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ABSTRACT. In this paper, we consider an inverse problem of determining an

unknown boundary in $\mathcal{R}^{2}$ where a Neumann condition is imposed. A stability

$\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}_{1}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}$ under some a-priori assumptions on the unknown boundary and the

solution of the problem is obtained. The proofs are based on using the complex

extension method, an estimation of harmonic measure, and our recent stability

estimation results for an inverse boundary problem of Laplace’s equation on

non-smooth domain.

1. INTRODUCTION

In the last decade, tlle technique of non-destructive testing has been developed

and applied to determine the shape of a being corroded part of an unknown bound-

ary by a suitable observation on the other part of the boundary which is accessible.

This is a well known inverse boundary determination problem which arises from

the engineering industry. In this paper, we consider the uniqueness and stability

of an inverse problem in determining an inaccessible boundary, where a Neumann

condition is imposed, from an accessible boundary, where Cauchy data in terms of

electrostatic measurements can be obtained.

Let $\Omega$ be a simply connected bounded domain in $\mathcal{R}^{2}$ with Lipschitz continuous

boundary $\partial\Omega$ . Assume that $\Gamma$ and $L$ are two distinct parts of $\partial\Omega$ which satisfy
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$\Gamma\cap L--\emptyset$ (it is not necessary that $\Gamma\cup L=\partial\Omega$). Suppose that $L$ is an acces-

sible boundary on which we can access the boundary measurements and $\Gamma$ is an

inaccessible boundary to be determined. It is tllen natural to assume a Neumann

colldition on the unknown boundary $\Gamma$ if it has been corroded. From [3], the model

can be posed by assuming that the charge potential function $u=u(x)$ satisfies the

following Laplace’s equation in $\Omega$ :

(11) $\Delta u=0$ , $x\in\Omega$ .

On the accessible boundary $L$ , we have

(1.2) $u$ $=$ $f$ , $x\in L$ ,

(1.3) $\frac{\partial u}{\partial n}$ $=$ $g$ , $x\in L$ ,

where $n$ is tlle outer unit normal on $\partial\Omega$ . On the inaccessible boundary $\Gamma$ , we assume

(1.4) $\frac{\partial u}{\partial n}=0$ , $x\in\Gamma$ .

The inverse boundary problem is to determine $\Gamma$ from $f$ and $g$ .

In this paper, we will discuss the uniqueness and stability of this inverse prob-

lem. This paper is motivated by a number of recent results in the applications of

non-destructive testing technique (we refer to [3], [4], [16], [21] and [22]). Partic-

ularly, an inverse problem in determining an unknown boundary was proposed in

our recent work [6] where a $\log$-type conditional stability estimate was given. The

major improvement is that a zero-Dirichlet condition on the unknown boundary

was imposed in [6] whereas a zero-Neumann condition was imposed in this paper.

Based on the zero-Dirichlet condition, $\mathrm{t}1_{1}\mathrm{e}$ proofs on uniqueness and conditional

stability were comparatively easier to obtain by using the maximum principle for

Laplace’s equation without a regularity assumption placed on the domain. The

zero-Neumann condition on the unknown boundary, however, is more reasonable

from the view point of practical applications. This kind of inverse Neumann bound-

ary problem was also discussed in [3] under some special assumptions. In this paper,

we will discuss this inverse problem on non-smooth domain under a more general

assumption. The results of uniqueness and conditional stability estimate will first

be stated in the following Section 2. The detail proofs are then given in Section
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3. Section 4 includes the conclusion and some remarks. It is noted here that the

proofs are also extendable to three dimensional problems.

