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1 Introduction

In this note we present a survey recent progress on analyticity of solutions to nonlinear Schrédinger
(NLS) equations and generalized Korteweg-de Vries (gKdV) equation. We also state some ap-
plications of analytic function spaces to these equations. Nonlinear Schrodinger equations con-
sidered in this note are written

0w+ 1Au= N(u), (t,z) € R xR",
(NLS) Ot ghu = Nlw),  (17)

u(O,x) = ’u,()(x), z € R",

where nonlinear terms N(u) will be defined in each theorem in the below and n denotes the

spatial dimension.
The generalized Korteweg-de Vries (gKdV) equation is written

(gKdV) { Opu+ 505, u+ Oy, (lufP~'u) =0, t,z1 €R,

u(0,z) =wup(z1), z1 €R,

where p € N.
Local and global in time of solutions to these equations were studied extensively by many

authors in the usual Sobolev spaces (see, e.g.,[8], [20],[21], [30], [31], [33], [36] and references cited
these papers). In order to state previous results we prepare some function space and notations

Function spaces and notation. We use the usual Lebesgue space
17 = {p € & ¢l < +oo}.
We define the weighted Sobolev space as follows
H™P = {f € L7 ||(1+ |2|%)"/2(1 — A)™/2 |, < oo}.

For convenience, || - || = || - |l2 and || - lmg = || - lm,2- Jz; = T + 2it0;;. For each r > 0 we
denote the strip in the complex plane C" by

Sa(r)={z=(21,",za) = (@1 + Y1, , Tn+iyp); —7T <y; <T,—00 <z <00;1 < j<n}
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We also define the sector in C™ by
An(a)={2=(21:"',Zn)=(7‘1€w,"',Tnew) i0<r;<o0, —a<b<a,
T—a<f<m+a, 0<a<i,;1<j5<n}

For z € R", if a complex-valued function f(z) has an analytic continuation to S,(r) or An(a),
then we denote this by the same letter f(z) and if g(z) is an analytic function on S(r) or A,(a),
then we denote the restriction of g(z) to the real axis by the same letter g(z).

We let

AS,™(|8]) = {f(2); f() is analytic on S,(|8]), 171l Asam gy < o0}

where

Il asamiqay = sup  [IF(+dy)lmi, ||f(-+iy)||2=/ |f (@ + iy)[Pdz
ve(-181,18)" R

The Fourier transform of ¢(z;) is denoted by F;¢ or #, namely
365) = —= | O 9(ay)da;
var Jr

We denote by .7-']-”1(;5 or ¢ the inverse Fourier transform of the function #(&;)- the free Schrédinger
evolution group U(t) is defined by

1

(1) Ut)p(x) = Crity

/ el (=) 2 (y)dy.
It is also written as F~le€* 7. We let M; = M;(t) = exp(ilz;|?/2t) and J; = J;(t) =
(zj + 2it0;;) = U(t)x;U(—-t) = Mj(t)2it8szj(t)‘1, where j = 1,2.

We organize the survay as follows. In Section 2, we present a survey results about existence
of analytic solutions. Section 3 is devoted to analytic smoothing effects to some dispersive
nonlinear equations. Finally we state results about asymptotic behavior and global existence in
time of small solutions to nonlinear evolution equations in analytic function spaces.

2 Existence of solutions

Analytic function spaces are useful to prove existence theorems of various nonlinear evolution
equations involving derivative of unknown functions, see [6], [9], [10], [11], [12], [32]. In [32],
Kato and Masuda proved existence of analtytic solutions to (gKdV) by making use of analytic
function space.

Theorem 2.1. Assume that ug € AS1%(|a]). Then there exists a time T > 0 and a unique
solution u(t,z) of (9KdV) which has an analytic continuation u(t,z) on the strip Si(|b|) and
u(t,-) € AS120(|b|), where |b| < |al.
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This result says the analytic function space of solutions is smaller than that of the data.
Their method works well for local existence theorem of other nonlinear evolution equations of
the form O;u = F(u), where F(u) is a nonlinear term contains the derivatives. Their idea is
to use the norm ||F~1e®®I¢l Ful|, where a(t) ia a decreasing function satisfying a(0) = |a| and
a(oo) = |b|. If we use this norm, we get

L F el | — o ()17 fgle Ve Ful| < |1 F 1O FF ).

The second term of the left hand side is important to treat the derivatives in the nonlinear term
since we can gain regularity of one derivative from this term.

However it seems that their method does not work for global results.

In [27], [28], [18], [10], we combined a vector field method and analytic function spaces to
show global existence in time of solutions to nonlinear Schrédinger equations. We only state the
result of [10].

Theorem 2.2. Assume thatug € AS,™°(|a|)NAS,""(|al]), n > 2, |luoll asmoqap w0l Asaom ap)
is small enough and N satisfies N(u,Vu) = e?N(e®u,e®Vu) for any § € R and N is a
polynomial of order p which is greater than or equal to 3. Then there exists a unique global
solution u(t,x) of (NLS) which has an analytic continuation u(t,z) on the strip Sy(|b|) and
u(t,-) € AS,20(|b|) for any t € R, where [b] < |a.

