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Abstract. An immigration process associated with the Borel right Dawson-
Watanabe superprocess does not always have a right continuous realization.
We construct the immigration process by adding up measure-valued paths in
the Kuznetsov process determined by an entrance rule for the superprocess.
The path behavior of the Kuznetsov process is studied, which gives insights
into trajectory structures of the immigration process. Some known results
on excessive measures are interpreted probabilisticaUy in terms of stationary
immigration processes.

Key words: superprocess; immigration structure; skew convolution semigroup;
entrance rule; excessive measure; Kuznetsov measure

$AMS$ 1991 Subject Classifications: $60\mathrm{J}80;60\mathrm{J}45;60\mathrm{G}57$ .

1. Introduction
Let $E$ be a Lusin topological space, i.e., a homeomorphism of a Borel subset of a

compact metric space, with the Borel $\sigma$-algebra $\mathcal{B}(E)$ . Let $B(E)$ denote the set of
bounded $B(E)$-measurable functions on $E$ , and $B(E)^{+}$ the subspace of $B(E)$ of non-
negative functions. Denote by $M(E)$ the space of finite measures on $(E, B(E))$ endowed
with the topology of weak convergence. For $f\in B(E)$ and $\mu\in M(E)$ , write $\mu(f)$ for
$\int_{E}f.\mathrm{d}\mu$ . Suppose that $\xi=(\Omega, \mathcal{F}, \mathcal{F}_{t}, \xi_{t}, \mathrm{P}_{x})$ is a Borel right process in $E$ with semigroup
$(P_{t})_{t\geq 0}$ and $\phi(\cdot, \cdot)$ is a branching mechanism given by

(1.1) $\phi(x, z)=b(x)z+c(x)z^{2}+\int_{0}^{\infty}(\mathrm{e}^{-zu}-1+zu)m(x, \mathrm{d}u)$ , $x\in E,$ $z\geq 0$ ,

where $b\in B(E),$ $c\in B(E)^{+}$ and $[u\wedge u^{2}]m(x, \mathrm{d}u)$ is a bounded kernel from $E$ to $(0, \infty)$ .
Then for each $f\in B(E)^{+}$ the evolution equation

(1.2) $V_{t}f(x)+ \int_{0}^{t}\mathrm{d}s\int_{E}\phi(y, V_{s}f(y))P_{t-s}(x, \mathrm{d}y)=P_{t}f(x)$ , $t\geq 0,$ $x\in E$ ,
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has a unique solution $V_{t}f\in B(E)^{+}$ , and there is a Markov semigroup $(Q_{t})_{t\geq 0}$ on $M(E)$

such that

(1.3) $\int_{M(E)}\mathrm{e}^{-\nu(f)}Q_{t}(\mu, \mathrm{d}\nu)=\exp\{-\mu(V_{t}f)\}$

for all $t\geq 0,$ $\mu\in M(E)$ and $f\in B(E)^{+}$ . A Markov process $X=(W, \mathcal{G}, \mathcal{G}_{t}, X_{t}, \mathrm{Q}_{\mu})$

having semigroup $(Q_{t})_{t\geq 0}$ is called a Dawson-Watanabe $supe7process$ with parameters
$(\xi, \phi)$ . Under our hypotheses, $X$ has a Borel right realization; see Fitzsimnons (1988,
1992). The $(\xi, \phi)$-superprocess is a special form of the measure-valued branching process
($\mathrm{M}\mathrm{B}$-process), which is the mathematical model for the evolution of a population in some
region; see e.g. Dawson $(1992, 1993)$ .

If we consider a situation where there are some additional sources of population from
which immigration into the region occurs during the evolution, we need to introduce
a measure-valued branching process with immigration (MBI-process). This type of
modification is familiar from the branching process literature; see e.g. Arthreya and Ney
(1972), Dawson and Ivanoff (1978), Kawazu and Watanabe (1971) and Shiga (1990).
A class of measure-valued immigration processes were formulated in Li $(1996\mathrm{a}\mathrm{b})$ as
follows. Let $(N_{t})_{t\geq 0}$ be a family of probability measures on $M(E)$ . We call $(N_{t})_{t\geq 0}$ a
skew convolution semigroup associated with $X$ or $(Q_{t})_{t\geq 0}$ if

(1.4) $N_{r+t}=(N_{r}Q_{t})*N_{t}$ , $r,$ $t\geq 0$ ,

where $”*$” denotes the convolution operation. The relation (1.4) holds if and only if

