Local Langlands correspondence について(紹介)

伊原康隆 (京大 数理研)

局所 Langlands 予想が、標数 0 の場合にも(一般の次数 n に対して)最近 M. Harris と R. Taylor [HT] によって証明され、 G. Henniart のより簡単な証明 [He] も出ましたので、正確に何が証明されたのか、という所を中心に紹介させていただきます。尚、ここでは紹介し切れませんが、 [HT] を見ると過去の日本人の仕事 ー 特に志村五郎、井草準一、本田 平(故人)、藤原一宏各氏によるもの ー も重要なところで使われていることがわかります。

F を標数 0 の局所体(\mathbb{Q}_p の有限次拡大)とするとき、主要結果は、大まかに云うと、1 対 1 対応

 $Gal(\bar{F}/F)$ の n 次複素表現 $\underset{1:1}{\longleftrightarrow} GL_n(F)$ の既約表現(一般に無限次元)

が存在する、という事ですが、左辺 (Galois side) で $Gal(\bar{F}/F)$ は Weil 群 W_F に置換え、その表現は" Φ -semisimple なもの" とし、右辺 (Automorphic side) では smooth な表現としなくてはなりません。それらの定義から復習します。 その前に主な文献を列挙しましょう。

1. Main references

《"决定的"文献》

- [HT] M. Harris, R. Taylor, "On the geometry and cohomology of some simple Shimura varieties" (Preprint, 1998, 99) (99, Aug 30 version を参照しました)
- [He] G. Henniart, "Une preuve simple des conjectures des Langlands pour GL(n) sur un corps p-adique", To appear in Inv. Math.

《基本的文献》

(Weil(-Deligne) 群については)

- [De] P. Deligne, "Les constantes des équations fonctionelles des fonctions L" In: "Modular functions of one variable" II, SLN 349.
- [Ta] J. Tate, "Number Theoretic Background" AMS Proc. Symp. Pure Math. 33-2 (1979).

(Automorphic representations については) AMS Proc. Symp. Pure Math. 33-1 の Cartier 等の Survey, 及び

- [JPS] H. Jacquet, I. I. Piatetskii-Shapiro, J. Shalika, "Rankin-Selberg convolutions", Amer. J. Math. 105 (1983).
 - [Z] A. V. Zelevinskii, "Induced representations of reductive p-adic groups II" Ann. Sci. ENS 13 (1980), 等.

(n=2 源泉)

[JL] H. Jacquet, R. P. Langlands, "Automorphic forms on GL(2)" SLN 114. (比較的最近の部分的結果)

- [He 1] G. Henniart, "La conjecture de Langlands locale numérique pour GL(n)" Ann. Sci. ENS **21** (1988).
- [He 2] G. Henniart, "Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires", Inv. Math. **113** (1993).
- [Ha 1] M. Harris, "The local Langlands conjecture for GL(n) over a p-adic field, n < p", Inv. Math. **134** (1998).

(Char p > 0 の場合の証明は)

[LRS] G. Laumon, M. Rapoport, U. Stuhler, " \mathcal{D} -elliptic sheaves and the Langlands correspondence", Inv. Math. 113 (1993).

2. Main definitions

《Galois side》

p: a prime number, $[F:\mathbb{Q}_p] < \infty$ (a commutative field), \bar{F} : an algebraic closure of F, q = # (the residue field of F).

• W_F (the Weil group of F) := $\{w \in Gal(\bar{F}/F); w \text{ acts as } * \to *^{|w|} \text{ on} \}$ the residue field, with some $|w| \in q^{\mathbb{Z}} \}$ = $\Phi^{\mathbb{Z}} \ltimes I_F$ (locally compact),

 I_F : the inertia group (open compact),

Φ: a geometric Frobenius element, i.e., $\Phi \in W_F$ s.t. $|\Phi| = q^{-1}$.

Remark. W_F is a dense subgroup of $Gal(\bar{F}/F)$, but we consider W_F as a topological group in such a way that I_F is open (and hence $W_F/I_F(\cong \mathbb{Z})$ is discrete).

• The abelianization W_F^{ab} of W_F is canonically isomorphic with the multiplicative group F^{\times} , via local classfield theory;

$$W_F^{ab} \xrightarrow{\sim} F^{\times}.$$

The induced homomorphism $W_F \to F^{\times}$ maps Φ to a prime element of F^{\times} , and |w| on W_F corresponds with the standard valuation $|\cdot|_F$ of F^{\times} .

• $\rho: W_F \to GL_n(\mathbb{C})$: a continuous representation, i.e., ρ is a group homomorphism such that its restriction to I_F factors through a finite quotient.

