Ground state measure and its applications

Fumio Hiroshima* (北大理学 鳥住雄)

1 Introduction

In this paper we shall consider structures of ground states of a model describing an interaction between a particle and a quantized scalar boson field, which is called the "Nelson model"[15],[18]. Basic ideas in this paper is due to a fairly nice work of H.Spohn [22], in which he studies the spin-boson model. The Hamiltonian, H, of the Nelson model is defined as a self-adjoint operator acting on Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d) \otimes \mathcal{F}$, where \mathcal{F} denotes a Boson Fock space. The existence of the ground states, Ψ_g, of H is established in e.g., [2],[4],[12],[23]. The main results presented here is to give the expectation-value of the number of bosons of Ψ_g and its boson distribution by means of a ground state measure constructed in this paper. Especially the localization of bosons of Ψ_g is proved. The ground state measure, μ, on the set of paths, Ω, gives an integral representation of the expectation-value of certain operator A in \mathcal{H}, i.e.,

$$(\Psi_g, A\Psi_g) = \int_{\Omega} f_A(q) \mu(dq),$$

where f_A is a density function corresponding to A. This integral representation leads us to the goal of this paper. Detailed arguments shall be published elsewhere [2], and refer to see [17],[21],[22]. This paper is organized as follows: section 2 gives a definition of models considered in this paper. In section 3 we review the second quantizations. Section 4 is devoted to investigating the ground states. In section 5 we give further problems on the Pauli-Fierz model in nonrelativistic quantum electrodynamics.

*I thank Japan Society for the Promotion of Science for the financial support.
2 Scalar quantum field models

Let $\mathcal{F} := \oplus_{n=0}^{\infty} \otimes_{s}^{n} L^2(\mathbb{R}^d) := \oplus_{n=0}^{\infty} \mathbb{C}$, where \otimes_{s}^{n} denotes the n-fold symmetric tensor product with $\otimes_{s}^{0} L^2(\mathbb{R}^d) := \mathbb{C}$. The bare vacuum, $\Omega \in \mathcal{F}$, is defined by $\Omega := \{1,0,0,\ldots\}$. Let $a(f)$ and $a(g)$ be the creation operator and the annihilation operator smeared by $f, g \in L^2(\mathbb{R}^d)$, respectively, which are linear in f and g. Let \mathcal{F}_{fin} be the finite particle subspace of \mathcal{F}:

$\mathcal{F}_{\text{fin}} := \{ \Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in \mathcal{F} | \text{there exists } n_0 \text{ such that } \Psi^{(m)} = 0, m \geq n_0 \}$

They satisfy canonical commutation relations (CCR), i.e.,

$[a(f), a^\dagger(g)] = (f, g)_{L^2(\mathbb{R}^d)}$, \quad $[a^\dagger(f), a^\dagger(g)] = 0$,

on \mathcal{F}_{fin}, where a^\dagger denotes a or a^\dagger, and $(\cdot, \cdot)_{\mathcal{K}}$ the scalar product on Hilbert space \mathcal{K}. We denote by $\|\cdot\|_{\mathcal{K}}$ its associated norm. Unless confusion arises we omit \mathcal{K} in $(\cdot, \cdot)_{\mathcal{K}}$ and $\|\cdot\|_{\mathcal{K}}$, respectively. a^\dagger also satisfies that $(\Psi, a(f)\Phi) = (a^\dagger(f)\Psi, \Phi)$ for $\Psi, \Phi \in \mathcal{F}_{\text{fin}}$. For dense subset $\mathcal{K} \subset L^2(\mathbb{R}^d)$,

$\mathcal{F}(\mathcal{K}) := l.h.\{a^\dagger(f_1) \cdots a^\dagger(f_n)\Omega, \Omega | f_j \in \mathcal{K}, j = 1, \ldots, n, n \in \mathbb{N}\}$

is dense in \mathcal{F}. We define the free Hamiltonian, H_f, in \mathcal{F} by

$H_f \Omega := 0,$

$H_f a^\dagger(f_1) \cdots a^\dagger(f_n)\Omega := \sum_{j=1}^{n} a^\dagger(f_1) \cdots a^\dagger(\omega f_j) \cdots a^\dagger(f_n)\Omega,$

$f_j \in D(\omega), \quad j = 1, \ldots, n, \quad n \in \mathbb{N},$

where $D(T)$ denotes the domain of T, $\omega := \omega(k) := \sqrt{|k|^2 + m^2}$, $m \geq 0$. Here m denotes the mass of the quantized scalar boson field. Field operators $\phi(f)$ are defined by

$\phi(f) := \frac{1}{\sqrt{2}} (a^\dagger(f) + a(f)), \quad f \in L^2(\mathbb{R}^d).$

Note that $H_f[\mathcal{F}(D(\omega))]$ and $\phi(f)[\mathcal{F}_{\text{fin}}]$ are essentially self-adjoint, respectively.