2. MAIN RESULTS

Let $\Omega_{1},$ $\Omega_{2}$ be two simply connected bounded domains in $\mathcal{R}^{2}$ . Assume that

$0<a<b<1$ . For arbitrarily fixed $\alpha>0,$ $\beta>0,$ $m_{0}>0$ and $\iota n_{1}>0$ , define

$(2.1)\mathcal{F}$ $=$ $\mathcal{F}(\alpha, \beta, m0, m1)$

$=$ { $F\in C[0,1]|$ $F(x)=\alpha$ , $0<x<a$ ; $F(x)=\beta$ , $b<x<1$ ;

$|F(x)-F(y)|\leq m1|_{X}-y|$ , $F(x)\geq m_{0}$ , $x,$ $y\in[0,1]\}$ ,

(2.2) $\Omega_{1}=\{(x, y)| 0<x<1, 0<y<F_{1}(x)\}$ ,

(2.3) $\Omega_{2}=\{(x, y)| 0<x<1, 0<y<F_{2}(x)\}$ ,

where $F_{1},$ $F_{2}\in \mathcal{F}$ . In other words, $\Gamma_{j}=\{(x, y)| y=F_{j}(x), a<x<b\},$ $j=1,2$

are two inaccessible boundaries given by the Lipschitz continuous functions. The

a-priori information $F_{1},$ $F_{2}\in \mathcal{F}$ means that the shapes of the unknown boundaries

are not too complicated.

For the accessible boundary, we let

(2.4) $L=\{(x, 0)| a<x<b\}$ .

Assume that $u_{j},,$ $j=1,2$ satisfy

(2.5) $\Delta u_{j}(x, y)=0$ , $(x, y)\in\Omega_{j}$ ,

(2.6) $\frac{\partial u_{j}}{\partial n}(x, y)=0$ , $(x, y)\in\Gamma_{j}$ ,

and

(2.7) $u_{j}(x, \mathrm{o})=f_{j}(x)$ , $\frac{\partial u_{j}}{\partial y}(x, 0)=g_{j}(x)$ , $c<x<d$ .

The main results of this paper are stated in the folIowing:

Theorem 2.1. Suppose that $g_{j}\neq 0,$ $j=1,2$ and

(2.8) $f_{1}=f_{2}$ , $g_{1}=g_{2}$ , on $L$ ,

we then have $\Gamma_{1}=\Gamma_{2}$ .
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Remark 2.1. In [3], the assumption $g_{j}\neq 0$ was missed. However, under the zero-
$Neu$mann condition on the vnknown boundary, if this assumption is not $true_{f}$ then

the uniqueness cannot be obtained simply because $u_{j}$ can be any constant.

Theorem 2.2. Let $m_{2},$ $m_{3}>0,0<\alpha<1$ and $M>0$ be arbitrarily fixed and

assume that

(2.9) $| \frac{\partial f_{j}}{\partial x}(x\mathrm{o})|+|g(_{X_{0}})|\geq m_{2}$ , $j=1,2$ ,

where $x_{0}\in[a, b]$ is a fixed constant. Furthermore, asssume that

(2.10) $u_{j}\in C^{2}(\Omega_{j})\cap^{c^{1}(\overline{\Omega}_{j}})$ , $||u_{j}||c1(\overline{\Omega}_{j})\leq M$ , $j=1,2$ ,

and

(2.11) $||u_{j}||_{c}1+\alpha((a,b)\cross(0,m\mathrm{o}))\leq m_{3}$ , $j=1,2$ .

Then there exists constants $C=C(m_{0}, m_{1,2}m, m_{3}, \alpha, M)>0$ and $0<\tau<1$ such

that

(2.12) $||F_{1}-F2||c[a,b] \leq C[\frac{\mathrm{l}}{\log(\log\frac{1}{\epsilon})}]^{\tau}$ ,

where $\epsilon=||f_{1}-f_{2}||_{H(}1a,b$ ) $+||g_{1}-g2||_{L}2(a,b)$ .

Before going to the next section on the detail proofs, we would like to give two

examples to indicate that the assumptions given in Theorem 2.2 are necessary for

obtaining a conditional stability estimation (2.12).

Example 2.1. Let

$\Omega_{1}=(0, \pi)\cross(0,1)$ ,

$u_{1}(x, y)= \frac{1}{n^{2}}[e^{-ny}+e^{-2nny}e]\cos nX$ ,

and

$\Omega_{2}=(0, \pi)\cross(0,1+\delta y)$ ,

$u_{2}(x, y)= \frac{1}{n^{2}}[e^{-ny}+e^{-2n(1+}\delta y)eny]\cos nX$ .

