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1 Introduction
For these ten years, together with T. Kawai (RIMS, Kyoto University) and T. Aoki
(Kinki University), I have been studying ordinary differential equations in the complex
domain from the viewpoint of the exact WKB analysis. The purpose of this report is
to give an expository survey of our research on this subject.

One of the most important problems in quantum mechanics is the eigenvalue prob-
lem of Schr\"odinger equations and to attack this problem asymptotic solutions called
(

$‘ \mathrm{W}\mathrm{K}\mathrm{B}$ solutions” have been used by many physicists. Exact WKB analysis is, in a
word, a new treatment of WKB solutions of 1-dimensional Schr\"odinger equations based
upon the Borel resummation technique. This new analysis using the Borel resumma-
tion allows us to handle exponentially small terms ( $‘$ (

$\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}$ beyond all orders”) in an
exact manner and consequently becomes a powerful tool in analyzing various connec-
tion problems (such as eigenvalue problems, monodromy problems etc.) of differntial
equations.

Historically speaking, the exact WKB analysis was initiated by Voros $([\mathrm{V}])$ and then
has been developed by Pham and his collaborators (cf. [CNP], [DDPI], [DDP2], [DP])
in the framework of Ecalle’s theory of resurgent functions $([\mathrm{E}1]-[\mathrm{E}3])$ .

In this report we explain an outline of the exact WKB analysis of l-dimensional
Schr\"odinger equations according to our way of understanding. For details we refer the
reader to our monograph [KT3]. Recently an analogous analysis has been (almost)
established for Painlev\’e equations, typical nonlinear ordinary differential equations of
second order. We will briefly discuss this generalization of the theory to the nonlinear
equations also.
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2WKB solutions &Borel resummation
In the case of a 1-dimensional Schr\"odinger equation

(1) $( \frac{d^{2}}{dx^{2}}-\eta^{2}Q(X))\psi(X, \eta)=0$ ( $\eta$ : large parameter),

WKB solutions can be easily constructed in the following manner:
Assume that $\psi$ is of the form

(2) $\psi=\exp\int_{x_{0}}^{x}Sdx$

with an arbitrarily fixed point $x_{0}$ , then we find that $S$ should satisfy the so-called Riccati
equation

(3) $S^{2}+ \frac{\partial S}{\partial x}=\eta^{2}Q$ .

Here we further assume that $S$ has an expansion $S=\eta s_{-1}(X)+S_{0}.(X)+\eta^{-1}S_{1}(X)+\cdots$

for $\eta^{-1}$ , then we obtain the following recursive relations:

(4) $S_{-1}^{2}=Q$ ,

(5) $2S_{-1}s_{j}=-(_{k0}^{j-1} \sum_{=}skS_{j-1}-k+\frac{dS_{j-1}}{dx})$ $(j\geq 0)$ .

That is, $S_{-1}=\pm\sqrt{Q(x)}$ and, once (the sign of) $S_{-1}$ is fixed, the other terms $S_{i}(j\geq 0)$

are uniquely determined by the relation (5). In this way we have two (formal power
series) solutions $S_{\pm}$ of the Riccati equation and, substituting these solutions into (2),
we obtain two linearly independent solutions of the Schr\"odinger equation. Note that,
if we decompose $S_{\pm}$ into the sum of the odd order part and the even order part with
respect to the power of $\eta,$ $i.e.,$ $S_{\pm}=\pm S_{\mathrm{o}\mathrm{d}\mathrm{d}}+S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}$ , then $S_{\mathrm{o}\mathrm{d}\mathrm{d}}$ and $S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}$ must satisfy the

1 $\partial$

relation $S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=--\mathrm{l}2\overline{\partial x}\mathrm{o}\mathrm{g}$ Sodd. Hence

(6) $\psi\pm=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{x\mathrm{o}}^{x}S_{\circ \mathrm{d}}\mathrm{d}dx)$

also become solutions of the Schr\"odinger equation (1). In this report we call (6) $WI\mathrm{i}’B$

solutions of (1).
Although the construction of WKB solutions is easy, they $\dot{\mathrm{e}}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ a divergence

problem in return for it. (This is a common feature to equations of singular pertur-
bations.) To give an analytic meaning to WKB solutions we employ the Borel resum-
mation technique. Let us recall here the definition of the Borel resummation; for an
infinite series

(7) $\psi=e^{\eta y0}\sum^{\infty}\psi j\eta^{-(\alpha+i)}j=0$
$(\alpha\in \mathbb{R}\backslash \mathbb{Z})$
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of $\eta^{-1}$ , its Borel transform is, by definition,

(8) $\psi_{B}(y)=\sum_{i=0}\infty\frac{\psi_{j}}{\Gamma(\alpha+j)}(y+y0)^{\alpha+j}-1$ .

