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ALGEBRAIC K-THEORY OF HENSELIAN PAIRS

THOMAS GEISSER
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ABSTRACT. In this note we study the relationship between F(R)
and F(R/I) for a Henselian pair (R,I) and various functors F.
For example, in the case of algebraic K-theory, if m is invertible in
R, then K;(R,Z/m) = K;(R/I,Z/m).

If p is not invertible in R, then in general K;(R,Z/p) is not de-
termined by the inverse system {K;(R/p’,Z/p)};. However, if p is
not a zero-divisor and R is p-complete, then we have K;(R,Z/p) =
lE_n K;(R/p’,Z/p). We sketch of the proofs of these results.

1. HENSELIAN PAIRS

Definition 1.1. Let R be a commutative ring with unit and I an ideal
of R. Then (R, 1) is called a Henselian pair, if the following equivalent
conditions are satisfied [1][2]:

1. I is contained in the Jacobsen radical of R, and for all monic
polynomials f € R[T] and factorizations f = gh mod I with
G, h € R/I[T) monic and relatively prime, there is a lifting f = gh
of the factorization with g,h € R[T] monic.

2. For any finite R-algebra B, there is a bijection of idempotents

Idem(B) = Idem(B/IB).

3. For any étale R-algebra B, any R-map B — R/I lifts uniquely to
a map B — R. '

4. For any f € R[T] and any simple root & € R/I of f mod I there
is lifting to a root a € R of f (note that « is called a simple root
of the polynomial f if and only if f(c) =0 and f'(a) is a unit).
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In this note we want to study the relationship between F(R) and
F(R/I) for various functors F. As a first example, we have the follow-
ing theorem of Gabber [1]:

Theorem 1.2. Let (R,I) be a Henselian pair, and F a torsion sheaf
on (Spec R)s. Then

H} (Spec R, F) & H}(Spec R/I,i*F).

Note that if (R,I) is a Henselian local ring, then the theorem holds
without the assumption that F is torsion and is an elementary property
of étale cohomology. On the other hand, the theorem is wrong without
the hypothesis that F is torsion. It is a general phenomenom that
theorems as above only hold with torsion coefficients.

2. K-THEORY

To get interesting invariants of a ring R, generalizing for example the
group of units B* and the ideal class group Pic R, one can study the
group of matrices GL,(R), or the direct limit GL(R) = lim GL,(R). A

good method to analyze a group is to study its group homology
H;(GL(R),Z) := H;(BGL(R),Z).

Here the right hand side is the ordinary singular homology of a topolog-
ical space, and for a group G, the topological space BG is characterized
by the property that it has only one nontrivial higher homotopy group,
71 (BG) = G. In particular, we have the Hurewicz homomorphism

m(BGL(R)) = GL(R) — H:(GL(R),Z) = GL(R)™.

Since a good invariant of the ring R should consist of abelian groups,
the idea is to make the homotopy group abelian without changing the
homology groups. There is a universal construction to achieve this,
called +-construction. In other words, there is a topological space
BGL(R)* characterized by the properties that for any abelian group
A we have

H,(BGL(R), A) = H;(BGL(R)*, A)
and
71 (BGL(R))*® = m(BGL(R)™).
This changes the higher homotopy groups, and we define K-theory as
the higher homotopy groups of this space

I{,(R) = Wz(BGL(R)-’-)
and similar with coefficients in an abelian groups A,

Ki(R,A) := m(BGL(R)*, A).



If A =7Z/m, then there is an exact sequence

and if A = Q then K;(R,Q) & K;(R) ® Q. Note that it is possible to
recover K.(R) from K,(R,Q) and K.(R,Z/m) for all m.

For example, by definition K;(R) = GL(R)*, and the determi-
nant homomorphism GL(R) — R* together with the inclusion R* —
GL(R), sending a unit r to a matrix with r in the upper left corner,
shows that the units RX form a split direct summand of K;(R). In
fact, K1(R) = R* if R is local.

As another example, for a field F', Ky(F') has generators F'* @ F*
and relations a ® (1 — a) = 0.

