ALGEBRAIC K-THEORY OF HENSELIAN PAIRS

THOMAS GEISSER

ABSTRACT. In this note we study the relationship between $\mathcal{F}(R)$ and $\mathcal{F}(R/I)$ for a Henselian pair (R, I) and various functors \mathcal{F}. For example, in the case of algebraic K-theory, if m is invertible in R, then $K_i(R, \mathbb{Z}/m) \cong K_i(R/I, \mathbb{Z}/m)$.

If p is not invertible in R, then in general $K_i(R, \mathbb{Z}/p)$ is not determined by the inverse system $\{K_i(R/p^j, \mathbb{Z}/p)\}_j$. However, if p is not a zero-divisor and R is p-complete, then we have $K_i(R, \mathbb{Z}/p) \cong \lim K_i(R/p^j, \mathbb{Z}/p)$. We sketch the proofs of these results.

1. HENSELIAN PAIRS

Definition 1.1. Let R be a commutative ring with unit and I an ideal of R. Then (R, I) is called a Henselian pair, if the following equivalent conditions are satisfied [1][2]:

1. I is contained in the Jacobsen radical of R, and for all monic polynomials $f \in R[T]$ and factorizations $f = \overline{g}\overline{h}$ mod I with $\overline{g}, \overline{h} \in R/I[T]$ monic and relatively prime, there is a lifting $f = gh$ of the factorization with $g, h \in R[T]$ monic.

2. For any finite R-algebra B, there is a bijection of idempotents

$$\text{Idem}(B) \cong \text{Idem}(B/IB).$$

3. For any étale R-algebra B, any R-map $B \rightarrow R/I$ lifts uniquely to a map $B \rightarrow R$.

4. For any $f \in R[T]$ and any simple root $\overline{\alpha} \in R/I$ of f mod I there is lifting to a root $\alpha \in R$ of f (note that α is called a simple root of the polynomial f if and only if $f(\alpha) = 0$ and $f'(\alpha)$ is a unit).
In this note we want to study the relationship between $\mathcal{F}(R)$ and $\mathcal{F}(R/I)$ for various functors \mathcal{F}. As a first example, we have the following theorem of Gabber [1]:

Theorem 1.2. Let (R, I) be a Henselian pair, and \mathcal{F} a torsion sheaf on $(\text{Spec } R)_{\text{et}}$. Then

$$H^q_{\text{et}}(\text{Spec } R, \mathcal{F}) \cong H^q_{\text{et}}(\text{Spec } R/I, i^*\mathcal{F}).$$

Note that if (R, I) is a Henselian local ring, then the theorem holds without the assumption that \mathcal{F} is torsion and is an elementary property of étale cohomology. On the other hand, the theorem is wrong without the hypothesis that \mathcal{F} is torsion. It is a general phenomenon that theorems as above only hold with torsion coefficients.

2. K-theory

To get interesting invariants of a ring R, generalizing for example the group of units R^\times and the ideal class group $\text{Pic } R$, one can study the group of matrices $\text{GL}_n(R)$, or the direct limit $\text{GL}(R) = \varinjlim \text{GL}_n(R)$. A good method to analyze a group is to study its group homology

$$H_i(\text{GL}(R), \mathbb{Z}) := H_i(\text{BGL}(R), \mathbb{Z}).$$

Here the right hand side is the ordinary singular homology of a topological space, and for a group G, the topological space BG is characterized by the property that it has only one nontrivial higher homotopy group, $\pi_1(BG) = G$. In particular, we have the Hurewicz homomorphism

$$\pi_1(\text{BGL}(R)) = \text{GL}(R) \to H_1(\text{GL}(R), \mathbb{Z}) = \text{GL}(R)^{ab}.$$

Since a good invariant of the ring R should consist of abelian groups, the idea is to make the homotopy group abelian without changing the homology groups. There is a universal construction to achieve this, called $+$-construction. In other words, there is a topological space $\text{BGL}(R)^+$ characterized by the properties that for any abelian group A we have

$$H_i(\text{BGL}(R), A) = H_i(\text{BGL}(R)^+, A)$$

and

$$\pi_1(\text{BGL}(R))^{ab} = \pi_1(\text{BGL}(R)^+).$$

This changes the higher homotopy groups, and we define K-theory as the higher homotopy groups of this space

$$K_i(R) := \pi_i(\text{BGL}(R)^+),$$

and similar with coefficients in an abelian groups A,

$$K_i(R, A) := \pi_i(\text{BGL}(R)^+, A).$$
If \(A = \mathbb{Z}/m \), then there is an exact sequence
\[
0 \rightarrow K_i(R)/m \rightarrow K_i(R, \mathbb{Z}/m) \rightarrow mK_{i-1}(R) \rightarrow 0,
\]
and if \(A = \mathbb{Q} \) then \(K_i(R, \mathbb{Q}) \cong K_i(R) \otimes \mathbb{Q} \). Note that it is possible to recover \(K_*(R) \) from \(K_*(R, \mathbb{Q}) \) and \(K_*(R, \mathbb{Z}/m) \) for all \(m \).