If $\psi_{B}(y)$ defines an analytic function in an appropriate domain so that the Laplace
integral

(9) $\int_{-y_{0}}^{\infty}e^{-y\eta}\psi B(y)dy$

(where the path of integration is taken to be parallel to the positive real axis) may
become well-defined, we say $\psi$ is Borel summable and call the integral (9) its Borel
sum.

WKB solutions (6) can actually be expanded into the form (7) with $\alpha=1/2$ and

$y_{0}= \pm\int_{x_{0}}^{x}\sqrt{Q(x)}dx$ and we apply this technique to (6), considering them as infinite

series of $\eta^{-1}$ and regarding $x$ as just a parameter. Then Borel resummed WKB solutions
thus obtained enjoy some very interesting properties. In the subsequent section we
discuss two basic examples to see the interesting properties of WKB solutions.

3 Basic examples

Example 1 [Airy equation] (cf. [AKTI]) Let us first consider the Airy equation

(10) $( \frac{d^{2}}{dx^{2}}-\eta^{2_{X}})\psi_{=0}$ .

We normalize WKB solutions as well as their exponential part (phase factor) denoted
by $y_{0}(x)$ in the following way:

(11) $\psi_{\pm}=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{0}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dX)$ , $y_{0}(_{X})= \int_{0}^{x}\sqrt{x}dx=\frac{2}{3}X^{3/}2$.

In this case the WKB solutions $\psi_{\pm}$ and their Borel transform $\psi_{\pm,B}(X, y)$ have special
homogeneity; $x\psi_{\pm,B}(X, y)$ are functions of one variable $t=y/x^{3/2}$ . Using this homogene-
ity together with the fact that $\psi_{\pm,B}(x, y)$ satisfy a partial differential equation (Borel

transformed equation of (1) $)$ $( \frac{\partial^{2}}{\partial x^{2}}-x\frac{\partial^{2}}{\partial y^{2}})\psi\pm,B(X, y)=0$, we obtain the following

explicit description of $\psi_{\pm,B}(x,y)$ in terms of Gauss’ hypergeometric functions:

(12) $\{$

$\psi_{+,B}$ $=$ $\sqrt{\frac{3}{4\pi}}\frac{1}{x}[s-1/2F(\frac{1}{6}, \frac{5}{6}, \frac{1}{2};S)]|_{S=3}y/4x^{3/}2+1/2$
’

$\psi_{-,B}$ $=$ $\sqrt{\frac{3}{4\pi}}\frac{1}{x}[(s-1)^{-}1/2F(\frac{1}{6}, \frac{5}{6}, \frac{1}{2};1-S)]|_{s=3y/4x^{3}}/2+1/2$
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This expression (12) tells us that $\psi_{+,B}(x,y)$ (as well as $\psi_{-,B}(x,$ $y)$ ) has singularities
both at $y=\pm y_{0}(X)$ . Since a hypergeometric function has at most polynomial growth
at each singular point, this implies that the Borel sum of $\psi_{+}(x,\eta)$

(13) $\int_{-y_{0}(x}^{\infty})+e^{-y}\psi\eta,B(x,y)dy$

is well-defined as far as the other singular point $y=y\mathrm{o}(x)$ does not meet the path
of integration. In other words, $\psi_{+}(x, \eta)$ (and $\psi_{-}(x,$ $\eta)$ also) is Borel summable when
$\alpha 3/sx2\neq 0$ (cf. the left of Figure 1).

$\lrcorner y$

$-y_{0}\overline{(X)\mathrm{I}\uparrow y\mathrm{o}(_{X}\bullet)}$

Figure 1: Change of the integration path of (13) when crossing the positive real axis.

On the other hand, on the lines $\propto 3/sx2=0$ the Borel resummed WKB solutions
show the following “Stokes phenomena”: Let us consider, for example, the analytic
continuation across the positive real axis of the Borel sum (13) of $\psi_{+}(x, \eta)$ in the
lower region $\Omega^{(-)}=\{-2\pi/3<\arg x<0\}$ . If we vary $x$ across the positive real
axis from below, the singular point $y=y_{0}(x)$ crosses the integration path of (13) (see
Figure 1). As a consequence, the analytic continuation of (13) to the upper region
$\Omega^{(+)}=\{0<\arg x<2\pi/3\}$ is given by the integral along the path $C^{(+)}$ in Figure 1,
which is the sum of the integral along $C_{1}$ and that along $C_{2}$ . The former integral is
the Borel sum of $\psi_{+}(x, \eta)$ in $\Omega^{(+)}$ by the definition, while it follows from the following
relation