(1.5) $Q_{t}^{N}(\mu, \cdot):=Q_{t}(\mu, \cdot)*N_{t}$ , $t\geq 0,$ $\mu\in M(E)$ ,

defines a Markov semigroup $(Q_{t}^{N})_{t\geq 0}$ on $M(E)$ . If $Y$ is a Markov process in $M(E)$ hav-
ing transition semigroup $(Q_{t}^{N})_{t\geq 0}$ , we call it an $MBI$-process, or simply an immigration
process, associated with $X$ . The intuitive meaning of the immigration process is clear
from (1.5), that is, $Q_{t}(\mu, \cdot)$ is the distribution of descendants of the people distributed
as $\mu\in M(E)$ at time zero and $N_{t}$ is the distribution of descendants of the people immi-
grating to $E$ during the time interval $(0, t]$ . Clearly, (1.5) gives the general formulation
for the immigration independent of the inner population.

Needless to say, most of the theory of Dawson-Watanabe superprocesses carries over
to their associated immigration processes and could be developed by techniques very
close to those in Dawson $(1992, 1993)$ . It is interesting, however, that the immigra-
tion processes have many additional structures, as might be expected from (1.4) and
(1.5). The formula (1.5) is similar to the construction of L\’evy’s transition semigroup
from the usual convolution semigroup. It is well-known that a convolution semigroup
on the Euclidean space is uniquely determined by an infinitely divisible probability
measure. It was proved in Li (1996a) that the skew convolution semigroup may be
characterized in terms of an infinitely divisible probability entrance law. In this sense,
the immigration process is a generalized form of the celebrated L\’evy process. Other
examples of the immigration process are squares of Bessel diffusions and radial parts
of Ornstein-Uhlenbeck diffusions; see Kawazu and Watanabe (1971) and Shiga and
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Watanabe (1973). The above formulation also includes new kinds of immigration pro-
cesses which have not been studied before. The MBI-process involves more complicated
trajectory structures –an immigration process associated with the Borel right $(\xi, \phi)-$

superprocess does not always have a right continuous realization. This wild behavior of
the process is caused by the immigrants coming in from some boundary points of the
underlying space $E$ . For instance, if $\xi$ is a minimal (absorbing barrier) Brownian motion
in $(0, \infty)$ , a non-right-continuous immigration process may be generated by cliques of
immigrants with infinite mass entering from the origin; see section 4.

This work arose from some curiosity about the trajectory structures of the immigra-
tion processes. A natural and realistic problem one would raise is “For a given immigra-
tion process, what is the largest possible space where $\mathrm{a}\mathrm{U}$ the immigrants enter from?”
The problem is answered rigorously in this paper using the theory of Kuznetsov pro-
cesses developed in Dellacherie et al (1992), Fitzsimmons and Maisonneuve (1986) and
Getoor (1990). We first construct a general immigration process by adding up measure-
valued paths $\{w_{t} : \alpha<t<\beta\}$ in the Kuznetsov process determined by an entrance
rule for the $(\xi, \phi)$-superprocess, and then we study the behavior of $\{w_{t} : \alpha<t<\beta\}$

near the birth time $\alpha=\alpha(w)$ . We show that almost all these paths start propagation
in an extension $E_{D}^{T}$ of the underlying space, but some of them may grow up at points
in this space from the $\mathrm{n}\mathrm{u}\mathrm{U}$ measure. In some special cases, the infinitely divisible en-
trance law for the $(\xi, \phi)$-superprocess corresponds to a $\sigma$-finite entrance law and the
associated immigration process can be constructed easily using a path-valued Poisson
random process whose characteristic measure is the Markov measure determined by the
$\sigma$-finite entrance law. The construction has been proved useful in studying those spe-
cial immigration processes; see e.g. Li (1996b), Li and Shiga (1995) and Shiga (1990).
Our general construction is based on the observation that every skew convolution semi-
group is determined by a continuous increasing path $(\gamma_{t})_{t\geq 0}$ from $[0, \infty)$ to $M(E)$ and
an entrance rule $(G_{t})_{t\geq 0}$ . This fact yiel&a natural decomposition ’of the imnigration
into two parts –the deterministic immigration part given by $(\gamma_{t})_{t\geq 0}$ and the random
immigration part determined by $(G_{t})_{t\geq 0}$ . Our construction gives some insights into the
structures of the immigration process.

As an application of the construction, we give interpretations of some $\mathrm{w}\mathrm{e}\mathrm{U}$-known re-
sults on excessive measures in terms of stationary immigration processes. The stationary
distributions of immigration processes may be represented by excessive measures of the
original superprocess. Corresponding to the Riesz type decomposition of an excessive
measure into purely excessive and invariant parts the stationary immigration process
is decomposed naturally into “purely immigrative” and “native” parts. A measure po-
tential determines a right continuous immigration process and the process determined
by a general excessive measure may be obtained as the increasing limit of a sequence of
right continuous ones.

