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Justification of a formal derivation of the Euler-
Maclaurin summation formula

4K L #2EIEE (Masaaki SUGTHARA)

1 Introduction

The Euler-Maclaurin summation formula

nz*: flz +kh)

k=0

- ;Z_/Onhf(gc +t)dt — %[f(:z:Jrnh) - f(=)]
+Z B?r p2r— 1 (2r— 1)(:c+nh)—f(2rnl)($)] (1,1)

is very important in many branches of mathematics. Here By, (r = 1,2,...) are the

Bernoulli numbers, which are defined by

z
ez—l __+Z

Up to the present several ways have been known of deriving the Euler-Maclaurin
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(1.2)

summation formula. Among them, a way employing the so-called symbolic calculus
is the simplest, although the calculus is merely formal in general ([2], [5], [8], [9]).

This situation raises naturally the question

“ Can the symbolic calculus employed there be justified
under certain conditions 7 7

The main aim of the present paper is to answer the question in the affirmative.

At first sight there seems to be no clue for answering the question. The fact is
however pointed out by Hardy [5], that the infinite series appearing in the right-
hand side of the Euler-Maclaurin summation formula is convergent if f(x) is an entire
function of exponential type less than 27 /h. It makes us foresee the possibility that
the symbolic calculus might be justified for a class of entire functions of exponential
type. In the paper we prove this possibility. To be more specific, we here show
that the symbolic calculus is valid if it is regarded as the operational calculus for
the differential operator on a normed linear space of entire functions of exponential
type.

This paper is organized as follows. In §2, for completeness, we reproduce the

derivation of the Euler-Maclaurin formula based on the symbolic calculus. In §3
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we show that the symbolic calculus can be justified by taking three steps: the first
step is to introduce a normed linear space of entire functions of exponential type;
the second step is to study basic properties of the differential operator on the space
introduced in the first step; the final step is to see that the symbolic calculus is
valid if it is interpreted as the operational calculus for the differential operator on
the space. Finally, in §4 we deal with the Euler-Maclaurin summation formula with

the remainder term.

2 Derivation of the Euler-Maclaurin summation
formula based on the symbolic calculus

Following [2] and [8], we derive the Euler-Maclaurin summation formula by means
of the symbolic calculus.
We define the following operators:

(1) Shift operator E.f(z) = f(z + h);
(2) Differential operator Df(z) = f'(z).

A key to derive the Euler-Maclaurin formula is the relation
E; = e"P, (2.1)

which is formally proved as follows:
Eif(z) = fla+h)

= f(z)+ fl(z)h + f—Q(fczhz + -+ ( The Taylor expansion of f(z +h) )

D,
= (1+Dh+—é'—h2+---)f(x)
= "Pf(a).

We first write the left-hand side of the Euler-Maclaurin formula in operator form

as

S fla 4 kh) = (1 4+ En o+ B f(2).
k=0

And using the relation (2.1) and the formula for the sum of a geometric series, we

get

%f(x +kR) = (1+€™® 4+ ("P))f(2)
k=0
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Further by virtue of the addition formula for the exponential function, we have

n—1 enhD -1
k=0
Now express the right-hand side of (2.2) as
D_1 e 1 AD
eh—D———l—f(x) = WD efD _ 1f(fv)- (2~3)
And substituting the Taylor series
hD Bgr

D _1 “_+Z

(see (1.2), i.e. the generating function of the Bernoulli numbers) into (2.3), we obtain

e’ D_ 1 hAD o B27- 2%
a0 = S (1- 5 4 X g ) @)

L

E, —1 o0
{ AD Z

Interpreting D! f(z) as a primitive function of f(x), we reach to

e

wn = (DY L f(2).

nz_:l f(z + kh)

k=0

= [" ity dt— L7 b - (@)

* Z %hZT-I[ﬂ”-”(m +nh) = fE ()], (2.4)

which is the Euler-Maclaurin summation formula to be desired.

3 Justification of the symbolic calculus

3.1 A normed linear space of entire functions of exponential
type 7
We introduce a normed linear space of entire functions of exponential type 7. We

first recall the definition of “ entire functions of exponential type 7 ”

Definition ([1]) The entire function f(z) is of exponential type T if, for every pos-

itive € but for no negative ¢,

max|f(z)] = O(e"™*)  (r — o0).

|2|=r



In view of this definition it seems natural to set up the space

&= { f(z) | f(z)1s entire,.and sup e f(2)] < o0 },

z€

where the norm of f is defined by
/1l = sup e F|f(2)]. (3.1)
z€C

Obviously &, is a Banach space.