More general nonlinear Schrodinger equations were treated in [18].

3 Smoothing property and analyticity of solutions

In the case of nonlinear heat equation

(NLH) { du— 102 u=u2, (t,z:1) € R* xR,

’U,(O,LC) = U’O(xl)7 Ty € R7
it is known that the following smoothing effects of solutions to (NLH) hold.
Theorem 3.1. Assume that ug € L2, Then there exists a time T > 0 and a unique global
solution u(t,z1) of (NLH) such that u has an analytic continuation u(t,21) on the strip S1(V/t)
and an analytic continuation u(t + iT,z1) on the sector {t +i1;—a < § < 0,0 < a < §} for
anyt <T.

Proof. See, e.g., [2].

Linear heat equation on the half line was used to research of isometrical identities for the
Bergman space on a sector [3]. In [4] we extented the result of [3].
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Let Ai(a) = {#1;]|arg 21| < a}. We considered in [4] the Bergman space

BAl(é) = {F;F is analytic on ' A (a), ”F“BAI(Q) < oo},

1/2
NFlBa, o = |F(z1 +iy1)|2dzidyr .
1() N

In the case of a = m/4 we showed that ||F||B, ,, is represented as a series of weighted square
integrals of the derivatives of the trace of F' on the positive real axis in [3]. The proof worked
only in the case of @ = /4. In [4] we presented a general result for 0 < a < 7/2 by a completely
different proof. More precisely we showed

where

Theorem 3.2. We have the isometrical identity

(2sin a)? 2j+1) 59 2
F(z; + 2dz1dy; = sin(2a / 7 dz,,
//Ala| (21 + igs)[2dardyy = sin )Z . 103, £ () [Pdar
where [ stands for the trace of F' on the positive real azxis.

This result shows function spaces of the data considered in [16], [18] are not empty. For
related results of [3] and [4], see , [1], [25].

We next state a smoothing property of solutions to (NLS) obtained in [17], [26] which is
considered as a similar smooting property property of solutions as in (NLH). We also give time
analyticity of solutions to (NLS) and (gKdV) obitained in [5], [16].

The following result says an analytic smoothing property in space variables

Theorem 3.3. Assume that n = 1, el®ll*tlyy € L2 and N = \|u|?u, where a # 0 and ) € C.
Then there ezists a time T > 0 and a unique solution u(t,x) of (NLS) such that u has an analytic
continuation u(t, z1) on the strip Si(|alt) for any |t| < T.

Proof. See [26].

Note that in [26] we do not give the statement of the above result. However the same proof
as in [26] does work well for the problem. This result is considered as an analytic version of the
results obtained in [20] [21]. We also showed a global existence in time of solutions to (NLS)
More precisely, we showed the next result.

Theorem 3.4. Assume that n > 2, el®l®lyg € H™!, m +1 > [2] + 1 and N = Mu|?u, where
a # 0 and A € C. Then there ezists a unique global solution u(t,z) of (NLS) such that u_has an
analytic continuation u(t, z) on the strip Sy(|a|t) for any t € R.

The following result says an analytic smoothing property in time variable.
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Theorem 3.5. Assume that n = 1, el9®iyy € L2 and N = A|u|?u, where a # 0 and A € C
Then there erists a time T > 0 , a constant Cy > 0 and a unique solution u(t,z) of (NLS) such
that u has an analytic continuation u(t+47,x) on the complex domain {t+i1; —Cot* < T < Cot?
for any |t| < T.

Proof. See [17].

These two theorems denpend on the special operator J;, = x1 + 2it0;, and so the method is
not applicable to nonlinearities which do not satisfy the gauge condition. For more general non-
linearities, we showed analyticity in time of solutions of (NLS) in [16] and the Gevrey smoothing
property in [5].

In [16] we considered the regularity of solutions to nonlinear Schrédinger equations

iOu + FAu = F(u, ), (t,z) e R x R",
u(0,z) = uo(z), ze€R"

where F'is a pblynomial of degree p with complex coefficients. Roughly speaking, our result is
stated as follows.

Theorem 3.6. If the initial function ug is in some Gevrey class (for the defintiton of Gevrey
class, see [16] ), then there exists a positive constant T such that the solution u of (NLS) is
in the Gevrey class of the same order as in the initial data in time variable t € [—-T,T|\0. In
particular we showed that if the initial function ug has an analytic continuation on the complex
domain

TaLa, ={2€C™z =x;+1iy;,—o0 < xj < 400,
—Ag — (tana)|z;| < y; < Ao + (tana)|z;|,j =1,2,...,n, Ay > 0},

where 0 < o =sin™! A; < 7/2 and 0 < A; < 1, then there exist positive constants T and 3 such
that the solution u of (NLS) is analytic in time variable t € [-T,T)\0 and has an analytic con-

V24, 242
1+v2A4;’ 3A2+v2e(1+R)

tinuation on {29 = t+i7; |arg z| < B < §,[t| < T} , wheresin 8 < min

when |z| < R.