For example, by definition \(K_1(R) = \text{GL}(R)^{ab} \), and the determinant homomorphism \(\text{GL}(R) \rightarrow \mathbb{R}^\times \) together with the inclusion \(\mathbb{R}^\times \rightarrow \text{GL}(R) \), sending a unit \(r \) to a matrix with \(r \) in the upper left corner, shows that the units \(\mathbb{R}^\times \) form a split direct summand of \(K_1(R) \). In fact, \(K_1(R) = \mathbb{R}^\times \) if \(R \) is local.

As another example, for a field \(F \), \(K_2(F) \) has generators \(F^\times \otimes F^\times \) and relations \(a \otimes (1-a) = 0 \).

3. K-theory and group homology of Henselian pairs

The K-theory and group homology of Henselian pairs have been studied by Gabber, Suslin and Panin. Let \((R, I) \) be a Henselian pair. Define \(\text{GL}(R, I) \) as the kernel of the (surjective) reduction map \(\text{GL}(R) \rightarrow \text{GL}(R/I) \), and let \(\bar{H}_* \) be reduced homology (i.e. removing the copy of \(\mathbb{Z} \) in degree zero). By definition, K-theory and homology of \(\text{GL}(R) \) are closely related. For a Henselian pair, this takes the following form:

Proposition 3.1. a) [5] Let \((R, I) \) be a Henselian pair and \(m \) invertible in \(R \). Then the following statements are equivalent:

1. \(K_*(R, \mathbb{Z}/m) = K_*(R/I, \mathbb{Z}/m) \).
2. \(H_*(\text{GL}(R), \mathbb{Z}/m) = H_*(\text{GL}(R/I), \mathbb{Z}/m) \).
3. \(\bar{H}_*(\text{GL}(R, I), \mathbb{Z}/m) = 0 \).

b) [4] If \(m \) is not invertible in \(R \), then we still have an equivalence:

1. The pro-system \(\{K_*(R/I^j, \mathbb{Z}/m)\}_j \) is isomorphic to the constant pro-system \(\{K_*(R, \mathbb{Z}/m)\}_j \).
2. The pro-system \(\{H_*(\text{GL}(R/I^j), \mathbb{Z}/m)\}_j \) is isomorphic to the constant pro-system \(\{H_*(\text{GL}(R), \mathbb{Z}/m)\}_j \).

Recall that a map \((\phi_i : (X_i) \rightarrow (Y_i)) \) of pro-systems is an isomorphism if and only if for all \(i \) there is a \(j > i \) and a map \(s : Y_j \rightarrow X_i \) making the obvious diagram commutative.

It is a deep theorem in algebraic K-theory that the conditions of (a) are satisfied:

Theorem 3.2. (Gabber, Suslin) Let \((R, I) \) be a Henselian pair, and \(m \) invertible in \(R \). Then
\[
K_i(R, \mathbb{Z}/m) \cong K_i(R/I, \mathbb{Z}/m).
\]

The proof consists of three equally difficult steps:
1. The special case R is the Henselian local ring of a smooth variety over a field F in an F-rational point $[2][3]$.
2. Apply this to the Henselization of GL^x_n in the unit section to prove the theorem for R containing a field $[5]$.

Here is the main idea of the second step:

Let (R, I) be a Henselian pair containing a field F. The group homology $H_*(G, \mathbb{Z}/m)$ can be calculated using the complex $C_*(G, \mathbb{Z}/m)$ which in degree i is the free abelian group generated by i-tuples of elements of G, $[g_1, \ldots, g_i]$. Since every element of $\text{GL}(R, I)$ is contained in $\text{GL}_n(R, I)$ for some n, it suffices to show according to Proposition 3.1 that the inclusion

$$C_*(\text{GL}_n(R, I), \mathbb{Z}/m) \rightarrow C_*(\text{GL}(R, I), \mathbb{Z}/m)$$

induces the zero map on homology for all n. This holds if the map is null-homotopic, i.e. if we can construct maps

$$C_i(\text{GL}_n(R, I), \mathbb{Z}/m) \rightarrow C_{i+1}(\text{GL}(R, I), \mathbb{Z}/m)$$

such that $d \circ s + s \circ d = \iota$.