It is easy to verify $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}u_{i}(x,$ $y$ are harmonic functions in $\Omega_{i},$ $i=1,2$ and

$\frac{\partial u_{1}}{\partial x}(0, y)=\frac{\partial u_{1}}{\partial x}(\pi, y)=\frac{\partial u_{1}}{\partial y}(x, 1)=0$,

$\frac{\partial u_{1}}{\partial x}(0, y)=\frac{\partial u_{1}}{\partial x}(\pi, y)=\frac{\partial u_{1}}{\partial y}(x, 1+\delta y)=0$ .
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Here tlle fixed boundary is $\{(x, 0)|0<x<\pi\}$ and the remained parts are $\mathrm{t}1_{1}\mathrm{e}$

unknown boundaries.

The distance between the two unknown boundaries is

$d(\Gamma_{1}, \mathrm{r}_{2})=\delta y$,

$\mathrm{w}1_{1}\mathrm{e}\mathrm{r}\mathrm{e}\Gamma_{i}$ is the unknown boundary of $\partial\Omega_{i}$ .

The Cauchy data are

$\epsilon$ $=$ $0^{\max\{1}<x< \pi 0<x<\pi u_{1}(x, 0)-u_{2}(x, 0)|+\max\{|\frac{\partial u_{1}}{\partial y}(X, 0)-\frac{\partial u_{2}}{\partial y}(x, 0)|$ ,

$=$ $\frac{1}{n^{2}}(e^{-}-2n-e)2n(1+\delta y)+\frac{1}{n}(e^{-}2n-e-2n(1+\delta y))$ .

It can be shown that $u_{i}$ tends to $0$ when $n$ tends to infinity. This means that $u_{i}$

does not satisfy the assumption (2.9). Furthermore, if $\delta y=\frac{1}{\ln n}$ , we can obta.ill

a double logarithmic estimation. If, however, we choose $\delta y=\frac{\mathrm{l}}{\ln\ln n}$ , we obtain a

weaker estimation.

This example indicates that the estimation can be extremely weak if the assump-

tion in Theorem 2.2 is not imposed.

Example 2.2. Let $\Omega_{1}$ and $\Omega_{2}$ are the $\mathit{8}amea\mathit{8}$ in Example 1. Consider the follow-
ing harmonic functions

$u_{1}(x, y)=[e^{-nyn}-e^{-2}e^{ny}]\cos nx$ ,

and

$u_{2}(x, y)=[e^{-ny}-e^{-}e2n(1+\delta yny]\cos nx$ .

The distance $\delta y$ between the two unknown boundaries $\Gamma_{1}$ and $\Gamma_{2}$ is the same as

in Example 1.

The Ca.uchy data are

$\epsilon$ $=$ $0<x< \pi\max\{|u1(x, 0)-u_{2}(x, 0)|+0<x<\pi\max\{|\frac{\partial u_{1}}{\partial y}(X, 0)-\frac{\partial u_{2}}{\partial y}(x, 0)|$ ,

$=$ $(e^{-2}-ne-2n(1+\delta y))+n(e^{-}2n-e-2n(1+\delta y))$ .

It is easy to check that $||u_{i}||c2$ is unbounded when $n$ tends to infinity. Again,

if $\delta y=\frac{1}{\mathrm{l}\mathrm{n}’ l}$

) we have a double logarithmic estimation. If $\delta y=\frac{\mathrm{l}}{\ln\ln n}$ , a weaker

estimation can be obtained.
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3. PROOFS OF THE MAIN RESULTS

3.1. Some Lemmata. We need the following lemmata:

Lemma 3.1. Suppose that $(x_{0}, F_{1}(x_{0}))\in\overline{\Gamma}_{1}$ . Then there exists positive constant
$C_{3}$ and $0<\beta<1$ , which are independent of $y$ , satisfying

(3.1) $|u_{2}(x0, y)-u1(x_{0}, y)|\leq C\epsilon^{\beta}$ , $y \in[0, \frac{m_{0}}{2}]$ .