(14) $\triangle_{y=y\mathrm{o}(x)}\psi+,B(X, y)=i\psi_{-,B}(_{X}, y)$ ,

where $\triangle_{y=y0(x)}$ denotes the discontinuity at $y=y_{0}(x)$ , that the latter one coincides with
$i=\sqrt{-1}$ times the Borel sum of $\psi_{-}(x, \eta)$ . Note that the relation (14) is verified by
using the classical connection formula of Gauss for hypergeometric functions. We have
thus obtained the following connection formula for Borel resummed WKB solutions on
the positive real axis:

(15) $\psi_{+}(-)=\psi_{+-}(+)i(+)+\psi$

where $\psi_{\pm}^{(-)}$ and $\psi_{\pm}^{(+)}$ respectively denote the Borel resummed WKB solutions in $\Omega^{(-)}$

and in $\Omega^{(+)}$ .
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Example 2 [Weber equation] (cf. [T2]) Let us next consider the Weber equation

(16) $( \frac{d^{2}}{dx^{2}}-\eta^{2}(\frac{x^{2}}{4}-\eta^{-1)}\kappa)\psi=0$

with a parameter $\kappa$ . Normalizing WKB solutions and their phase factor as

$\psi_{\pm}=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}(\eta^{1/\mp\kappa}2_{X})\exp\pm\{\eta\int_{0}^{x}s_{-1}dX+\int_{\infty}^{x}(s_{\mathrm{o}\mathrm{d}\mathrm{d}^{-\eta}}s_{-1}+\frac{\kappa}{x})dx\}$,
(17)

$y_{0}(_{X})= \int_{0}^{x}\frac{x}{2}dX=\frac{x^{2}}{4}$ ,

we obtain the following expression of $\psi_{\pm,B}(X, y)$ :

(18)

$\{$

$\psi_{+,B}$ $=$ $\frac{x^{-3/2}2^{1-\kappa/2}}{\mathrm{r}((1+\kappa)/2)}.[s^{(-1+}\hslash)/2F(\frac{1}{4}+\frac{\kappa}{2}, \frac{3}{4}+\frac{\kappa}{2}, \frac{1}{2}+\frac{\kappa}{2};s)]|_{S=2y/}x+21/2$
’

$\psi_{-,B}$ $=$ $\frac{x^{-}23/21+\kappa/2}{\Gamma((1-\kappa)/2)}[(s-1)^{-}(1+\kappa)/2F(\frac{1}{4}-\frac{\kappa}{2}, \frac{3}{4}-\frac{\kappa}{2}, \frac{1}{2}-\frac{\kappa}{2};1-s)]|_{S=2y/}x+21/2$

Again $\psi_{\pm,B}(x, y)$ have singularities both at $y=\pm y_{0}(X)$ and consequently $\psi_{\pm}(x, \eta)$ are
Borel summable $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}\propto sx^{2}\neq 0$ (that is, except on the real and imaginary axes). In a
similar manner to Example 1 we can prove the following connection formula for Borel
resummed WKB solutions of the Weber equation on the positive real axis:

(19) $\psi_{+}^{(-)}=\psi_{+}^{()(+)}++\frac{i\sqrt{2\pi}}{\Gamma(\kappa+1/2)}\psi_{-}$

where $\psi_{\pm}^{(-)}$ and $\psi_{\pm}^{(+)}$ respectively denote the Borel resummed WKB solutions in $\{-\pi/2<$

$\arg x<0\}$ and in $\{0<\arg x<\pi/2\}$ .

4 Fundamental properties
In the precedent section we investigated Borel resummed WKB solutions of the Airy
and Weber equations. One of the most important properties of them is that they
show what is called Stokes phenomenon and it is explicitly described by the connection
formula (cf. (15), (19)). Such a phenomenon can be observed not only for these basic
examples but also for general equations of the form (1). In this section we state Stokes
phenomena for general equations without referring to their detailed proofs.

Definition 1 (i) A turning point of (1) is, by definition, a zero of $Q(x)$ . A turning
point is said to be simple if it is a simple zero of $Q(x)$ .
(ii) A Stokes curve of (1) is defined by the following relation:

(20) $s^{\infty} \int_{a}^{x}\sqrt{Q(x)}dx=0$ ,

where $a$ is a turning point of (1).
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For the Airy equation (10) the origin $x=0$ is a unique simple turning point and Stokes
curves are given by $\alpha 3/sx2=0$ . For the Weber equation (16) we should regard the
leading part $x^{2}/4$ of the potential as $‘(\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$ potential” $Q(x)$ . Obeying this convention,
we find $x=0$ is a unique turning point (which is not simple) of (16) and Stokes curves
are given $\mathrm{b}\mathrm{y}_{S}^{\propto 2}x=0$ .