3. K-THEORY AND GROUP HOMOLOGY OF HENSELIAN PAIRS

The K-theory and group homology of Henselian pairs have been stud-
ied by Gabber, Suslin and Panin. Let (R, ) be a Henselian pair. De-
fine GL(R, I) as the kernel of the (surjective) reduction map GL(R) —
GL(R/I), and let H, be reduced homology (i.e. removing the copy of
Z in degree zero). By definition, K-theory and homology of GL(R) are
closely related. For a Henselian pair, this takes the following form:

Proposition 3.1. a) [5] Let (R,I) be a Henselian pair and m invert-
ible in R. Then the following statements are equivalent:
1. K.(R,Z/m) = K.(R/1,Z]m).
2. H,(GL(R),Z/m) = H.(GL(R/I),Z/m).
3. H,(GL(R,I),Z/m) = 0.
b) [4] If m is not invertible in R, then we still have an equivalence:
1. The pro-system {K.(R/I?,Z/m)}; is isomorphic to the constant
pro-systen {K.(R,Z/m)};.
2. The pro-system {H,(GL(R/I?),Z/m)}; is isomorphic to the con-
stant pro-systen { H.(GL(R),Z/m)};.
Recall that a map (¢;) : (X;) — (Y;) of pro-systems is an isomor-
phism if and only if for all 7 there is a j > ¢ and a map s : ¥; — X;
making the obvious diagram commutative.

It is a deep theorem in algebraic K-theory that the conditions of (a)
are satisfied:

Theorem 3.2. (Gabber, Suslin) Let (R,I) be a Henselian pair, and

m invertible in R. Then _
Ki;(R,Z/m) = K,(R/I,Z]m).
The proof consists of three equally difficult steps:
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1. The special case R is the Henselian local ring of a smooth variety
over a field F' in an F'-rational point [2][3].

2. Apply this to the Henselization of GLX® in the unit section to
prove the theorem for R containing a ﬁeld [5].

3. Reduce the general case to the case R containing a field F [2]

Here is the main idea of the second step:

Let (R,I) be a Henselian pair contammg a field F. The group ho-
mology H,(G,Z/m) can be calculated using the complex C.(G,Z/m)
which in degree 7 is the free abelian group generated by i-tuples of el-
ements of G, [g1,... ,¢;]- Since every element of GL(R, I) is contained
in GL, (R, I) for some n, it suffices to show according to Proposition
3.1 that the inclusion

C.(GL4(R, I),Z/m) “C.(GL(R, I), Z/m)

induces the zero map on homology for all n. This holds if the map is
null-homotopic, i.e. if we can construct maps

Ci(GLw(R, I),Z/m) =+ Ciy1(GL(R, I),Z/m)

such that dos+sod = ..

Consider the algebraic variety GL,(F)*'. It is smooth over F' and
has a distinuished F-rational point e, the unit section. Let (’)7’:’,,- be the
Henselian local ring at e, and m the corresponding maximal ideal.

Let B8 = [B1,... .Bi] € Ci(GL.(R,I),Z/m). Each element §; defines
a morphism Spec B — GL, sending the subvariety defined by I to
the unit section. Hence /8 defines a morphism Spec R — GL* with the
same property. Since (R, I) is Henselian, this induces a homomorphism
O! . — R sending m to I. In particular, we get a map

B* : Co(GL(O} ;,m),Z/m) — C.(GL(R, I), Z/m).

Since by step (1) the theorem is known for O ., we have

n,t?

K, (O,

TL‘t’

Z[m) = K.(O ;/m, Z[m)
and hence by Proposition 3.1
H,(GL(O!,

nﬂ

m),Z/m) = 0.

This property can be used to construct inductively elements ¢,; €
Ci+1(GL(O} ;,m),Z/m) independent of R such that s(8) := 5*(cn;) is
the desired null- homotopy.
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4. THE GENERAL CASE

If m is not invertible in R, then in general K.(R,Z/m) # K.(R/1,Z/m).
One can ask if at least K.(R,Z/m) is determined by the pro-system
{K.(R/I?,Z/m)};. But this is also wrong in general. For example, let
R =T,[X]" be the Henselization of the affine line over a finite field in

the origin and R = F,[[X]] its completion. Then R/IY = R/ for all

J, but

Ki(R,Z/p) = R*[p # B*/p = K:i(R,Z/p)

because the former is countable and the latter is uncountable.

