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Canonical representation and Markov property of
Gaussian random fields
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Aichi Prefectural University,
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Abstract

We are interested in random fields X (C) with parameter C, where C runs through the class
C = {C;C € C?, diffeomorphic to S'}.

Referring to the canonical representation theory of Gaussian processes, developed by T. Hida,
we generalize the theory to the case of Gaussian random fields.

1 Introduction

We are interested in the representation of random field X (C), where
C runs through a class

C = {C; diffeomorphic to S9!, convex}.

In particular, we consider a Gaussian random field X (C);C € C,
with a representation in terms of R?—parameter white noise.

First we breifly recall the canonical representation theory of Gaus-
sian processes, developed by T. Hida (1960).

We give the definition of the canonical representation of Gaussian
random field following the definition of canonical representation of
Gaussian process X (¢), mentioned above. And the canonical criterion
for Gaussian randon field is established in this note.

Canonical representation and non-canonical representation of Gaus-
sian random fields are illusrated by examples.
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2 Canonical representation of Gaussian processes

Let X = {X(t);t € I} be a Gaussian process. Denote by B:(X) be
the o—field generated by the X (s),s <.

Definition 2.1 Let X be a Gaussian process. Assume that there exists
a Gaussian process B = {B(t);t € I} with independent increments
such that

B@t) = (Bi(t),1 <i< N;Bi(t),1<1<L;1<j<L; (21
with B;(0) = 0,1 <i< N, N <00, Lj <00,J < 00, satisfying the
following conditions.

1. Each Bi(t) has independent increments and E(|dB;(t)[*) = mi(dt)
defines a continuous measure. In addition, miiy is absolutely con-
tinuous with respective to m; : m;(dt) > miy1(dt) for every i.

2. Fach Bé-(t) is a process of the form

B;(t) = B;, t > t] (07” t Z tj), and = 0, otherwise
where each B;- is subject to the standard Gausian distribution N(0,1).
3. The Gaussian processes B; and the B;- are independent.

4. For every t, X (t) has the same distribution as X (t) given by
~ N ot L
2OEDY | Filt, w)dBi(u) +3 l; bL(¢) BL(t)). (2.2)
where the kernel functions F;(t,u) satisfy the condition
/Fi(t,u)2mi(du) <oo, i=1,2---N, Vi,

and where the function bé(t) vanishes for t; < t and satisfies

L;
> z:bz-(t)2 < 00, for every t.
t;<ti=1
Then {Fj(t,w), Bi(u); b(t), Bi(t)} is called a representation of X.
Definition 2.2 The representation (2.2) is called a generalized canon-
ical representation, if

E[X(1)|B(X)] = z/ Fi(t,u)dB(u) + z zbl (H)Bi(t;). (2.3)
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holds for all s <'t.

To fix the idea, assume that N = 1 and that there is no discrete
part of the spectrum. Thus the representation

X(t) = [ F(t,u)dB(u) (2.4)
is called the canonical representation if
E[X()|Bs(X)] = [° F(t,u)dB(u).
The kernel F'(t,u) is called a canonical kernel.

Definition 2.3 The canonical representation (2.4) is called proper
canonical representation if

B = By(X), for everyteT, (2.5)
where By is the o-field generated by {B(S), s < t}.
There are many important cases which suggésted to claim that B(t)

in the above expression is a standard Brownian motion, so that d B(u)
may be written as B(u)du, where B(u) is a white noise.

3 Canonical representation of Gaussian random fields

Consider Gaussian random fields {X(C); C € C} where
C = {C;C e C?, diffeomorphic to S, (C) is convex},
(C) : being the domain enclosed by C.
Assume that
1. X(C) # 0 for every C, and E[X(C)] = 0.
2. E[X(C)?] # 0 for every C.

In particular, we consider the Gaussian random field {X(C);C €
C} with the assumption of causality. That means X (C) can be ex-
pressed by a representation

X(©) = | é) F(C,u)z(uw)du, (3.1)
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in terms of R2—parameter white noise z(u) and L?(R?)— kernel F'(C, u)
for every C.

I. Uniqueness of canonical representation

Definition 3.1 Let B¢/(X) be the sigma field generated by { X (C), C' <
C'}. The representation (3.1) is called a canonical representation if

E[X(C)|Be(X)] = fien F(C, u)z(u)du, (3:2)
holds for any C' < C.

Theorem 3.1 The canonical representation is unique if it exists.

Proof. Take the variance of the conditional expectation, given in
(3.2).