In what follows we discuss only equations of the form (1) and assume further that all
turning points are simple for the sake of simplicity. Then, under some generic conditions
(whose precise formulation is omitted in this report), Borel resummed WKB solutions
of (1) have the following properties:

Fact 1 $\mathrm{T}^{J}\mathfrak{s}/^{r}\mathrm{A}^{r}B$ solutions (6) of the equation (1) are Borel summable except on Stokes
curves.

Fact 2 On each Stokes curve emanating from a $\mathit{8}imple$ turning point $a$ the following
connection formula holds:

(21) $\{$

$\psi_{+}^{(0)}$ $=$ $\psi_{+-}^{(1)()}\pm i\psi 1$

$\psi_{-}^{(0)}$
$=$

$\psi_{-}^{(1)}$

or $\{$

$\psi_{+}^{(0)}$ $=$ $\psi_{+}^{(1)}$

$\psi_{-}^{(0)}$
$=$ $\psi_{-}^{(1)}\pm i\psi_{+}(1)$ ,

where $WI\zeta B$ solutions $\psi_{\pm}$ are assumed to have the following normalization

(22) $\psi_{\pm}=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{a}^{x}s\circ \mathrm{d}\mathrm{d}dx)$ ,

and $\psi_{\pm}^{(j)}(j=0,1)$ respectively denote the Borel sum of $\psi_{\pm}$ in the two adjacent regions
having the Stokes curve in question as a common boundary.

The Borel summability of WKB solutions (Fact 1) is due to Ecalle $([\mathrm{E}2])$ and their
connection formula at a simple turning point in all orders (Fact 2) is given first by
Voros ([V], who derived (21) from the fact that Borel resummed WKB solutions are
single-valued even at a simple turning point). The formula (21) can be verified also by
combining the connection formula (15) for the Airy equation and the following local
reduction of the equation (1) to the Airy equation near a simple turning point (cf.
[AKTI] $)$ : For any simple turning point $a$ we can find an infinite series

(23) $\tilde{x}(x, \eta)=\tilde{x}_{0}(X)+\eta^{-2}\tilde{x}_{2}(X)+\cdots$

with holomorphic coefficients $\{\tilde{x}_{2j}(X)\}j=0,1,\ldots$ defined in a neighborhood of $a$ so that the
equation (1) may be transformed to the Airy equation

(24) $( \frac{d^{2}}{d\tilde{x}^{2}}-\eta^{2}\tilde{x})\tilde{\psi}(\tilde{x},\eta)=0$

by the (formal) coordinate transformation (23) and the transformation of unknown
functions of the following form

(25) $\psi(x, \eta)=(\frac{\partial\tilde{x}}{\partial x})^{-1/2}\tilde{\psi}(\tilde{x}(x,\eta),\eta)$ .
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5An application –Computation of monodromy
groups

The connection formula (21) and the configuration of Stokes curves enable us to analyze
the global behavior of solutions of the equation (1). In this section, to illustrate how to
solve connection problems of (1), we compute the monodromy group of the following
example of Fuchsian equations by using the exact WKB analysis.

Example 3

(26) $( \frac{d^{2}}{dx^{2}}-\eta^{2}Q(x))\psi(x, \eta)=0$ , $Q(X)=- \frac{(4x^{2}-(1+i)2)(4x-2(1-3i)^{2})}{((4x^{2}-(1-i)2)(4x^{2}-(1+3i)2))^{2}}$ .

Let us number the turning points ( $i.e.$ , zeros of the numerator) and the singular points
( $i.e.$ , those of the denominator) of (26) as follows:

$a_{0}=(-1+3i)/2$ , $a_{1}=(1+i)/2$ , $a_{2}=(-1-i)/2$ , $a_{3}=(1-3i)/2$ ,

$b_{0}=(1+3i)/2$ , $b_{1}=(-1+i)/2$ , $b_{2}=(1-i)/2$ , $b_{3}=(-1-3i)/2$ .

Then the configuration of Stokes curves of (26) becomes the following:

Figure 2: Stokes $\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}\dot{\prime}\mathrm{e}\mathrm{S}$ of (26).