It is known that $\sigma(H_f) = [0, \infty)$ and $\sigma_p(H_f) = \{0\}$. The Hamiltonian, H, considered in this paper is defined by

$H := H_p \otimes 1 + 1 \otimes H_f + \alpha H_I$
on $\mathcal{H} := L^2(\mathbb{R}^d) \otimes \mathcal{F} \cong L^2(\mathbb{R}; \mathcal{F}d)$, where $\alpha \in \mathbb{R}$ is a coupling constant, and

$$H_1 := \phi(e^{ikz} \hat{\lambda}),$$

$$H_p := -\Delta/2 + V,$$

where $\hat{\lambda}$ is the Fourier transform of λ. A reasonable physical choice of $\hat{\lambda}$ is of the form

$$\hat{\lambda} = \frac{\hat{\rho}}{\sqrt{(2\pi)^d \omega}},$$

where ρ describes a charge distribution, i.e.,

$$\sqrt{(2\pi)^d} \hat{\rho}(0) = \int_{\mathbb{R}^d} \rho(x) dx = \alpha.$$

For simplicity we assume that external potential $V = V_+ - V_-$ satisfies that $V_+ \in L^1_{\text{loc}}(\mathbb{R}^d)$ and that V_- is infinitesimally small with respect to Δ in the sense of form. Throughout this paper we assume that

$$\overline{\lambda(k)} = \hat{\lambda}(-k).$$

Let $\lambda, \hat{\lambda}/\sqrt{\omega}, \hat{\lambda}/\omega, \hat{\lambda} \in L^2(\mathbb{R}^d)$. Then it is known that, for arbitrary α, H is self-adjoint on $D(H_p \otimes 1) \cap D(1 \otimes H_f)$ and bounded from below. Moreover it is essentially self-adjoint on any core of $H_p \otimes 1 + 1 \otimes H_f$.

Proposition 2.1 ([2],[12]) Let $\lambda/\omega, \hat{\lambda}/\sqrt{\omega}, \hat{\lambda} \in L^2(\mathbb{R}^d)$. Then there exists α_* such that for $|\alpha| \leq \alpha_*$ the ground states, Ψ_g, of H exist. Moreover $(f \otimes \Omega, \Psi_g) > 0$ for arbitrary nonnegative $f \in L^2(\mathbb{R}^d)$ with $f \not\equiv 0$.

See Figure 2 for more explicit results on the existence of the ground states of H.

3 Second quantizations

For later use we review the second quantization of operator T on $L^2(\mathbb{R}^d)$. Let T be a contraction operator on $L^2(\mathbb{R}^d)$, i.e., $\|T\| \leq 1$. Then we define $\Gamma(T) : \mathcal{F}_\text{fin} \to \mathcal{F}_\text{fin}$ by

$$\Gamma(T)\Omega := \Omega,$$
\[\Gamma(T)a^\uparrow(f_1)\cdots a^\uparrow(f_n)\Omega := a^\dagger(Tf_1)\cdots a^\dagger(Tf_n)\Omega, \]
\[f_j \in L^2(\mathbb{R}^d), \quad j = 1, \ldots, n, \quad n \in \mathbb{N}. \]

For \(\Phi \in \mathcal{F}_{\text{fin}} \) we have \(\|\Gamma(T)\Phi\| \leq \|\Phi\| \). Thus \(\Gamma(T) \) extends to a contraction operator on \(\mathcal{F} \). We denote its extension by the same symbol. It is seen that \(\Gamma(\cdot) \) is linear in \(\cdot \) and that \(\Gamma(T)^* = \Gamma(T^*) \). Let \(h \) be a nonnegative self-adjoint operator in \(L^2(\mathbb{R}^d) \). Then we see that \(\Gamma(e^{-th}) \) is a strongly continuous symmetric contraction one-parameter semigroup in \(t \geq 0 \). The second quantization of \(h \), \(d\Gamma(h) \), is defined by the generator of \(\Gamma(e^{-th}) \), i.e.,

\[\Gamma(e^{-th}) = e^{-td\Gamma(h)}, \quad t \geq 0. \]