However, the idea of the proof of Theorem 3.2 can be used to prove

the following:

Theorem 4.1. Let R be a noetherian ring such that p is not a zero
divisor, such that the map from R to the p-completion R is regular, and
such that (R, p) is a Henselian pair. Then

Ki(R,Z/p) = lim K;(R/p’, Z/p).

An integral domain of characteristic 0 which is complete for the p-
adic topology, or the Henselization at a point of the closed fiber of a
reduced variety of finite type over a discrete valuation ring satisfies
the hypothesis of this theorem. The theorem is a generalization of
the special case R a Henselian valuation ring of mixed characteristic.
Except the following essential new ingredient, the proof goes back to

[5].

Let S = R[%], equipped with the p-adic topology. The hypothesis

implies that S contains Q.

Proposition 4.2. Let e € X a pointed toplogical space and F be the
ring of germs of continuous functions from X to S. Let T C F be the
ideal of germs of functions vanishing at e. Then (F,T) is a Henselian

pazr.

The proof of the proposition will be published in a forthcoming pa-
per. To continue the proof of the theorem, consider GL,(S9)*! as a
topological space with the p-adic topology. Let F,; be the ring of
germs of continuous S-valued functions defined in a neighborhood of
the unit element e, and let Z,, ; be the ideal of germs of functions van-
ishing at e. We are going to construct a homotopy as above.

Every chain ¢ € Ciy1(GL,(Frni,Zn,),Z/p) defines a map of some
neighborhood of e € GL,(8)** to C;;1(GL,(S),Z/p) which is continu-
ous, i.e. for each ¢ there is an s such that c is defined on GL, (R, p®)**
and maps it to C;y1(GL,(R,p'), Z/p). Let ¢ be the Z/p-linear extension

Ci(GLn(R,p°),Z/p) — Cit1(GL(R, '), Z/p).
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Consider the algebraic variety X,; = GLX* /S over S, with affine
coordinate ring S[X,;]. Let J,; C S[X,,] be the ideal of functions
vanishing at the unit section. Then there is a map S [(Xni] — Fus,
sending a polynomial on X, ; to its associated function, sending Tn,i to
7., and which induces an isomorphism

S[Xn,i]/cjn,i :) fn,i/In,i =S

Since the pair (F, ;, Z, ;) is Henselian, this induces a map of the Henseliza-

tion (O, L, ;) of S[Xn;) at Tni to (FriyZnsi)-

7,29

Because S contains the field Q, there are the elements from above
Cni € Ci+1(GL(Oz,i> ‘Cn,i)7 Z/p)

Let ¢, ; be their image in C;4; (GL(F,. ;,Z,:), Z/p). For fixed N, we can
find » > n such that all chains ¢ i fort < Nliein Cip1(GL(Fryi, In ), Z/p),
and then we can find s > t such that ¢, ; are defined on GL,(R,p®)**
and map it to Cj11(GL,(R,p*),Z/p). Using the universal construction
from above, we get a null-homotopy

CH(GLa(R, "), Z/p) —Cis1(GL,(R,5"), Z/p).
This proves

Proposition 4.3. Let N,n,t € N. Then there exist r > n and s >
t such that the embedding GL,(R,p°) — GL,(R,p') induces the zero

homomorphism on reduced homology H;(—,Z/p) fori < N.

Finally, one analyzes spectral sequences of the form
Ho(GLn(R/p"), Hy(GLn(R, p'), Z/p)) = Hays(GLn(R),Z/p)

for n and ¢ going to infinity to show that the the constant pro-system
{H.(GL(R),Z/p)}; and the pro-system { H.(GL(R/I’),Z/p)}; are iso-

morphic.

REFERENCES

[1] O.GABBER, Affine analog of the proper base change theorem, Isr. J. Math. 87
(1994), 325-335

[2] O.GaBBER, K-theory of Henselian local rings and Henselian pairs, Cont. Math.
126 (1992), 59-70

[3] H.GILLET, R.THOoMASON, The K-theory of a strict Hensel local ring and a
theorem of Suslin, J. Pure Appl. Alg. 34 (1984), 241-254

[4] I.A.PANIN, On a theorem of Hurewicz and K-theory of complete discrete val-
uation rings, Math.USSR Izvestiya 29 (1987), 119-131

[5] A.SUSLIN, On the K-theory of local fields, J. Pure Appl. Alg. 34, 301-318



