups $\Gamma_{j}=\Gamma(N_{j})$ in $\mathrm{S}\mathrm{L}(2, \mathbb{Z})$ , this is indeed the case, as was already
shown in [9] (cf. also [4], section 5). In general, however, it seems to be very difficult to
show that the continuous contribution is of smaller order than the discrete one.

Of course, one would expect that a similar result holds for limit multiplicities of
representations, not only infinitesimal characters. This would require the application of
more elaborate Paley-Wiener theorems as in [5].

Our main tool is the trace formula, as it was in [11], [5] and [9]. The central problem
is to show that the spectral side extends to a continuous linear functional on a larger
space of test functions than those for which the trace formula is valid. This is done by
means of a spectral estimate (see [3]) for the cut-off Laplacian uniform in towers. It has
the following special case, where $N_{\mathrm{c}\mathrm{u}\mathrm{S}}$ refers to the space of cusp forms $A_{\mathrm{c}\mathrm{u}\mathrm{s}}\subset A^{2}$ .
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Theorem 2 Let the $\mathbb{Q}$-rank of $G$ be arbitrary and $(\Gamma_{j})$ a tower of bounded depth. Then
there exisis $C>0$ such that

$N_{\mathrm{c}\mathrm{u}\mathrm{s}}(\Gamma_{j}, \tau, t)\leq C\mathrm{v}\mathrm{o}\mathrm{l}(\Gamma_{j}\backslash G)(1+t)^{n/2}$ for all $t\geq 0,$ $j\in \mathbb{N}$.

For a fixed $\Gamma_{j}$ , this is due to M\"uller [7]. The method to estimate $N_{\mathrm{c}\mathrm{o}\mathrm{n}}$ in terms of the
spectral counting function of the cut-off Laplacian also goes back to the same paper. It
yields a bound linear in $\mathrm{v}\mathrm{o}\mathrm{l}(\Gamma_{j}\backslash G)$ only for $G$ of $\Phi \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}$ one, whence the restriction in
Theorem 1, and also imposes the restriction to distributions instead of measures.
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