We should here note that £ does not contain all of the entire functions of expo-
nential type 7. In fact, ze™ is an entire function of exponential type 7, but ze™
does not belong to &,. However &, contains typical entire functions of exponential
type 7, such as 7%, sin Tz, cos Tz, and J,(72) (Jn is the Bessel function of order n).

3.2 Differential operator on the space &;

We study basic properties of the differential operator on &:. The result is sum-

marized in the following theorem.

Theorem 3.1 Let D be the differential operator on the space &, and denote by
||D||, r(D), and o(D) the norm of D, the spectral radius of D, and the spectrum of
D respectively. Then

T < ||D|| L er, (3.2)
r(D) =, (3.3)

and
o(D)y={ e C | |A| <7} (3.4)

(Proof) To establish (3.2) and (3.3), we prove the inequalities

< [IDM| < nlS—. (3.5)

nTL

The proof of the first inequality is easy. In fact,

2o AL~ leml

The proof of the second inequality is a little laborious. We first represent D" f( z)

n

by Cauchy’s formula for derivatives,

n _nl f(¢) .
D" f(z) —/Ic—zlzr =2y d¢, (3.6)

T 27
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where r is the arbitrary positive real number. Taking the absolute value of (3.6),

we get

!WWNSMA AL

2 Jig—al=r ¢ — 2fnt
n!

< — sup [f(Q)].
I emf=r

Then, from the definition of the norm (3.1), we have

n!
1071l < Zsup (sup e FIf(Q))). (3.7)

jC—zl=r
Here we write the right-hand side of (3.7) as

n! n!
- —7lz| — T —7(|z|+7)

sup ( sup e "7 f(()]) = —€"sup( sup e _
g (swp Q) = Sersup  sup- FON)

Using the inequality
sup [f(()] < sup [f({)],

|¢—z]=r <|=lz2l+r
which is obvious from the maximum principle, we find

n! n!

_Eefr su1)< sup 8~T(|ZI+T)|f(C)|) < 76” sup( Sup 6—TK|If(O|)
r 2€C " |{—z|=r r 2€C " [(|=lzl+r
n!
< —e”[|f]l.
r
Thus we have "
N e
[|D™fl] < n! 7L,
which implies
I1D™|| < n1S—.
,,,n

Finally, noting that r is arbitrarily positive, we get

e’ e

= n!
rt n"

T

T

[|1D"]] < n! min
r>0

This is the second inequality in (3.5).
Now (3.2) is trivial. In fact it is a special case of (3.5) with n = 1. To establish
(3.3), we utilize the well-known formula

r(D) = lim ||D™|}/™ (3.8)

n—0C

Substituting the inequality (3.5) into the right-hand side of (3.8), we get

: n.ny\ 1/n
7 <r(D) < lim (n!c T ) =T,

n—o00 nn
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which is to be proved. In the last equality, we used the Stirling formula
nl ~ v2rne " n" (n — 00).
It remains to prove (3.4). Owing to the inclusion relation
o(D) S{AeC | A <r(D)(= 1)},

it suffices to show that every A € {A € C | |\| < 7} is an eigenvalue of the operator
D. This is however evident from the fact that, for every A € {A € C | |A| < 7},
e* € €, and De* = Ae*?. The proof of Theorem 3.1 is now completed. 1

3.3 Operational calculus for the differential ‘operator D on

£, and justification of the symbolic calculus

As is seen in the preceding theorem, the spectrum of the differential operator
D on &, is the closed disk of radius 7. Therefore, from the general theory of the
operational calculus ([4], [10]), we know that the following two theorems hold. We
here denote by A, the family of all functions holomorphic in the closed disk of radius

T.

Theorem 3.2 For every function f(z) € A,, let 32 arz® be the Taylor expansion
of f(z). Then the series of D, 37}2, arDF, is convergent in the operator norm
topology. That is to say, for every function f(z) € A., a function f(D) of D can be
defined throught the Taylor expansion of f(z).

Theorem 3.3 The following operational calculus for the differential operator D on
the space &, holds good.

1. If f and g are in A,, and o and 3 are complex numbers, then
(1'1) af + By € A, and af(D) + Bg(D) = (af + Bg)(D),
and
(12) f-g€ A and [(D)-g(D) = (f - 9)(D):

2. Let f, € A, (n=0,1,...) and f € A, be holomorphic in a fired neighborhood
U of the closed disk of radius 7. If f.(z) converges to f(z) uniformly on U,
then f,(D) converges to f(D) in the operator norm topology.

3. If d(2) is an entire function and f(z) is in A., then d(z) = ¢(f(2)) € A, and

d(D) = ¢(f(D))-

From Theorem 3.2 we obtain the following lemma. Note that the functions in
the lemma are those which appear in the process of formally deriving the Euler-

Maclaurin formula.