Actually \(H_t \) is the second quantization of multiplication operator \(\omega \). For nonnegative multiplication operator \(h \) in \(L^2(\mathbb{R}^d) \), formally, it is written as

\[d\Gamma(h) = \int h(k)a^\dagger(k)a(k)dk. \tag{3.1} \]

The number operator, \(N \), in \(\mathcal{F} \) is defined by the second quantization of the identity operator in \(L^2(\mathbb{R}^d) \), i.e.,

\[D(N) := \left\{ \Psi = \{\Psi^{(n)}\}_{n=0}^\infty \in \mathcal{F} \left| \sum_{n=0}^\infty n^2 \|\Psi^{(n)}\|_{\mathcal{F}_n}^2 < \infty \right. \right\}, \]

\[(N\Psi)^{(n)} := n\Psi^{(n)}. \]

Let \(h \) be a multiplication operator in \(L^2(\mathbb{R}^d) \) such that \(s = s_{R+} - s_{R-} + i(s_{I+} - s_{I-}) \), where \(s_{R+} \) (resp. \(s_{R-}, s_{I+}, s_{I-} \)) denotes the real positive (resp. real nonpositive, imaginary positive, imaginary nonpositive) part of \(s \). Then we define

\[d\Gamma(h) := d\Gamma(s_{R+}) - d\Gamma(s_{R-}) + i(d\Gamma(h_{I+}) - d\Gamma(h_{I-})), \]

\[D(d\Gamma(h)) := D(d\Gamma(s_{R+})) \cap D(d\Gamma(s_{R-})) \cap D(d\Gamma(h_{I+})) \cap D(d\Gamma(h_{I-})). \]

4 Ground state measures

Let \(\Omega := (\mathbb{R}^d)^{(-\infty,\infty)} \) be the set of \(\mathbb{R}^d \)-valued paths and \(\mathcal{B}(\Omega) \) the \(\sigma \)-field constructed by cylinder sets. For \(T : \mathcal{H} \to \mathcal{H} \), we define

\[\langle T \rangle := (\Psi_g, T\Psi_g)_{\mathcal{H}}. \]
For a convenience we denote by $\langle S \rangle$ for $\langle 1 \otimes S \rangle$, for $S : \mathcal{F} \to \mathcal{F}$. Our fundamental theorem is as follows:

Theorem 4.1 ([2]) Let s be such that $\sup_{k \in \mathbb{R}^d} |s(k)| < \infty$. Let $\hat{\lambda}/\omega$, $\hat{\lambda}/\sqrt{\omega}$, $\hat{\lambda} \in L^2(\mathbb{R}^d)$, and $|\alpha| \leq \alpha_*$. We assume that A_1, \ldots, A_m are measurable sets in \mathbb{R}^d and let 1_A denote the characteristic function of A. Then there exists a probability measure μ on $(\Omega, \mathcal{B}(\Omega))$ such that, for $t_1 \leq \cdots \leq t_m$,

$$
\langle 1_{A_1} e^{-(t_2-t_1)H} 1_{A_2} \cdots e^{-(t_m-t_{m-1})H} 1_{A_m} \rangle = \int_{\Omega} 1_{A_1}(q(t_1)) \cdots 1_{A_m}(q(t_m)) \mu(dq),
$$

where

$$
Z(\beta) := \int_{-\infty}^{0} dt \int_{0}^{\infty} ds \int_{\mathbb{R}^d} |\hat{\lambda}(k)|^2 e^{-|t-s|\omega(k)} (e^{-\beta s(k)} - 1) e^{ik(q(t)-q(s))} dk.
$$

We give a remark on $Z(\beta)$. Since $\|\hat{\lambda}/\omega\| < \infty$, we see that

$$
|Z(\beta)| \leq 2 \|\hat{\lambda}/\omega\|^2 < \infty
$$

uniformly in paths $q \in \Omega$. Thus $Z(\beta)$ is well defined. It is proved in [2] that μ is a Gibbs measure. We call μ the "ground state measure for $H". It is easily seen that the right-hand side of (4.1) is analytically continued to $\beta \in \mathbb{C}$. Although it does not imply that $\langle e^{-\beta \mathcal{D}(s)} \rangle$ is well defined for all $\beta \in \mathbb{C}$, we have the following theorem:

Theorem 4.2 ([2]) Let s, $\hat{\lambda}$ and α be in Theorem 4.1. Then we have $\Psi_g \in D(1 \otimes e^{-\beta \mathcal{D}(s)})$ for all $\beta \in \mathbb{C}$, and (4.1) holds true for all $\beta \in \mathbb{C}$.