 ρ : completely reducible $\leftrightarrow \rho(\Phi)$ semi-simple for one $\Phi \leftrightarrow -$ for all Φ .

• <u>Def</u> Φ -semi-simple representation of $W'_F = W_F \ltimes G_a$ (the Weil-Deligne group) of deg $n := \{(\rho, N) | \rho : W_F \to GL_n(\mathbb{C}), \text{ continuous completely reducible representation, } N \in M_n(\mathbb{C}), \text{ nilpotent, } \rho(w) N \rho(w)^{-1} = |w| N (\forall w \in W_F) \}$

<u>Remark</u> (i) \oplus , \otimes defined; (ii) ρ : $irreducible \to N = 0$; (iii) each l-adic ($l \neq p$) representation ρ_l of W_F gives rise to a Φ -semi-simple representation (ρ , N) of W'_F . (N is determined by its restriction to $\mathbb{Z}_l \subset I_F$, and ρ is a certain modification of ρ_l .)

- Examples of (ρ, N) .
 - (I) Each continuous homomorphism $\chi: F^{\times} \to \mathbb{C}^{\times}$ (a "quasi-character" of F^{\times}) can be regarded as a 1-dimensional representation of W_F , via $W_F \to W_F^{ab} \overset{\sim}{\to} F^{\times}$. The unramified quasi-characters are those of the form χ_s ($s \in \mathbb{C}$) defined by $\chi_s(a) = |a|_F^s$.
 - (II) Given any irreducible $\rho_0: W_F \to GL_{n_0}(\mathbb{C})$ and an integer $d \geq 1$,

the "Steinberg representation" $St_d(\rho_0) = (\rho, N)$ is by definition:

$$\rho: W_{F} \ni w \to \begin{pmatrix} \rho_{0}(w) & & & 0 \\ & \rho_{0}(w)|w|^{-1} & & \\ & & \ddots & \\ & & 0 & & \rho_{0}(w)|w|^{-(d-1)} \end{pmatrix} \in GL_{n_{0}d}(\mathbb{C}),$$

$$N = \begin{pmatrix} 0 & I_{n_{0}} & & 0 \\ & 0 & \ddots & \\ & & \ddots & I_{n_{0}} \\ 0 & & & 0 \end{pmatrix}$$

It is known that a Φ -semisimple representation of W_F' is of the form $St_d(\rho_0)$ if and only if it is indecomposable, and that $St_d(\rho_0)$ determines both d and ρ_0 .

(III) Each Φ -semisimple representation of W_F' can be decomposed uniquely as a direct sum of indecomposable representations.

Thus, $(\rho, 0)$ with ρ : irreducible are the most fundamental Φ -semi-simple representations of W'_F .

«Automorphic representation side»

$$n \ge 1$$
, $G_n = GL_n(F)$ (locally compact groups).

• Def A smooth representation (π, V) of G_n is:

V: a complex vector space (in most cases infinite dimensional),

 $\pi: G_n \to Aut_{\mathbb{C}}V$, a group homomorphism s.t. the stabilizer of each $v \in V$ in G_n is open.

All representations will be assumed smooth.

• $\underline{\underline{\mathrm{Def}}}_{V}$ π : admissible \leftrightarrow for each open compact subgroup $U \subset G_n$, $V^U := \{v \in V | \pi(u)v = v(\forall u \in U)\}$ is finite dimensional.

 π : irreducible \to admissible (in the case of representations of G_n), and $\lambda \in End_{\mathbb{C}}V$, $\lambda \circ \pi(g) = \pi(g) \circ \lambda (\forall g \in G_n) \Rightarrow \lambda$: scalar. esp. $z \in F^{\times} \cdot I_n$ (the center of G_n) $\Rightarrow \pi(z)$: scalar. This defines the central character $\omega_{\pi} : F^{\times} \to \mathbb{C}^{\times}$ of π .

• The smooth dual (π^{\vee}, V^{\vee}) of (π, V) for π : irreducible. $V^{\vee} := \{\text{linear } V \to \mathbb{C} \text{ which annihilates the unique } G_n\text{-stable complement of } V^U \text{ for some } U\},$

$$\langle \pi(g)v, v^{\vee} \rangle = \langle v, \pi^{\vee}(g)^{-1}v^{\vee} \rangle$$

$$(\pi^{\vee})^{\vee} = \pi.$$

- $\underline{\underline{\mathrm{Def}}}$ π : an irreducible smooth representation is called <u>supercuspidal</u>, if for any $v \in V, v^{\vee} \in V^{\vee}$, the support of $\langle \pi(g)v, v^{\vee} \rangle$ (a C-valued function on G_n) is <u>compact</u> modulo the center $F^{\times} \cdot I_n$.
- Induced representations. $P \subset G = G_n$, (π_P, U) : representation of P, given.