Consider the algebraic variety $\text{GL}_n(F)^x$. It is smooth over F and has a distinguished F-rational point e, the unit section. Let $\mathcal{O}_{n,i}^h$ be the Henselian local ring at e, and m the corresponding maximal ideal.

Let $\beta = [\beta_1, \ldots, \beta_i] \in C_i(\text{GL}_n(R, I), \mathbb{Z}/m)$. Each element β_j defines a morphism $\text{Spec } R \rightarrow \text{GL}_n$ sending the subvariety defined by I to the unit section. Hence β defines a morphism $\text{Spec } R \rightarrow \text{GL}_n^x$ with the same property. Since (R, I) is Henselian, this induces a homomorphism $\mathcal{O}_{n,i}^h \rightarrow R$ sending m to I. In particular, we get a map

$$\beta^*: C_*(\text{GL}(\mathcal{O}_{n,i}^h, m), \mathbb{Z}/m) \rightarrow C_*(\text{GL}(R, I), \mathbb{Z}/m).$$

Since by step (1) the theorem is known for $\mathcal{O}_{n,i}^h$, we have

$$K_*(\mathcal{O}_{n,i}^h, \mathbb{Z}/m) \cong K_*(\mathcal{O}_{n,i}^h/m, \mathbb{Z}/m)$$

and hence by Proposition 3.1

$$\bar{H}_*(\text{GL}(\mathcal{O}_{n,i}^h, m), \mathbb{Z}/m) = 0.$$

This property can be used to construct inductively elements $c_{n,i} \in C_{i+1}(\text{GL}(\mathcal{O}_{n,i}^h, m), \mathbb{Z}/m)$ independent of R such that $s(\beta) := \beta^*(c_{n,i})$ is the desired null-homotopy.
4. The general case

If m is not invertible in R, then in general $K_*(R, \mathbb{Z}/m) \neq K_*(R/I, \mathbb{Z}/m)$. One can ask if at least $K_*(R, \mathbb{Z}/m)$ is determined by the pro-system $\{K_*(R/I^j, \mathbb{Z}/m)\}_j$. But this is also wrong in general. For example, let $R = \mathbb{F}_p[X]^h$ be the Henselization of the affine line over a finite field in the origin and $\hat{R} = \mathbb{F}_p[[X]]$ its completion. Then $R/I^j = \hat{R}/I^j$ for all j, but

$$K_1(R, \mathbb{Z}/p) = R^\times /p \neq \hat{R}^\times /p = K_1(\hat{R}, \mathbb{Z}/p)$$

because the former is countable and the latter is uncountable.

However, the idea of the proof of Theorem 3.2 can be used to prove the following:

Theorem 4.1. Let R be a noetherian ring such that p is not a zero divisor, such that the map from R to the p-completion \hat{R} is regular, and such that (R, p) is a Henselian pair. Then

$$K_i(R, \mathbb{Z}/p) \cong \lim_{\rightarrow} K_i(R/p^j, \mathbb{Z}/p).$$

An integral domain of characteristic 0 which is complete for the p-adic topology, or the Henselization at a point of the closed fiber of a reduced variety of finite type over a discrete valuation ring satisfies the hypothesis of this theorem. The theorem is a generalization of the special case R a Henselian valuation ring of mixed characteristic. Except the following essential new ingredient, the proof goes back to [5].

Let $S = R[\frac{1}{p}]$, equipped with the p-adic topology. The hypothesis implies that S contains \mathbb{Q}.

Proposition 4.2. Let $e \in X$ a pointed topological space and \mathcal{F} be the ring of germs of continuous functions from X to S. Let $\mathcal{I} \subset \mathcal{F}$ be the ideal of germs of functions vanishing at e. Then $(\mathcal{F}, \mathcal{I})$ is a Henselian pair.

The proof of the proposition will be published in a forthcoming paper. To continue the proof of the theorem, consider $GL_n(S)^{\times i}$ as a topological space with the p-adic topology. Let $\mathcal{F}_{n,i}$ be the ring of germs of continuous S-valued functions defined in a neighborhood of the unit element e, and let $\mathcal{I}_{n,i}$ be the ideal of germs of functions vanishing at e. We are going to construct a homotopy as above.