Proof. The proof follows from the results given in Payne [25].

Now, define

$D=\{z=x+iy\in \mathbb{C}| |z|<R, |\arg_{Z|}<\theta\}$ ,

and

$l=\{z=x_{1}|x_{1}\in(\rho_{1)}\rho_{2})\}\subset D$

Definition 3.1. $\psi(z)$ is called a harmonic measure for $D$ and $l$ if it satisfies

$\Delta\psi$ $=$ $0$ , $z\in D\backslash l$ ,

$\psi$ $=$ $0$ , $z\in\partial D$ ,

$\psi$ $=$ 1, $z\in l$ .

For the existence and uniqueness of this harmonic measure, we refer to Kellog’s

book [17]. By using the same method in [11], we can prove that $\psi\in C^{\nu}(\overline{D})$

$(0<\nu<1)$ .

Lelnma 3.2. For the harmonic measure $\psi$ for $D$ and $l_{f}$ we have the following

$e\mathit{8}timati_{on}$

(3.2) $\psi(x)\geq C((\frac{\rho_{2}}{x})^{\frac{n}{2\theta}}-(\frac{\rho_{2}}{R})^{\frac{\pi}{2\theta}})$, $x\in(\rho_{2}, R)$ ,

where $C$ is a constant which is independent of $x$ .

Moreover, if $\rho_{1}$ is sufficiently small, the constant $C$ can be independent of $\rho_{1}$ and

$\rho_{2}$ .

Proof. The proof can be found in [9].
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By using the estimation for the harmonic measure, we can have the following

conditional stability estimation for a holomorphic function in $D$ .

Lemma 3.3. Svppose that $v=v(z)$ is a holomorphic function in $D$ and let $\epsilon=$

$\max_{x\in[]}\rho_{1},\rho 2|v(x)|$ . $If|v(z)|\leq M_{1},$ $z\in D$ , then we have

$|v(_{X)1} \leq M_{1}(\frac{\epsilon}{M_{1}})C((^{\underline{\rho}}x\mathrm{a})^{R}2\theta-(_{R}^{\underline{\rho}}2)2B\mathit{0}),$ $x\in[\rho_{2}, R]$ .

Proof. The proof can be found in [9]. $\square$

We now state some results concerning a Neumann problem for Laplace’s equation

on a Lipschitz domain.

Let $D$ be a Lipschitz domain in $\mathcal{R}^{2}$ with boundary $\partial D$ . Consider the following

Neumann problem

(3.3) $\Delta w(x, y)$ $=$ $0$ , in $D$ ,

(3.4) $\frac{\partial w}{\partial n}$ $=$ $h$ , on $\partial D$ ,

where $\int_{\partial D}hd\sigma=0$ and (3.4) is satisfied in a generalized sense (refer to [15]).

Lemma 3.4. Suppose that $h \in L^{2}(\partial D)a,nd\int_{\partial D}hd\sigma=0$. There $exist\mathit{8}$ a unique

harmonic function $w$ such that

(i) In a generalized $sense_{f}w$ satisfies

(3.5) $\frac{\partial w}{\partial n}=h$ , on $\partial D$ .

(ii) $w$ can be $expre\mathit{8}Sed$ as

(3.6) $w(x, y)= \int_{\partial D}\ln[(x-\xi 1)^{2}+(y-\xi_{2})^{2}1q(\xi_{1},\xi_{2})d\sigma(\xi)$ ,

where $q$ satisfies

(3.7) $||q||_{L(}2\partial D)\leq C||h||_{L^{2}(\text{\^{o}} D)}$ .

Here, the constant $C>0$ depends only on the Lipschitz character of $D$ .

(iii) Every solution can be expressed as

(3.8) $w(x, y)= \int_{\partial D}\ln[(x-\xi 1)^{2}+(y-\xi_{2})2|q(\xi 1, \xi 2)d\sigma(\xi)+c$ ,

where $c$ is a constant.