E{E[X(C)|Bc(X)]*} = Jicy F(C,u)*du, C' < C. (3.3)

We should note that the variance depends only on the probability
distribution of {X(C)} and is independent of the choice of represen-

tation.
If the representation is not unique, there are two canonical kernels

F and F* and then
2 _ * 2
/(C,)F(C, w)’du = /(C,)F (C,u)du
holds for any C’' < C. Hence we have
P(Cyu) = £(Cu) P (Cru); [e(Cyu)] =1, (3.4

where € is a measurable function of u.
According to the two kernels F' and F™, the covariance of (3.2) is
obtained as the covariance

- E[E[X(C)|Ben(X)EIX(C)|Bor(X))) = [, F(C,u)F(C',u)du.
On the other hand, we obtain
E[E[X(C)|Bon(X)|E[X (C)|Ben(X)]] = [, F*(C,w)F*(C', u)du
= [, F(C,w)P(C,w)e(C,u)e(C,

by (3.5).
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Similarly for any C" € C; C" < C'. we have
Jow F(Cu)F(Cu)du = Jow F(C0)F(C', w)e(C,u)e(C, u)du.
Thus the equality
F(C,u)F(C',u) = F(C,u)F(C',u)e(C,u)e(C', u),
holds almost everywhere. |

We can see that

e(Cyu)e(C',u) =1, on C'.
Fix C' = Cy, and determine £(Cj, u)(= 1) as a function of u.
Thus

e(C' u) = = &(Cy,u), VC'.

1
8(00, u)
It means that £(C,u) is independent of C.

Thus it is proved that F'(C,u) is unique up to 1.

II. Kernel criterion for canonical representation
We now give the kernel criterion for canonical representation.

Assume that
1. X(C) has a causal representation

2. there is no open set G such that g F(C,u)p(u)du = 0 for any ¢
with supp{y} C G.

Theorem 3.2 A random field X (C),, satisfying the above assumptioh,
has canonical representation if and only if VC' C Cy; C1 : fized,

/(C) F(C7 ’U,)QO(’U,)dU, =0= SD(U) =0 a.e.on(Cl).

Proof First we should note that E[X(C)|Bc,] is the projection of
X(C) down to the closed linear space spanned by {X(C);C < Cp},
since we are concerned with Gaussian.

Let Mc,(X) and Mc,(z) denote the closed linear spaces spanned
by {X(C); C < Co} and {z(u);u € Cy} respectively.
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Claim that
Mc,(X) C My (2)

since X (Cp); C' < Cp is a (linear) funcion of z(u);u € Co.

If M¢,(X) # Mc, () then there exist ¢ # 0 such that Jg, o(u)z(u)du
is orthogonal to X (C); C < Ch. It contradicts to the assumption. Thus
the assertion is proved.

The followings are the examples for canonical representation.

Example 1. X(C) = Jic)z(u)du,C €C, given in (3.1) is a canonical
representation.

Example 2. Consider a random field X (C);C € C, where C is a
family of circles, with the representation

X(C) = Xo /( . e FP OO 1 (u)du,

where p denotes the distance, k is a constant, ¢ and v are given con-
tinuous functions. We can prove that it is a canonical representation.
Indeed it is the solution of Langevin equation,

5X(C) = —X(C) [, kén(s)ds + Xo | v(s)dz6n(s)ds,
where C € C,. |

We give the example for non-canonical representation in the follow-
ing..

Example 3. Let {Cgr, R € R} be a family of concentric circles with
center at origin. Then

X(C) = /CR(3R — 4ju))z(u)du

is a canonical representation of X (C), since there is a function ¢(u) =
|u| # 0 such that

[ (3R~ alul)p(ul)du = 0.



4 Multiple Markov Gaussian random fields

In this section we shall deal with the multiple Markov Gaussian ran-

dom fields. Thus we recall the definition of Multiple Gaussian random
field, given in [6],[7] and [8].

Definition For any choice of C;’s such that Co < C1 < --- < Cy <
Cny1, tf

1. E[X(C)|Bc,(X)],i=1,2,---, N are linearly independent and

2. E[X(C)|Be,(X)],e=1,2,---, N + 1 are linearly dependent

then X (C) is called N-ple Markov Gaussian random field.

Theorem 4.1 If X(C) s N—ple Markov and if it has a canonical
representation, then it is of the form

N
X(0) = [ ) 3 SH(O)gi(w)z(u)du, (4.1)
1
where the kernel ¥ f;(C)gi(u) is a Goursat kernel and {fi(C)},i =
1,---, N satisfies
det(fi(Cj)) # 0, for any Ndifferent C} (4.2)
and {gi(u)},i=1,---, N are linearly independent in L%-space.
Proof. See [8].
Corollary. If N =1, then it is a (simple) Markov.

Proof. It can be easily seen from the expression of canonical repre-
sentation.

Remark. For a particular case of N-ple Markov Gaussian random
field X (C'), where C' = C is a circle with radius r and center origin,
the representation of X (C)) can be expressed in the form

X(C)=Xr) = % fi(r) gi(w)z(u)du, u € R?. (4.3)

This representation can be expressed in terms of a one dimensional
parameter white noise as a stochastic integral.
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