Then: $\operatorname{Ind}_{P\uparrow G}(\pi_P, U) = (\pi_G, V)$: defined by

$$V = \{f : U \text{-valued fctns on } G; \ f(pg) = \delta_P^{1/2}(p)\pi_P(p)f(g)\}.$$
$$(p \in P, g \in G)$$

 $(\pi_G(g)f)(x) = f(xg)$, where $\delta_P: G \to (\mathbb{R}^+)^{\times}$ is a character defined by the formula:

 $\delta_P(p)^{-1} \times (\text{right inv. Haar measure of } P) = \text{left inv. Hear measure of } P.$

- Examples.
 - (I) Each quasi-character $\chi: F^{\times} \to \mathbb{C}^{\times}$ can be regarded as an irreducible representation of $GL_1(F)$. It is supercuspidal. (But the composition of χ with the determinant det: $GL_n(F) \to F^{\times}$ is not supercuspidal if n > 1.)
 - (II) Given any irreducible supercuspidal representation ρ_0 of $GL_{n_0}(F)$ and an integer $d \geq 1$, put $n = n_0 d$ and let P be the parabolic subgroup of $GL_n(F)$ generated by the block-diagonal matrices $GL_{n_0}(F) \times \cdots \times GL_{n_0}(F)$ (d copies) and the upper triangular unipotent matrices. Consider the representation

$$(
ho_0 \otimes |det|_F^{d-1}) \otimes \cdots \otimes (
ho_0)$$

of

$$GL_{n_0}(F) \times \cdots \times GL_{n_0}(F)$$
.

Regard this as a representation $\rho_0^{(d,P)}$ of P by passage to the quotient, and take $\operatorname{Ind}_{P\uparrow G} \rho_0^{(d,P)}$. Then, this has a unique irreducible <u>subrepresentation</u>, called $St_d(\rho_0)$. It is known that an irreducible representation of G_n is of the form $St_d(\rho_0)$ if and only if it is quasi-square integrable i.e., a tensor product of a quasi-character of F^{\times} (regarded as a 1-dimensional representation of G_n via the determinant) and a square integrable (modulo the center) representation of G_n . They are also precisely those irreducible representations of G_n that correspond naturally with some irreducible representation of D_n^{\times} , where D_n is the central division algebra over F of degree n^2 and the Hasse invariant 1/n (Deligne-Kazhdan-Vigneras). $St_d(\rho_0)$ determines each of d and ρ_0 uniquely.

(III) An arbitrary irreducible representation π of G_n can be expressed uniquely as the "Langlands sum" \boxplus of representations of the form treated in (II).

The sum $\rho_1 \boxplus \cdots \boxplus \rho_r$, where each ρ_i is of the type treated in (II), is defined by using the induced representation $\operatorname{Ind}_{P \uparrow G}(\rho_1 \otimes \cdots \otimes \rho_r)$ analogous to the situation in (II). If $n = n_1 + \cdots + n_r$ and ρ_i is a representation of $GL_{n_i}(F)$ $(1 \leq i \leq r)$, P is now the semi-direct product of

$$GL_{n_1}(F) \times \cdots \times GL_{n_r}(F) \subset GL_n(F)$$

and the upper triangular unipotent matrices. But the ordering of ρ_1, \ldots, ρ_r and whether we choose the unique irreducible subrepresentation of $\operatorname{Ind}(\rho_1 \otimes \cdots \otimes \rho_r)$ or the quotient representation is a delicate point (whose choice should be reversed if we take as P the lower blocktriangular matrices). I could not find an appropriate explicit reference for this, but the content of [Z] shows that it should be, here, the unique irreducible, quotient of $\operatorname{Ind}(\rho_1 \otimes \cdots \otimes \rho_r)$ if the ordering of ρ_1, \ldots, ρ_r is admissible in the following sense. Write $\rho_i = \operatorname{St}_{d_i}(\rho_{i,0})$. The ordering is admissible if for each i < j, there does <u>not</u> exist any positive integer a such that

$$\rho_{j,0} = \rho_{i,0} \otimes |det|^a, \quad 1 + d_i - d_j \le a \le d_i.$$

Admissible orderings exist, and the resulting (unique irreducible) quotient of the induced representation is independent of the choice of such orderings.