Proof. The proof of this lemma can be found in [15]. $\square$
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3.2. Proof of Theorem 2.1.

Proof. Suppose $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}\Gamma_{1}\neq\Gamma_{2}$ . Witllout loss of generality, there is an interval
$(a_{1}, b_{1})\subset(a, b)$ such that

$F_{2}(x)>F_{1}(x)$ , $x\in(a_{1}, b_{1})$ ,

and

$F_{2}(a_{1})=F_{1}(a_{1})$ , $F_{1}(b_{1})=F_{2}(b_{1})$ .

Here,

$D=\{(x, y)\in \mathcal{R}^{2}| F_{1}(x)<y<F_{2}(X); x\in(a_{1}, b_{1})\}$.

Since $f_{1}=f_{2}$ and $g_{1}=g_{2}$ , by the uniqueness of the Cauchy problem for Laplace’s

equation, we have

(3.9) $u_{1}(x, y)=u_{2}(x, y)$ , $(x, y)\in\Omega_{1}\cap\Omega_{2}$ .

Therefore, for $x\in(a_{1}, b_{1})$ and $0<y<F_{1}(x)$ , we obtain

(3.10) $\nabla u_{1}(x, y)=\nabla u_{2}(x, y)$ .

Using the boundary condition for $u_{1}$ on $\Gamma_{1}$ , we further have

(3.11) $\frac{\partial u_{2}}{\partial\nu}=0$ , on $\{(x, y)\in \mathcal{R}^{2}| y=F_{1}(x), x\in(a_{1}, b_{1})\}$ ,

where $\nu$ is the unit outer normal on $D$ .

By considering $u_{2}$ for $D$ , it follows that $u_{2}$ is harmonic in $D\mathrm{a}\mathrm{n}\mathrm{d}arrow\partial u\partial\nu=0$ for
$(x, y)\in\partial D\backslash \{(a_{1}, F_{1}(a_{1})), (b_{1}, F_{2}(b1))\}$ .

It can be verified that the Green’s formula is also true for the non-smooth domain
$D$ , i.e.,

(3.12) $\int_{D}\Delta u_{2}u2dXdy=-\int_{D}|\nabla u_{2}|^{2}d_{Xdy}+\int_{\text{\^{o}} D}\frac{\partial u_{2}}{\partial\nu}u_{2}d\sigma$ .

Therefore, we have

(3.13) $\nabla u_{2}(x, y)=0$ , $(x, y)\in D$ .

By the unique continuation for the Laplace’s equation, we have

(3.14) $\nabla u_{2}(x, y)=0$ , $(x, y)\in\Omega_{2}$ ,
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and

(3.15) $g_{2}(x, y)=0$ , $(x, y)\in L$ .

$\mathrm{T}1_{1}\mathrm{i}\mathrm{s}$ is a contradiction to the assumption $g_{j}\neq 0$ . The proof is then complete. $\square$

3.3. Proof of Theorem 2.2.

Proof. Without loss of generality, we assume that $|F_{2}(X)-F_{1}(X)|$ attends its max-

imum at $x=x^{*}\in(a, b)$ and $d=F_{2}(x^{*})-F1(x^{*})>0$ .

From $\mathrm{t}1_{1}\mathrm{e}$ assumption $F_{j}\in \mathcal{F},$ tllere is an interval $(a_{2}, b_{2})\subset(a, b)$ such that

(3.16) $F_{2}(x)-F_{1}(x)>0$ , $x\in(a_{2}, b_{2})$ ,

and

(3.17) $F_{2}(a_{2})=F_{1}(a_{2})$ , $F_{2}(b_{2})=F_{1}(b_{2})$ .

Let $\eta$ be a small positive constant. Define

(3.18) $\mathcal{U}=\{(x, y)| F_{1}(x)<y<F_{2}(x), a_{2}<x<b_{2}\}$ ,

and

(3.19) $\mathcal{U}_{\eta}=\{(x, y)| F_{1}(x)<y<F_{2}(x), a_{2}+\eta<x<b_{2}-\eta\}$ .