For simplicity we shall only work with measure-val\‘ued processes having state space
$M(E)$ . There is no much change when $M(E)$ is replaced by the more general space
$M_{\rho}(E):=$ {Borel measures $\mu$ on $E$ satisfying $\mu(\rho)<\infty$ }, where $\rho$ is some bounded,
strictly positive, continuous function on $E$ . Indeed, most of our results can be translated
into the $M_{\rho}(E)$ space case using the mapping $\mu(\mathrm{d}x)\vdasharrow\rho(x)^{-1}\mu(\mathrm{d}x)$ .
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The paper is organized as follows. Section 2 contains some preliminaries. The con-
struction of immigration processes using Kuznetsov processes is given in section 3. Al-

most sure behavior of the Kuznetsov processes are studied in section 4. In sections 5
we discuss stationary immigration processes determined by excessive measures. Fluc-

tuation limits of immigration processes are studied in section 6.

2. Preliminaries
Recall that $M(E)$ is the space of finite Borel measures on the Lusin topological space

$E$ . It is well-known that $M(E)$ endowed with the weak convergence topology is also a
Lusin space. Let $M(E)^{\mathrm{o}}=M(E)\backslash \{0\}$ , where $0$ denotes the null measure. A probability
measure $F$ on $M(E)$ is infinitely divisible if and only if its Laplace functional has the

following representation:

(2.1) $\int_{M(E)}\mathrm{e}^{-\nu(f)}F(\mathrm{d}\nu)=\exp\{-\eta(f)-\int_{M(E)^{\mathrm{o}}}(1-\mathrm{e}^{-\nu(f)})H(\mathrm{d}\nu)\}$ ,

where $\eta\in M(E)$ and $[1\wedge I\nearrow(E)]H(\mathrm{d}\nu)$ is a finite measure on $M(E)^{\mathrm{o}}$ . See e.g. Kallenberg
(1975). We write $F=I(\eta, H)$ if $F$ is determined by (2.1).

Suppose that $X=(W, \mathcal{G}, \mathcal{G}_{t}, X_{t}, \mathrm{Q}_{\mu})$ is a Borel right process in $M(E)$ with transition
semigroup $(Q_{t})_{t\geq 0}$ . For $f\in B(E\rangle^{+}$ , set

(2.2) $V_{t}f(x)=- \log\int_{M(E)}\mathrm{e}^{-l/(f)}Q_{t}(\delta_{x}, \mathrm{d}\iota^{y})$ , $t\geq 0,$ $x\in E$ ,

where $\delta_{x}$ denote the unit mass concentrated at $x\in E$ . Throughout this paper we
assume that, for every $l\geq 0$ and $f\in B(E)^{+}$ , the function $V_{t}f(x)$ of $(t, x)$ restricted
to $[0, l]\cross E$ is bounded. We call $X$ an (regular) $MB$-process if $(Q_{t})_{t\geq 0}$ is determined
by (1.3) with $(V_{t})_{t\geq 0}$ being defined by (2.2). If this is satisfied, $Q_{t}(\mu, \cdot)$ is infinitely
divisible for all $t\geq 0$ and $\mu\in M(E)$ , and the operators $(V_{t})_{t\geq 0}$ form a semigroup which
is called the cumulant semigroup of $X$ . See e.g. Silverstein (1969) and Watanabe (1968).

The $(\xi, \phi)$-superprocess defined in the introduction is a special form of the MB-process.
Clearly, the associated skew convolution semigroups and immigration processes can also

be introduced for a general MB-process.

THEOREM 2.1. (Li, $1996\mathrm{a}$) The $f\mathrm{a}mil_{\mathrm{J}^{\gamma}}$ of probability measures $(N_{t})_{t\geq 0}$ is a skerv con-
volution semigroup associated with the $MB$-process if and only if there is an in$\mathrm{f}\mathrm{i}\dot{m}\mathrm{t}ely^{r}$

divisible probability entrance law $(K_{t})_{t>0}$ for $(Q_{t})_{t\geq 0}$ such that

(2.3) $\log\int_{M(E)}\mathrm{e}^{-\nu(f)}N_{t}(\mathrm{d}\nu)=\int_{0}^{t}[\log\int_{M(E)}\mathrm{e}^{-\nu(f)}K_{s}(\mathrm{d}\nu)]\mathrm{d}s$

for all $t\geq 0$ and $f\in B(E)^{+}$ .