We immediately have the following corollary.

Corollary 4.3 Let $\hat{\lambda}$ and α be in Theorem 4.1. Then, for arbitrary $\epsilon \in \mathbb{R}$, we have $\Psi_g \in D(1 \otimes e^{\epsilon N})$. Moreover

$$
\langle N \rangle = \frac{\alpha^2}{2} \int_{-\infty}^{0} dt \int_{0}^{\infty} ds \int_{\mathbb{R}^d} dk |\hat{\lambda}(k)|^2 e^{-|t-s|\omega(k)} \int_{\Omega} e^{ik(q(t)-q(s))} \mu(dq).
$$

(4.2)
Proof: Putting $s = 1$ in Theorem 4.2, we get $\Psi_g \in D(1 \otimes e^{\epsilon N})$ for all $\epsilon \in \mathbb{R}$. (4.2) follows from (4.1) and
\[
\langle N \rangle = -\frac{d(e^{-\beta N})}{d\beta} \Bigg|_{\beta=0}.
\]
The proof is complete. Q.E.D.

Corollary 4.3 implies that
\[
\sum_{n=0}^{\infty} e^{2\epsilon n} \| \Psi_g^{(n)} \|_{L^2(\mathbb{R}^d) \otimes F_n}^2 < \infty, \quad \text{for all } \epsilon > 0.
\]
Hence we conclude that $\| \Psi_g^{(n)} \|$ decays super-exponentially as $n \to \infty$; it decays faster than $e^{-\epsilon n}$ for arbitrary $\epsilon > 0$. Let $s \in C_0^\infty(\mathbb{R}^d)$. Then, by Theorem 4.2, we see that $\Psi_g \in D(d\Gamma(s))$ and
\[
|\langle d\Gamma(s) \rangle| \leq (\alpha^2/2) \| s \|_{\infty} \| \hat{\lambda}/\omega \|_{2}^2.
\]
Thus map
\[
D : C_0^\infty(\mathbb{R}^d) \ni s \to \langle d\Gamma(s) \rangle \in \mathbb{C}
\]
defines a distribution on $C_0^\infty(\mathbb{R}^d)$. Taking into account of the formal expression of $d\Gamma(s)$ (3.1), we denote by $\langle a^\dagger(k)a(k) \rangle$ the kernel of D. From Corollary 4.3 it immediately follows:

Corollary 4.4 Let $\hat{\lambda}$ and α be in Theorem 4.1. Then for a.e. $k \in \mathbb{R}^d$,
\[
\langle a^\dagger(k)a(k) \rangle = \frac{\alpha^2}{2} |\hat{\lambda}(k)|^2 \int_{-\infty}^{0} dt \int_{0}^{\infty} ds \ e^{-|t-s|\omega(k)} \int_{\Omega} e^{ik(q(t)-q(s))} \mu(dq).
\]
Note that
\[
\int_{\mathbb{R}^d} \langle a^\dagger(k)a(k) \rangle dk = \langle N \rangle.
\]
Moreover we see that
\[
|\langle a^\dagger(k)a(k) \rangle| \leq \frac{\alpha^2 |\hat{\lambda}(k)|^2}{2 \omega(k)^2}, \quad \text{a.e. } k \in \mathbb{R}^d.
\]
See Figure 1.
5 Nonrelativistic QED

5.1 The Pauli-Fierz model

The Pauli-Fierz model [1],[3],[5]-[11],[19],[20] in nonrelativistic QED describes an interaction of particles (electrons) and a quantized radiation field (photons). The quantized radiation field is quantized in a Coulomb gage. We assume that the number of the electrons is one and that the electron has spineless. Let

\[\mathcal{F}_{PF} := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \frac{L^{2}(\mathbb{R}^{d}) \oplus \cdots \oplus L^{2}(\mathbb{R}^{d})}{d-1} \cong \frac{\mathcal{F} \otimes \cdots \otimes \mathcal{F}}{d-1}. \]