In [5] we considered regularizing effects of solutions to the (generalized) Korteweg-de Vries
equation
Opu + O3u = )P 18,u, (t,z) e R xR,
u(0)=¢, z€R,

and nonlinear Schrédinger equations in one space dimension

O+ 10%u = G(u, %), (t,z) € R xR,
u(0) =1, =ze€R,

where p is an integer satisfying p > 2, A € C and G is a polynomial of (u,%). We proved
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Theorem 3.7. If the initial function ¢ is in a Gevrey class of order 3 defined in Section 1 of
[5] , then there exists a positive time T such that the solution of the (generalized) Korteweg-
de Vries equation is analytic in space variable for t € [T, T|\{0}, and if the initial function
¥ in a Gevrey class of order 2, then there exists a positive time T such that the solution of
nonlinear Schrodinger equations is analytic in space variable for t € [T, T]\{0}. For more
precise statements of the results, see the original paper [5].

Kato and Taniguchi [29] extended the result of nonlinear Schrédinger equation to the general
spatial dimension.

4 Asymptotic behavior and global existence in time of solutions

As in [10], [13], [18], [14], [15], [27], [28] analytic function spaces are useful to the study of global
existence and asymptotic behavior in time of solutions to nonlinear Schrédinger equations.

In [14], we studied the scattering problem and asymptotics for large time of solutions to
the Cauchy problem for the nonlinear Schrédinger and Hartree type equations with subcritical
nonlinearities '

iOu+ 202 u= f(lu/*u, (t,21) € R?

U(O,.’Ill) = uO('Tl)a TE R7

where the nonlinear interaction term is f(|ul?) = V * [u|2,V(z;) = Mz1| 5, e R,0< § < 1

in the Hartree type case, or f(Ju|?) = A|¢t|'~®|u|? in the case of the cubic nonlinear Schrédinger
equation. :

We showed

Theorem 4.1. We suppose that the initial data e®@1lug € L2 | 8 > 0 with sufficiently small

1 1
norm € = ||e?1#1lug||. Then we proved the sharp decay estimate lu@)|l, < Cetr™2, for allt > 1
and for every 2 < p < co. Furthermore we showed that for % < 6 < 1 there exists a unique final
state 4y € L? such that for all t > 1 '

LARPYIITE 1-26
) = exp(— S F(ja+ PY U (e || = O(F%)
and uniformly with respect to x,
1 R T ’I:.’E2 itl—& . T B
u(t,z1) = ('t)%u+(T1) exp _2~tl - 1—_5f(lu+|2)(—tl-)) + O(t1/3-2%),
i

ilz1|2/2t

The function e u has an analytic continuation on the strip Sy(alt|), where a < 3.
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We only state our main idea in [14]. Applying the operator Fy MiU(—t) to the both sides of
equation and putting v = F; MiU(—t)u, we obtain
10 + 2—173)2(11: =t71f(|v|*)v, ‘
v(1,x1) = Fae2U(-uo(z1), x1 € R,

To eliminate the term ¢~ f(Jv|?) we make use of a tansformation w = €"9v, where g satisfies

g =t f(Jo") + qz(9:)% > 1,
9(1) =0. |
We easily see that w satisfies the Cauchy problem
wy = fgwxgx -+ 2—igwxx + '2%‘2"ngx, t>1,
123:2
w(l) = v(l) = Fre T U(—1)u(1).
Thus we removed the nonlinear term which does not have sufficient time decay but instead we
now encounter the derivative loss. This is the reason why we need an analytic function space.
We consider the system of equations
g0 = () + (o), > 1,
g(1) =0, w(l)=uv(l)=FeTU(-1)u(l).
in an analytic function space.
In [19], we extented the above result to some Gevrey class. We supposed that ePlelyy € 12

,8>0,1— 2—_5_5 < o < 1 and the norm € = ||e#1®"y|| is sufficiently small. Then we proved the
same results as in [14] except an analytic smoothing properties of solutions.

In [18] we considered the nonlinear Schrodinger equations
iOu + 1Au = F(u,Vu,%, Vi), (t,z) € R xR",
u(0,z) = ¢, x€R",

where F : C?"t2 _, C is quadratic and ¢p is sufficiently small constant. We proved that small
analytic solutions exist globally in time when n > 3 and F satisfies

10uF| + |8aF| < C| V.

We also showed an almost global existence of small analytic solutions when n = 2 and F is

written as
F = F(Vu,Va).

Furthermore we proved a global existence result of small analytic solutions when n = 2 and
F = )\(aluag’a — 81’[_18211,),

where A € C.

Our results show that we can handle a wider class nonlinear terms compared with the
previous results [34], [35], [37] in lower dimensional cases if we assume a certain analytical
condition on the data.
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