(In Figure 2 Stokes curves are designated by lightface lines. A boldface line, a wiggly
line and a broken line respectively denote a path of continuation (around a singular
point $b_{k}$ ), a cut (to define the Riemann surface of $\sqrt{Q(x)}$) and an oriented path from
a base point $x_{0}$ to a turning point $a_{i}.$ )

Since all the singular points $\{b_{k}\}$ are regular singular points, the equation (26) is.a
Fuchsian equation. For such a Fuchsian equation the global behavior of solutions can
be $\cdot \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{e}\mathrm{d}$ by the monodromy group, which is defined in the following way: Take
a base point $x_{0}$ and a fundamental system of solutions $(\psi_{0}, \psi 1)$ at $x_{0}$ , and consider
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the analytic continuation of $(\psi_{0}, \psi_{1})$ along a closed path $C$ in $P^{1}(\mathbb{C})\backslash \{b_{0}, \cdots , b_{3}\}$

with the base point $x_{0}$ . Then, after the analytic continuation, $(\psi_{0}, \psi_{1})$ becomes a linear
combination $(\psi_{0}, \psi_{1})Ac(A_{C}\in GL(2, \mathbb{C}))$ of them and we thus obtain a homomorphism
(“$\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{y}$ representation”)

(27) $\pi_{1}(P^{1}(\mathbb{C})\backslash \{b_{0}, \cdots, b_{3}\})\ni C-A_{C}\in GL(2, \mathbb{C})$ .

The monodromy group is (the conjugacy class of) the image of this homomorphism and
each matrix $A_{C}$ is called a monodromy matrix.

In the case of the equation (26) we take the origin $x=0$ as base point and the Borel

resummed WKB solutions $\psi_{\pm}=(s_{\mathrm{o}\mathrm{d}\mathrm{d}})-1/2\exp(\pm\int_{0}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)$ as fundamental system

of solutions at $x_{0}=0$ . Then, looking at Figure 2 and using the connection formula
(21), we can compute the monodromy matrix $A_{k}$ along a path $C_{k}$ which encircles a
singular point $b_{k}$ once and returns to $x=0$ (cf. Figure 2) as follows:

$A_{0}$ $=$

$\cross$ ,

$A_{1}$ $=$

$A_{2}$ $=$

$A_{3}$ $=$

$\cross$ ( $01$

$-iu_{0_{1}}^{-1} \frac{\nu_{1}^{+}}{\nu_{1}^{-}}$ )
Here we have used the notation

$\nu_{k}^{\pm}=\exp(2\pi i\mu_{k}^{\pm})$ (where $\mu_{k}^{\pm}$ denote the characteristic exponents at $b_{k}$ )

$u_{j}= \exp(2\int_{\gamma_{j}}s_{\mathrm{O}}\mathrm{d}\mathrm{d}d.X\mathrm{I},$ $u_{jj’}=u_{j}^{-1}u_{j’}$ .
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Each triangular matrix appearing in the above expression of $A_{k}$ represents the fact
that we have used the formula (21) whenever a path $C_{k}$ of analytic continuation crosses
a Stokes curve. The reason why some complicated constant appears in the off-diagonal
components of these triangular matrices is the following:

(i) The normalization of WKB solutions used here is different from (22) used in the
description of (21).

(ii) $S_{\mathrm{o}\mathrm{d}\mathrm{d}}$ has a simple pole at each regular singular point $b_{k}$ and its residue is described
by a characteristic exponent $\mu_{k}^{+}$ .

Note that $u_{jj’}$ is given by a contour integral of $S_{\mathrm{o}\mathrm{d}\mathrm{d}}$ around a cut connecting two turning
points $a_{j}$ and $a_{j’}$ . The property (ii) mentioned above also explains the necessity of a
diagonal matrix with components $\nu_{k}^{\pm}$ in the expression of $A_{k}$ .

Now, replacing the fundamental system of solutions $\psi_{\pm}$ at $x_{0}=0$ by

(28) $\tilde{\psi}_{\pm}=\exp(\mp\int_{\gamma_{1}}S_{\mathrm{O}}\mathrm{d}\mathrm{d}dX)\psi\pm$

and, furthermore, using fundamental relations among contour integrals

(29) $\nu_{k}^{+}\nu_{k}^{-}=1$ and $u_{01}u_{32}\nu_{0}\nu+1+_{\nu_{2}^{+_{\nu_{3}^{+}}}}=1$ ,

we obtain the following description of monodromy matrices in terms of $\nu_{k}^{\pm}$ and $u_{jj’}$ :

$\overline{A}_{0}$

$=$

$\overline{A}_{1}$

$=$

$\tilde{A}_{2}$

$=$

$\tilde{A}_{3}$

$=$

where $\theta=u_{01}\nu_{0^{+}}+u_{01}u_{1}2\nu^{+}12\nu^{-}\nu^{+}3$ .
In general, by using the exact WKB $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}_{\mathrm{S}^{\backslash }}\mathrm{i}\mathrm{S}$ we find that the monodromy group of

Fuchsian equations of the form (1) can be described in terms of characteristic exponents

at regular singular points and contour integrals $\oint_{\gamma}S_{\mathrm{o}\mathrm{d}}\mathrm{d}dx$ of $S_{\mathrm{o}\mathrm{d}\mathrm{d}}$ along closed paths on

the Riemann surface of $\sqrt{Q(x)}$ .
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6Further development –WKB analysis of Painlev\’e
equations

Recently the exact WKB analysis of Schr\"odinger equations has been generalized to
Painlev\’e equations, typical second-order nonlinear ordinary differential equations. In
this section we briefly explain an outline of the WKB analysis of Painlev\’e equations.
For details we refer the reader to [KT1], [AKT2], [KT2] and [T2].