Every chain $c \in C_{i+1}(GL_r(\mathcal{F}_{n,i}, \mathcal{I}_{n,i}), \mathbb{Z}/p)$ defines a map of some neighborhood of $e \in GL_n(S)^{\times i}$ to $C_{i+1}(GL_r(S), \mathbb{Z}/p)$ which is continuous, i.e. for each t there is an s such that c is defined on $GL_n(R, p^s)^{\times i}$ and maps it to $C_{i+1}(GL_r(R, p^t), \mathbb{Z}/p)$. Let \overline{c} be the \mathbb{Z}/p-linear extension

$$C_i(GL_n(R, p^s), \mathbb{Z}/p) \rightarrow C_{i+1}(GL_r(R, p^t), \mathbb{Z}/p).$$
Consider the algebraic variety \(X_{n,i} = \mathrm{GL}_{n}^{*}/S \) over \(S \), with affine coordinate ring \(S[X_{n,i}] \). Let \(\mathcal{I}_{n,i} \subset S[X_{n,i}] \) be the ideal of functions vanishing at the unit section. Then there is a map \(S[X_{n,i}] \to \mathcal{I}_{n,i} \), sending a polynomial on \(X_{n,i} \) to its associated function, sending \(\mathcal{I}_{n,i} \) to \(\mathcal{I}_{n,i} \), and which induces an isomorphism

\[
\frac{S[X_{n,i}]}{\mathcal{I}_{n,i}} \cong \mathcal{F}_{n,i}/\mathcal{I}_{n,i} \cong S.
\]

Since the pair \((\mathcal{F}_{n,i}, \mathcal{I}_{n,i})\) is Henselian, this induces a map of the Henselization \((\mathcal{O}_{n,i}^{h}, \mathcal{L}_{n,i})\) of \(S[X_{n,i}] \) at \(\mathcal{I}_{n,i} \) to \((\mathcal{F}_{n,i}, \mathcal{I}_{n,i})\).

Because \(S \) contains the field \(\mathbb{Q} \), there are the elements from above

\[
c_{n,i} \in C_{i+1}(\mathrm{GL}(\mathcal{O}_{n,i}^{h}, \mathcal{L}_{n,i}), \mathbb{Z}/p).
\]

Let \(c'_{n,i} \) be their image in \(C_{i+1}(\mathrm{GL}(\mathcal{F}_{n,i}, \mathcal{I}_{n,i}), \mathbb{Z}/p) \). For fixed \(N \), we can find \(r \geq n \) such that all chains \(c'_{n,i} \) for \(i \leq N \) lie in \(C_{i+1}(\mathrm{GL}(\mathcal{F}_{n,i}, \mathcal{I}_{n,i}), \mathbb{Z}/p) \), and then we can find \(s \geq t \) such that \(c'_{n,i} \) are defined on \(\mathrm{GL}_{n}(R,p^{S})^{*} \) and map it to \(C_{i+1}(\mathrm{GL}(R,p^{t}), \mathbb{Z}/p) \). Using the universal construction from above, we get a null-homotopy

\[
C_{i}(\mathrm{GL}_{n}(R,p^{S}), \mathbb{Z}/p) \to C_{i+1}(\mathrm{GL}_{r}(R,p^{t}), \mathbb{Z}/p).
\]

This proves

Proposition 4.3. Let \(N, n, t \in \mathbb{N} \). Then there exist \(r \geq n \) and \(s \geq t \) such that the embedding \(\mathrm{GL}_{n}(R,p^{s}) \to \mathrm{GL}_{r}(R,p^{t}) \) induces the zero homomorphism on reduced homology \(\tilde{H}_{i}(\cdot, \mathbb{Z}/p) \) for \(i \leq N \).

Finally, one analyzes spectral sequences of the form

\[
H_{a}(\mathrm{GL}_{n}(R/p^{t}), H_{b}(\mathrm{GL}_{n}(R,p^{t}), \mathbb{Z}/p)) \Rightarrow H_{a+b}(\mathrm{GL}_{n}(R), \mathbb{Z}/p)
\]

for \(n \) and \(t \) going to infinity to show that the the constant pro-system \(\{H_{*}(\mathrm{GL}(R), \mathbb{Z}/p)\}_{j} \) and the pro-system \(\{H_{*}(\mathrm{GL}(R/I^{j}), \mathbb{Z}/p)\}_{j} \) are isomorphic.

References