Let \(\{b^{r}(f), b^\dagger r(g)\}_{r=1}^{d-1} \) be the annihilation operators and the creation operators, respectively, which satisfy CCR:

\[[b^{r}(f), b^{\dagger s}(g)] = \delta_{rs}(\overline{f}, g)_{L^{2}(\mathbb{R}^{d})}, \quad [b^{\dagger r}(f), b^{s}(g)] = 0. \]

Let \(H_{f}^{PF} \) be the free Hamiltonian in \(\mathcal{F}_{PF} \), i.e.,

\[H_{f}^{PF} := \sum_{r=1}^{d-1} \int \omega(k) b^{\dagger r}(k)b^{r}(k)dk. \]
The Hamiltonian of the Pauli-Fierz model is defined as an operator in
\[\mathcal{H}_{\text{PF}} := L^2(\mathbb{R}^d) \otimes \mathcal{F}_{\text{PF}} \cong L^2(\mathbb{R}^d; \mathcal{F}_{\text{PF}}) \]
and reads
\[H_{\text{PF}} := \frac{1}{2} (-i\nabla \otimes 1 - e\mathbf{A}(x))^2 + 1 \otimes H^\text{PF}_f + V \otimes 1, \]
where \(e \) is a coupling constant, \(\mathbf{A}(x) := (A_1(x), \cdots, A_d(x)) \),
\[A_\mu(x) := \frac{1}{\sqrt{2}} \sum_{r=1}^{d-1} (b_r^\dagger e_\mu \lambda_r e^{-ikx} + br e_\mu^r \lambda_r e^{ikx}), \]
and \(e_r := (e_1^r, \cdots, e_d^r) \), polarization vectors; \(e^r(k) \cdot e^s(k) = \delta_{rs} \) and \(e^r(k) \cdot k = 0 \). Note that
\[\text{div} \mathbf{A} = 0. \]

For the Nelson model, the self-adjointness of \(H \) for arbitrary \(\alpha \) is trivial, since \(H_1 \) is infinitesimally small with respect to \(H_\text{p} \otimes 1 + 1 \otimes H_f \). It is not so easy to show self-adjointness of \(H_{\text{PF}} \) for arbitrary \(e \in \mathbb{R} \). Let \(N_{\text{PF}} \) be the number operator in \(\mathcal{F}_{\text{PF}} \). We have the following proposition:

Proposition 5.1 ([9]) \(^1\) Let \(\hat{\lambda}, \omega^2 \hat{\lambda} \in L^2(\mathbb{R}^d) \). We assume that \(V \) is relatively bounded with respect to \(\Delta \). Then, for arbitrary \(e \in \mathbb{R} \), \(H_{\text{PF}} \) is essentially self-adjoint on
\[D(\Delta \otimes 1) \cap D(1 \otimes (H^\text{PF}_f)^2) \cap_{k=1}^\infty D(1 \otimes N_{\text{PF}}^k). \]

The existence of the ground states of \(H_{\text{PF}} \) are studied in [1],[6], and their multiplicities in [7],[11]. Moreover \(\inf \sigma(H_{\text{PF}}) \) is investigated in [3],[16].

5.2 Ground states of \(H \) and \(H_{\text{PF}} \)

Let
\[\text{gap}(T) := \inf \sigma_{\text{ess}}(T) - \inf \sigma(T). \]

The existence of the ground states of \(H \) and \(H_{\text{PF}} \) are deeply related to conditions on \(m \), \(\text{gap} \), \(\hat{\lambda} \) and coupling constants. Let \(\hat{\lambda}/\omega \in L^2(\mathbb{R}^d) \). Then sufficient conditions for the existence of the ground states of \(H \) and \(H_{\text{PF}} \), as far as we know, are in Figures 2 and 3, respectively.
Note that see [4],[23] for a proof of the existence of ground states for case \(\text{gap}(H) = \infty \) and \(m \geq 0 \) in Figure 2, and [8],[9] for case \(\text{gap}(H_{\text{PF}}) = \infty \) and \(m > 0 \) in Figure 3. In [13],[14] the authors give examples such that the ground states of \(H \) and \(H_{\text{PF}} \) exist for the case where \(\text{gap}(H) = 0 \) and \(\text{gap}(H_{\text{PF}}) = 0 \), respectively. In [17] no existence of the ground states of \(H \) for arbitrary \(\alpha \neq 0 \) is proved if \(||\hat{\lambda}/\omega|| = \infty \).