The Painlev\’e equations $(P_{J})(J=\mathrm{I}, \ldots, \mathrm{V}\mathrm{I})$ with a large parameter $\eta$ have the
following form:

$(P_{J})$ $\frac{d^{2}\lambda}{dt^{2}}=\eta^{2}F_{J}(\lambda, t)+G_{J}(\lambda,$ $\frac{d\lambda}{dt},t)$ ,

where $F_{J}$ and $G_{J}$ are rational functions. For example, the explicit form of $(P_{\mathrm{I}})$ and
that of $(P_{\mathrm{D}})$ are as follows:

$(P_{\mathrm{I}})$
$\frac{d^{2}\lambda}{dt^{2}}=\eta^{2}(6\lambda^{2}+t)$ .

$(P_{\mathrm{I}\mathrm{I}})$
$\frac{d^{2}\lambda}{dt^{2}}=\eta^{2}(2\lambda 3t+\lambda+C)$ .

Painlev\’e equations were first discovered by Painlev\’e and his student Gambier in their
classification of second-order nonlinear ordinary differential equations (of normal type)
with what is now called ‘(Painlev\’e property”. The Painlev\’e property, which means
that any solution has no movable branch point, actually guarantees that global con-
nection problems for a differential equation in question are “well-posed”. In this sense
Painlev\’e equations are good objects of WKB analysis because, as $\mathrm{w}\mathrm{e}\sim$ have observed so
far, the exact WKB analysis is a powerful tool for analyzing global connection prob-
lems. Furthermore, Painlev\’e equations are closely related to connection problems of
some linear ordinary differential equations through $‘(\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{C}$ deformations” (cf.
[JMU], [O] $)$ . From this point of view also they are considered to be good equations
worth being analyzed by the exact WKB analysis.

Our WKB theory of Painlev\’e equations $(P_{J})$ with a large parameter is constructed
in a parallel way to that of Schr\"odinger equations. First of all, as a substitute for WKB
solutions of Schr\"odinger equations, we have the following 2-parameter family of formal
solutions of $(P_{J})$ called instnton-type solutions:

(30) $\lambda_{j}(t;\alpha, \beta)=\lambda 0(t)+\eta-1/2\lambda 1/2(t, \eta)+\eta^{-1}\lambda_{1}(t, \eta)+\cdots$ ,

where $\lambda_{0}(t)$ is an algebraic function determined by

(31) $F_{J}(\lambda_{0}(t), t)=0$

and $\lambda_{j/2}(t, \eta)(j\geq 1)$ has the following expansion:
$\lambda_{1/2}(t, \eta)$ $=$ $\mu_{J}(t)\{\alpha(\theta J(t)\eta 2)^{\alpha}\beta\exp(\eta\phi_{J}(t))+\beta(\theta_{J}(t)\eta^{2})^{-}\alpha\beta \mathrm{p}\mathrm{e}\mathrm{x}(-\eta\phi J(t))\}$ ,

$\lambda_{j/2}(t, \eta)$ $=$ $\sum_{0k=}^{j}b_{j-}(j/2)(2kt)(\theta J(t)\eta)2(j-2k)\alpha\beta\exp((j-2k)\eta\phi J(t))$ $(j\geq 2)$ .
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Here

(32) $\phi_{J}(t)=\int^{t}\sqrt{\frac{\partial F_{J}}{\partial\lambda}(\lambda_{0}(t),t)}dt$ ,

$\mu_{J}(t)$ and $\theta_{J}(t)$ are some appropriate functions of $t$ , and $(\alpha, \beta)$ denotes a pair of free
parameters. (For the construction of instanton-type solutions see [A] or [T1].) Having
the explicit form of instanton-type solutions $\lambda_{J}(t;\alpha, \beta)$ in mind, we next define turning
points and Stokes curves for them in the following way:

Definition 2 (i) A turning point of $(P_{J})$ is, by definition, a point $r$ which satisfies

(33) $F_{J}( \lambda_{0}(r), r)=\frac{\partial F_{J}}{\partial\lambda}(\lambda_{0}(r), r)=0$ .