3. The main result ([HT] [He])

Theorem (Harris-Taylor, Henniart)
$$\begin{pmatrix} n=1: & \text{classical}, \ n=2:\cdots, \text{Kutzko} \\ n=3 & (\text{almost}) \text{ Henniart}, \ n< p: \text{ Harris} \\ \text{char } p>0 & \cdots \text{Laumon-Rapoport-Stuhler} \end{pmatrix}$$

There exists a unique system of bijections $LG_n (n \geq 1)$ satisfying $(1) \sim (5)$ below.

$$\{\rho' = (\rho, N); \quad \rho: W_F \to GL_n(\mathbb{C}) \text{ continuous completely reducible representation, $N \in M_n(\mathbb{C}) \text{ nilpotent, s.t. } \rho(w)N\rho(w)^{-1} = |w|N(\forall w \in W_F).\}/\simeq$$$

 $\stackrel{LG_n}{\leftrightarrow}$ { smooth <u>irreducible</u> representations π of $GL_n(F)$ }/ \simeq . This system of bijection also satisfies:

$$\rho: \text{irreducible}(\to N=0) \quad \leftrightarrow \quad \pi: \text{supercuspidal},$$

$$St_d(\rho) \quad \leftrightarrow \quad St_d(\pi),$$

$$(i.e., \rho: \text{indecomposable} \quad \leftrightarrow \quad \pi: \text{quasi square-integrable})$$

$$\oplus St_d(\rho_i) \quad \leftrightarrow \quad \boxplus St_d(\pi_i).$$

(1) $n=1, LG_1:$ local classfield theory correspondence via $W_F^{ab} \xrightarrow{\sim} F^{\times}$.

$$(2) \qquad \rho' \longleftrightarrow \pi \quad \Rightarrow \quad det \rho \longleftrightarrow \omega_{\pi},$$

$$(3) \qquad \qquad \Rightarrow \quad (\chi \circ ab) \otimes \rho$$

$$(3) \qquad \Rightarrow (\chi \circ ab) \otimes \rho' \leftrightarrow (\chi \circ det) \otimes \pi,$$

$$(4) \qquad \Rightarrow (\rho')^{\vee} \leftrightarrow \pi^{\vee},$$

(5)
$$\rho'_{i \ (i=1,2)} \iff L(\rho'_{1} \otimes \rho'_{2}, s) = L(\pi_{1} \times \pi_{2}, s),$$

$$\varepsilon(\rho'_{1} \otimes \rho'_{2}, s, \psi) = \varepsilon(\pi_{1} \times \pi_{2}, s, \psi),$$

$$(\psi : F \to \mathbb{C}^{\times} : \text{a non-trivial additive character}).$$

As for these local L-functions and local ε -factors, cf. e.g. [Ta] for those on the left side, and [JPS] for those on the right side. Each L(*,s) is a finite product of $(1-\chi(\pi)q^{-s})^{-1}$, where π is a prime element of F and χ runs over a finite number of unramified quasi-characters of F^{\times} determined by *. Each $\varepsilon(*,s,\phi)$ is a function of s of the form $a \cdot \exp(bs)$ ($a \in \mathbb{C}^{\times}, b \in \mathbb{C}$), where b is essentially the conductor of *.

The basic questions:

- (1) What should correspond to \otimes of Galois representations on the automorphic side?
- (2) What should correspond to $\operatorname{Ind}_{F'\uparrow F}(\chi)$ (more precisely, from $W_{F'}$ to W_F) on the automorphic side, where χ is any quasi-character of $(F')^{\times}$?

They seem still open.

4. On proofs

Both in [HT] and [He], the proofs are based on constructions of <u>global</u> correspondences. They construct appropriate automorphic representations on GL_n over some CM-fields associated with some Shimura varieties, find corresponding global Galois representations, and compare their local factors. In [HT], study of Shimura varieties at primes with bad reductions are used, but in [He], good reductions are sufficient for the purpose. The proof in [He] is simpler, but [HT] contains more information on the global correspondences.

In [HT], the authors start with the big universal l-adic representation of $D_F^{\times} \times GL_n(F) \times W_F$ constructed by Drinfeld, and study its decomposition in greater detail. In [He], by using the Brauer theorem on representations of finite groups, the author reduces the problem to construction of a supercuspidal representation of $GL_m(F)$ corresponding to those irreducible representations of W_F that are induced from a (multiplicative) quasi-character of a finite extension of F (of degree m). Special types of Shimura varieties over a CM-field (in this case, a composite of a totally real field and an imaginary quadratic field, which has F as a non-archimedean completion),

and cohomology groups of certain l-adic sheaves on such varieties are used effectively.