For $j=1,2$ , denote

(3.20) $\gamma_{j}=\mathcal{U}\cap\Gamma j$ ,

and

(3.21) $\gamma_{j}^{\eta}=\mathcal{U}_{\eta}\cap\Gamma_{j}$ .

Proposition 3.1. The domain $\mathcal{U}_{\eta}$ is a Lipschitz domain in $\mathcal{R}^{2}$ and the Lipschitz

constant is less than $\max\{1, m_{1}\}$ .

This proposition can be obtained directly from $\partial \mathcal{U}_{\eta}$ which can be expressed

locally by some Lipschitz functions whose Lipschitz constants are all less than

$\max\{1, m_{1}\}$ .

Remark 3.1. The domain $\mathcal{U}$ may not be a Lipschitz domain because the points

$(a_{2}, F_{1}(a_{2}))$ and $(b_{2}, \Gamma_{1}^{\prec}(b_{2}))$ can be cusp points.
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We proceed our proof in the following three steps:

Step 1: Boundary value estimation $\mathrm{f}\mathrm{o}\mathrm{r}arrow\partial u\partial\nu$ on $\gamma_{1}$ . (Here $\nu$ is the unit outer normal

for the domain $\mathcal{U}$ or $\mathcal{U}_{\eta}$ ).

In [10], we had proven the following results:

Lemma 3.5. Under the assumptions given in Theorem 2.2, there exist constants

$C>0$ and $0<\tau_{1}<1$ which depend on $m_{j},$ $j=0,1,2,3$ and $M$ such that

(3.22) $| \nabla u_{2}-\nabla u_{1}|\leq C(\frac{1}{\ln\frac{1}{\epsilon}})^{\tau_{1}}$ .

Since $\frac{\partial}{\partial}uAn=0$ on $\Gamma_{1}$ , by Lemma 3.5, we have

Lemma 3.6. Under the assumptions given in Theorem 2.2, there exist constants

$C>0$ and $0<\tau_{1}<1$ which $d,epend$ on $m_{j_{f}}j=0,1,2,3$ and $M\mathit{8}uch$ that

(3.23) $| \frac{\partial u_{2}}{\partial\nu}|\leq C(\frac{1}{\ln\frac{1}{\epsilon}})^{\tau_{1}}$ .

Step 2: Estimation of $d$ .

Let $\delta=C(_{\ln_{\overline{e}}}\neg)^{\mathcal{T}}11$ .

We consider the following Neumann problem for Laplace’s equation in $\mathcal{U}_{\eta}$ :

(3.24) $\Delta w$ $=$ $0$ , in $\mathcal{U}_{\eta}$ ,

(3.25) $\frac{\partial w}{\partial w}$ $=$ $\frac{\partial u_{2}}{\partial\nu}$ , on $\partial \mathcal{U}_{\eta}$ .

It is obvious $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}u_{2}$ is one the solutions for this Neumann problem.

Let $\rho$ be a small positive parameter. Define

$\mathcal{U}_{\eta}^{\rho}=\{(x, y)\in \mathcal{U}_{\eta}|diSt((x, y), \partial u_{\eta})>\rho\}$ .

Clearly, we have

(3.26) $| \nabla u_{2}(x, y)|\leq\frac{C}{\rho}||u_{2}||L2(\partial \mathcal{U}_{\eta})$ , $(x, y)\in \mathcal{U}_{\eta}^{\rho}$ ,

where $C>0$ is a constant which depends on $m_{1}$ .

Calculating $||u_{2}||L2(\partial \mathcal{U}_{\eta})$ , we have

(3.27) $||u_{2}||L2(\partial \mathcal{U})\eta\leq C_{1}\delta+C_{2}\eta$ ,

where $C_{1}>0$ and $C_{2}>0$ are constants which depend on $m_{1}$ and $M$ .
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From the assumptions (2.9) and (2.11), there is a positive constant $\rho$ which

depends on $M$ and $m_{2}$ such that

(3.28) $| \frac{\partial u_{2}}{\partial x}(x0, \rho)|+|\frac{\partial u_{2}}{\partial y}(x_{0}, \rho)|\geq\frac{m_{2}}{2}$ .