A turning point $r$ is said to be simple if $(\partial^{2}F_{J}/\partial\lambda^{2})(\lambda_{0}(r), r)\neq 0$ .
(ii) A Stokes curve of $(P_{J})$ is defined by the following relation:

(34) $\propto s\int_{r}^{t}\sqrt{\frac{\partial F_{J}}{\partial\lambda}(\lambda_{0}(t),t)}dt=0$ ,

where $r$ is a turning point of $(P_{J})$ .

For example, in the case of $(P_{\mathrm{I}})t=0$ is a unique simple turning point and the Stokes
curves are given by the relation $s^{\triangleright}x^{5/4}=0$ (cf. Figure 3 below).

Then, we can prove the following fundamental properties for $\lambda_{J}(t;\alpha, \beta)$ :

Fact 3 (Local reduction to $(P_{\mathrm{I}}),$ $[\mathrm{K}\mathrm{T}2]$ ) In a neighborhood of a $pointt_{*}$ on a Stokes
curve emanating from a simple turning point $r$ of $(P_{J})$ , the Painlev\’e equation $(P_{J})$ and
their instanton-type solutions $\lambda_{J}(t;\alpha, \beta)$ can be transformed to $(P_{\mathrm{I}})$ and $\tilde{\lambda}_{\mathrm{I}}(^{\sim}t\cdot,\tilde{\alpha},\tilde{\beta})$ . To
be more $preci_{\mathit{8}}e$ , for each instanton-type solution $\lambda_{J}(t;\alpha, \beta)$ of $(P_{J})$ we can find an
instanton-type solution $\tilde{\lambda}\mathrm{I}(^{\sim}t\cdot,\tilde{\alpha},\tilde{\beta})$ of $(P_{\mathrm{I}})$ for which the following holds:

There exist formal series

(35)
$\tilde{x}(x,t, \eta)=\sum_{\geq j0}\eta-j/22\tilde{x}_{j/}(x, t, \eta)$

and

(36)
$t(t, \eta)\sim=\sum_{j\geq 0}\eta^{-}tj/2(t, \eta)j/2^{\sim}$

$\mathit{8}O$ that the following relation may be satisfied:
(37) $\tilde{x}(\lambda_{J}(t;\alpha, \beta),$ $t,$ $\eta)=\tilde{\lambda}_{\mathrm{I}}(^{\sim}t(t, \eta);\tilde{\alpha},\tilde{\beta})$ .
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Fact 4 (Connection formula for $(P_{\mathrm{I}})$ , [T2]) Let $\lambda_{\mathrm{I}}(t;\alpha, \beta)$ be an $in\mathit{8}tant_{on}$-type 8o-

lution of $(P_{\mathrm{I}})$ in the region $\{-3\pi/5<\arg t<-\pi/5\}$ and $\lambda_{\mathrm{I}}(t;\tilde{\alpha},\tilde{\beta})$ its analytic con-
tinuation to $\{-\pi/5<\arg t<\pi/5\}$ across a Stokes curve $\arg t=-\pi/5$ (cf. Figure 3).
Then the following relations hold between $(\alpha, \beta)$ and $(\tilde{\alpha},\tilde{\beta})$ .

(38)

$\{$

$\alpha e^{-i\pi E/4}\chi(E)=\tilde{\alpha}e-i\pi\overline{E}/4x(\tilde{E})$ ,

$e^{i\pi E//2}2+\beta e^{i\pi}x(E-E)=\tilde{\beta}e^{i\pi}/2x\tilde{E}(-\tilde{E})$ ,

where $\chi(z)=\frac{\sqrt{\pi}}{\Gamma(z/4+1)}2^{z/4+1}\prime E=-8\alpha\beta_{J}$ and

$\tilde{E}=-8\tilde{\alpha}\tilde{\beta}$ .

Figure 3:
Stokes curves of $(P_{\mathrm{I}})$ .

Unfortunately, as it is not known how to give an analytic meaning to instanton-type
formal solutions at the present stage, we have not yet succeeded in verifying the analytic
version of these fundamental properties. However, in parallel with the Schr\"odinger case
the connection formula at a simple turning point for general $(P_{J})$ should, in principle,
be derived from combination of Fact 3 and Fact 4 and by using the formula for $(P_{J})$

thus obtained (which might probably be of the same form with that for $(P_{\mathrm{I}})$ ) together
with the configuration of Stokes curves we should be able to analyze the global behavior
of solutions of $(P_{J})$ . To exemplify the validity and effectiveness of this approach we
briefly explain our discussion about a well-known connection problem for $(P_{\mathrm{I}\mathrm{I}})$ from
this point of view in what follows.