5.3 Distribution of bosons for \(\Psi_{\text{PF}} \)

Let \(\Psi_{\text{PF}} \) be the ground state of \(H_{\text{PF}} \) and

\[
\langle T \rangle_{\text{PF}} := (\Psi_{\text{PF}}, T \Psi_{\text{PF}})_{\mathcal{H}_{\text{PF}}}.
\]

\(^1\)In [9] essential self-adjointness of \(H_{\text{PF}} \) is proved only for the case where the number of the electrons is one. As far as we know it is not clear whether the statement in Proposition 5.1 with \(N \)-electrons holds true or not. In [19] self-adjointness of \(H_{\text{PF}} \) on \(D(\Delta \otimes 1) \cap D(1 \otimes H_{\text{PF}}^{\text{PF}}) \) is proved for sufficiently small \(|e|\).

\(^2\)It is not necessarily to assume \(\hat{\lambda}/\omega \in L^{2}(\mathbb{R}^{d}) \) for \(H_{\text{PF}} \). See [1].
Our next problem is to study the distribution of bosons of Ψ_{PF}, e.g., $\langle N_{PF}\rangle_{PF}$, $\langle e^{-\beta N_{PF}}\rangle_{PF}$, etc. In [10] a ground state measure, μ_{PF}, on $(\Omega, B(\Omega))$ for H_{PF} is constructed, which satisfies

$$\langle 1_{A_1} e^{-(t_2-t_1)H_{PF}} 1_{A_2} \cdots e^{-(t_m-t_{m-1})H_{PF}} 1_{A_m} \rangle_{PF} = \int_{\Omega} 1_{A_1}(q(t_1)) \cdots 1_{A_m}(q(t_m)) \mu_{PF}(dq).$$

Moreover a "formal" calculation gives a "formal" expression [5],[21]:

$$\langle e^{-\beta N_{PF}}\rangle_{PF} = \int_{\Omega} e^{(-e^2/2)Z_{PF}(\beta)} \mu_{PF}(dq),$$

where

$$Z_{PF}(\beta) := (e^{-\beta} - 1) \sum_{\mu,\nu=1}^{d} \int_{-\infty}^{0} dq_{\mu}(t) \int_{0}^{\infty} dq_{\nu}(s) \times \int_{\mathbb{R}^d} d\mu\nu(k) |\hat{\lambda}(k)|^2 e^{-|t-s|\omega(k)} e^{ik(q(t)-q(s))} dk.$$

Here $d\mu\nu(k) := \sum_{\tau=1}^{d} e_{\mu}^{\tau}(k) e_{\nu}^{\tau}(k)$ and $\int \cdots dq_{\mu}(t)$ denotes a stochastic integral. For the Nelson model $|Z(\beta)| \leq 2 \|\hat{\lambda}/\omega\|^2 < \infty$ guarantees that $\int_{\Omega} e^{(\alpha^2/2)Z(\beta)} \mu(dq)$ is well defined. We do not have such an estimate for $Z_{PF}(\beta)$, which is a crucial points to study $\langle N_{PF}\rangle_{PF}$ in terms of the ground state measure. Actually the definition of $Z_{PF}(\beta)$ is not clear, e.g., it is needed to give a rigorous definition of $\int_{-\infty}^{0} dq_{\mu}(t) \int_{0}^{\infty} dq_{\nu}(s)$.

5.4 Conjectures and problems

In view of subsections 5.1-5.3, we give the following conjectures. We assume some conditions on $\hat{\lambda}$ and V.

Conjecture 5.2 For arbitrary $e \in \mathbb{R}$, H_{PF} is self-adjoint and bounded from below on $D(\Delta \otimes 1) \cap D(1 \otimes H_{1}^{PF})$.

Conjecture 5.3 Let $\text{gap}(H_{PF}) = \infty$ and $m \geq 0$. Then the ground states of H_{PF} exist for arbitrary $e \in \mathbb{R}$.

Conjecture 5.4 $\Psi_{PF} \in D(1 \otimes e^{\epsilon N_{PF}})$ for all $\epsilon \in \mathbb{R}$.
References