We choose $\delta_{1}=C_{1}\delta+C_{2}\eta$ and let $v(z)= \frac{1}{2}(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y})u_{2}=\partial_{\overline{z}}u_{2}$ . It is $\mathrm{e}\mathrm{a}s\mathrm{y}$ to

verify that $v(z)$ is a holomorphic function in $\Omega_{2}$ and $|v(z)|\leq M$ , $z\in\Omega_{2}$ .

From the assumptions on $\Omega_{2}$ , there is a positive constant $\theta$ which depends on $M$

such that

(3.29) $\mathcal{V}=\{(x, y)|0<y<r(x), a<x<b\}\subset\Omega_{2}$,

and

(3.30) $\mathcal{V}_{1}=\{(x, y)|r_{1}(X)<y<r(x), a<x<b\}\subset \mathcal{U}_{\eta}$ .

Here

(3.31) $r(x)=$ $x<X^{*}x\geq x^{*}’$

,

and

(3.32) $r_{1}(x)=\{$
$-\tan\theta(X-X^{*})+F_{2}(X^{*})-d+\rho)$ $x<x^{*}$ ,

$\tan\theta(x-X^{*})+F_{2}(X^{*})-d+\rho$, $x\geq x^{*}$ .

From Lemma 3.3, there exists a constant $\kappa$ which depends on $m_{j}$ and $M$ such

that

(3.33) $|v(x, \rho)|\leq C_{1}\delta_{1}^{C_{2}}(d-2\rho)^{\alpha}\equiv\delta_{2}$ , $x\in[x^{*}-\kappa, x^{*}+\kappa]$

where $0<\alpha<1,$ $C_{1}>0$ and $C_{2}>0$ are constants which depend on $M$ and $m_{j}$ .

From the results given in [10], there exist positive constants $C_{3}>0$ and $0<\beta<1$

which depend on $M,$ $\kappa,$ $\rho$ and $x_{0}$ such that

(3.34) $|v(x_{0}, \rho)|\leq C_{3}\delta_{2}^{\beta(-}d2\rho)^{\alpha}$

From equation (3.28), we have

(3.35) $d \leq 2\rho+c4(\frac{1}{\ln\frac{1}{\delta_{1}}})^{\mathcal{T}}2$ ,

wllere $C_{4}>0$ and $0<\tau_{2}<1$ are constants which depend on $m_{j}$ and $M$ .
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Let $\etaarrow 0$ . It is now clear that

(3.36) $d \leq 2\rho+C_{5}(\frac{1}{\ln[\rho\ln\frac{1}{\epsilon}]})^{\tau_{2}}$ .

Finally, by selecting a value for $\rho$ which minimizes $2 \rho+C_{5}(\frac{1}{\ln[\rho\ln\frac{1}{\mathrm{e}}]})^{\tau_{2}}$ , we com-

plete the proof for the theorem.

4. CONCLUSIONS

In this paper, we discuss an inverse problem in determining an unknown inac-

cessible boundary from given Cauchy data on the other part of the boundary. A

double logarithmic conditional stability estimate is obtained. This kind of weak

stability $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}_{\ln}\mathrm{a}\mathrm{t}\mathrm{e}$ is common in the studies of the ill-posedness of Cauchy problem

for Laplace’s equation and in particular, the highly ill-posedness in determining an

unknown boundary from an incomplete boundary information of the solution. The

results obtained in the paper are compatible with the results given in [1], [2], [6]

alld [13] except $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}$ this paper gives a most likely optimal estimate under a more

gelleral $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{n}\mathrm{l}\mathrm{P}^{\mathrm{t}}\mathrm{i}_{0}\mathrm{n}$ .
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