Let us consider a solution $u(z)$ of the equation

(39) $u”=zu+2u3$

with the following asymptotic behavior for $z>0,$ $zarrow\infty$ :

(40) $u(z) \sim a\mathrm{A}\mathrm{i}(z)\sim\frac{a}{2\sqrt{\pi}}Z^{-}1/4\exp(-\frac{2}{3}Z)3/2$ $(zarrow+\infty)$

where $a$ is a constant satisfying $0<a<1$ . It is known that, after the analytic
continuation along the real axis, $u(z)$ has the following asymptotic expansion for $zarrow$

$-\infty$ :

(41) $u(z) \sim d(-Z)^{-1}/4\sin(\frac{2}{3}(-z)^{3/2}-\frac{3}{4}d^{2}\log(-Z)+\theta)$ $(zarrow-\infty)$ ,
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where $d$ and $\theta$ are given by

(42) $\{$

$d^{2}$ $=$ $- \frac{1}{\pi}\log(1-a^{2})$ ,

$\theta$ $=$ $\frac{\pi}{4}-\frac{3}{2}d^{2}\log 2-\arg\Gamma(1-\frac{id^{2}}{2})$ .

The formula (42) was first discovered by Ablowitz and Segur (cf. [AS], [SA]). Our
question is the following: Is it possible to derive this formula (42) by using our WKB
analysis?

Note that by a simple scaling transformation

(43) $u=\eta^{1/3}\lambda$ , $z=\eta^{2/3}t$

the equation (39) is transformed to the second Painlev\’e equation with a large parameter

$(P_{\mathrm{I}\mathrm{I}}^{0})$ $\frac{d^{2}\lambda}{dt^{2}}=\eta^{2}(2\lambda^{3}+t\lambda)$

where the paranleter $c$ is taken to be $0$ . Furthermore, through the scaling transformation
(43) the asymptotic solution (40) [resp. (41)] of (39) corresponds (at least at the leading
order level) to an instanton-type solution $\lambda_{\mathrm{I}\mathrm{I}}^{0}(t;0, \beta)$ [resp. $\lambda_{\mathrm{I}\mathrm{I}}^{0}(t;\alpha,$ $\beta)$ ] of $(P_{\mathrm{I}\mathrm{I}}^{0})$ with the
identically vanishing top term $\lambda_{0}(t)\equiv 0$ for $zarrow\infty$ [resp. $zarrow-\infty$ ]. Therefore what we
want to discuss is the connection problem between $\lambda_{\mathrm{I}\mathrm{I}}^{0}(t;0, \beta)$ for $zarrow\infty$ and $\lambda_{\mathrm{I}\mathrm{I}}^{0}(t;\alpha, \beta)$

for $zarrow-\infty$ .
It can be easily observed that

(i) $t=0$ is a unique (non-simple) turning point of $(P_{\mathrm{I}\mathrm{I}}^{0})$ ,

(ii) the configuration of Stokes curves of $(P_{\mathrm{I}\mathrm{I}}^{0})$ is the same with that of the Airy
equation, that is, the Stokes curves of $(P_{\mathrm{I}\mathrm{I}}^{0})$ are given by $S^{\infty}X^{3}/2=0$ .

Although the geometry of Stokes curves of $(P_{\mathrm{I}\mathrm{I}}^{0})$ is not complicated, it is difficult to
determine the connection formula on each Stokes curve since $t=0$ is not a simple
turning point and we cannot apply the connection formula for $(P_{\mathrm{I}})$ to this equation. To
overcome this difficulty we first consider $(P_{\mathrm{I}\mathrm{I}})$ with a non-zero parameter $c$ and then take
a limit $carrow 0$ . Figure 4 indicates the configuration of Stokes curves of $(P_{\mathrm{I}\mathrm{I}})$ with non-
zero $c$ . There appear three turning points in Figure 4, all of which are simple. Hence we
expect that the connection formula for $(P_{\mathrm{I}})$ should be applicable to each Stokes curve
in Figure 4. As a matter of fact, looking at this configuration of Stokes curves (more
precisely, its lift to the Riemann surface of the algebraic equation $2\lambda^{3}+t\lambda+c=0$

determining $\lambda_{0}(t))$ and using the connection formula for $(P_{\mathrm{I}})$ repeatedly, we can obtain
the formula (42) for the limit $carrow 0$ . (For the details of $\mathrm{c}o$mputation see [T3].) In other
words, the Ablowitz-Segur formula can be derived from repeated use of the connection
formula for $(P_{\mathrm{I}})$ . We think this strongly supports the validity and effectiveness of our
WKB theory for Painlev\’e equations.
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Figure 4: Stokes curves of $(P_{\mathrm{I}\mathrm{I}})$ .
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