Lemma 3.4 1. The function e"P is well defined and
el = E), (3.9)
where Ey is the shift operator on &, i.e.

Enf(z) = f(z + h).
2T

2. The function is well defined on condition that T < 5

el — 1
6nhD _

1
3. The function ———

D is well defined and

nhD_l

€ I(nh

hD ko’

where K, is the integral operator on &, i.e.

(3.10)

Konf(z) = /Onh Fle+1) db.

(Proof) The proof is straightforward. ' 5

Now we are ready to attain the goal, that is, to justify the symbolic calculus
employed in the process of formally deriving the Euler-Maclaurin formula.

Let A > 0 be fixed, and let 7 > 0 be less than 27 /h. We look upon the operators
E; and D, which are involved in the symbolic calculus, as the operators Ej and D
on the space &,. Then, to justify the symbolic calculus, we have to show that the
functions of the operators appearing there are well defined and that the operations
performed are valid. But we have already done this work in Lemma 3.4 and Theorem
3.3. Thus we have completed the justification of the symbolic calculus.

4 The Euler-Maclaurin summation formula with
the remainder term

In the previous sections we treated only the Euler-Maclaurin summation formula
without the remainder term. However the formula with the remainder term is rather
preferable, especially in applications to numerical analysis, so that to derive it by
the operational calculus developed in the preceding section is desired. We here see

that this desire is accomplished.

We first recall the Euler-Maclaurin summation formula with the remainder term([7]):

n—1

> f(z + kh)

k=0
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nh 1
|7 @+ 0t = 5(f(e + nh) - f(2)]
Bay p2r-1 (2r-1) 2r 1)
F 32 o a4 uh) = o)
”h Bomi1(t/h = [t/h])  om p(2ms1)
+/ e FemD (g 4 1) dt, (4.1)
where B,(t)(p =0,1,---) are the Bernoulli polynomials, which are defined by

1
h

etz

And we prepare the following two formulas:

B,(t - [t]) e
AN LANS— — >1 4.2
J#0
4 z = — 1 2m+1
=1-= mre 4.
-1 2 22 T L G ) (43)
J#0

The first formula is well known ([3]), and the second one is easily obtained from the

partial fraction expansion of the function z/(e* — 1)([6]):

z
e —1 + Z 27rn)

Now we are ready to derive the Euler-Maclaurin summation formula with the
remainder term. Let A > 0 be fixed, and let 7 > 0 be less than 27 /h. Based on the

operational calculus on the space &,, we have

fl@)+ flx+h)+--+ flz+ (n—1)h)
= (4Bt Bf)
— (1+ehD+_”+(ehD)n—1) f(z)

(ehD)n -1
= oo /)
CnhD -1
= w1 /@
D_1 4D

- hD  ehD — 1f($)

e”hD—l hD i 2
- £ — 1= " (hD)*"
hD ( 2 +;(r)!( )

+ 2 (27rij)2m(hD+27rij)(hD)2m+1)f($)

j=—00

J#0
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- % | " e+ t)dt — %[f(:c +nh) - f()]

_I_Z BZ"‘ B2 1f(2r 1) (ZE-I-TLh) f2r 1)(.17)]

nhD
-1
p2m+1 p(2m+1) 44
+ J_X_:OO (271 2m(hD—l-ij)hD ; / (@), (4.4)
J#£0

where we have used the formula (4.3). And further we can show that the last term
on the most right-hand side of (4.4) is equal to the remainder term in the Euler-

Maclaurin summation formula (4.1) as follows:

00 nhD __ 1
E e h2m+1f(2m+1)($)
j5 e (2mig)?m (hD + 27ij)hD
i#0
B io: 1 6nhD -1 N 6nhD -1 h2m+1f(2m+1)( )
= = (27_”']')2m+1 hD + 27‘(’2] hD l ¢
i#0
i 1 el 1 4 e —1 p2m f2mA1) ()
_ _ L
;= @rig ¥ "Dt 2mij/h T D '
§#0
_ i 1 emMD+2mij/h) n e"P — 1 h2mf(2m+1)( )
= = (21 )2m+1 D + 2xij/h D §
i#0
o 1 nh i m m
= 5 G O ey g e
Tiz0
o 00 e2mijt/h & 1 tD gy p2m £(2m41)
= LU G X g )
j=—00 J=—00
i#0 7#0

PR Ban (U~ M) b s
/0 (2m + 1)! Dt Hm T (®)

" Bymy1(H/h = [t/h]) 4
— p2m (2m+1) !
/0 (2m + 1)! / (x+1) dty

where we have used the formula (4.2). The desire is realized just now.
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