Let $\mathcal{K}^{1}(Q)$ denote the set of probability entrance laws $K=(K_{t})_{t>0}$ for the semigroup
$(Q_{t})_{t\geq 0}$ such that

(2.4) $\int_{0}^{1}\mathrm{d}s\int_{M(E)^{\circ}}\nu(E)K_{s}(\mathrm{d}\nu)<\infty$ .

20



Let $\mathcal{K}(P)$ be the set of entrance laws $\kappa=(\kappa_{t})_{t>0}$ for the semigroup $(P_{t})_{t\geq 0}$ that satisfy
$\int_{0}^{1}\kappa_{s}(E)\mathrm{d}s<\infty$. For $\kappa\in \mathcal{K}(P)$ , set

(2.5) $S_{t}( \kappa, f)=\kappa_{t}(f)-\int_{0}^{t}\mathrm{d}s\int_{E}\phi(y, V_{s}f(y))\kappa_{t-s}(\mathrm{d}y)$ , $t>0$ .

Clearly, if $\kappa_{t}=\gamma P_{t}$ for some $\gamma\in M(E)$ , then $S_{t}(\kappa, f)=\gamma(V_{t}f)$ . Now we have the
following

THEOREM 2.2. (Li, $1996\mathrm{b}$) Suppose that $(Q_{t})_{t\geq 0}$ is the semigroup of the $(\xi, \phi)-$

superprocess. Then $K\in \mathcal{K}^{1}(Q)$ is infinitely divisible if and only if $i\mathrm{t}s$ Laplace functional
has the representation

$\int_{M(E)}\mathrm{e}^{-\nu(f)}K_{t}(\mathrm{d}\nu)$

$= \exp\{-S_{t}(\kappa, f)-\int_{\mathcal{K}(P)}(1-\exp\{-S_{t}(\eta, f)\})F(\mathrm{d}\eta)\}$ ,

where $\kappa\in \mathcal{K}(P)mdF$ is a $\sigma$-finite meas$\mathrm{u}\mathrm{r}e$ on $\mathcal{K}(P)$ satisfying

(2.6) $\int_{0}^{1}\mathrm{d}s\int_{\mathcal{K}(P)}\eta_{s}(1)F(\mathrm{d}\eta)<\infty$.

Let $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ be the restriction of $(Q_{t})_{t\geq 0}$ to $M(E)^{\mathrm{o}}$ . Denote by $\mathcal{K}(Q^{\mathrm{o}})$ the set of
entrance laws $K$ for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ satisfying (2.4). We can also give a general characterization
for $\mathcal{K}(Q^{\mathrm{o}})$ as follows. See also Dynkin (1989).

THEOREM 2.3. Suppose that $(Q_{t})_{t\geq 0}$ is the semigroup of the $(\xi, \phi)- s$uperprocess. Then
an arbitrary entrance law $H\in \mathcal{K}(Q^{\mathrm{o}})$ may be represent$ed$ as

$\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})H_{t}(\mathrm{d}\nu)$

(2.7)
$=S_{t}( \kappa, f)+\int_{\mathcal{K}(P)}(1-\exp\{-S_{t}(\eta, f)\})F(\mathrm{d}\eta)$

where $\kappa\in \mathcal{K}(P)$ and $F$ is a $\sigma$-finite $m$easure $ox1\mathcal{K}(P)$ satisfying (2.6). If, in addition,

(2.8) $\int_{a}^{\infty}$ $[ \sup_{x\in E}|\phi(x, z)^{-1}|]\mathrm{d}z<\infty$

for some constant $a>0$ , then (2.7) defines an entrance law $H\in \mathcal{K}(Q^{\mathrm{o}})$ for any $\kappa\in \mathcal{K}(P)$

and $\sigma$-finite meas$\mathrm{u}\mathrm{r}eF$ on $\mathcal{K}(P)$ satisffing (2.6).

PROOF: If $H\in \mathcal{K}(Q^{\mathrm{o}})$ , then $(K)_{t>0}=I(0, H_{t})_{t>0}$ defines an infinitely divisible proba-
bility entrance law $K\in \mathcal{K}^{1}(Q)$ . Thus the representation (2.7) follows by Theorem 2.2.
If (2.8) holds, there is a family of $\sigma$-finite measures $\{L_{t}(x, \cdot) : t>0, x\in E\}$ on $M(E)^{\mathrm{o}}$

such that $Q_{t}(\delta_{x}, \cdot)=I(\mathrm{O}, L_{t}(x, \cdot))$ ; see Dawson (1993; pp195-196). Using this one can
show that an arbitrary infinitely divisible probability entrance law $K\in \mathcal{K}^{1}(Q)$ may be
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given as $(K)_{t>0}=I(0, H_{t})_{t>0}$ for some $H\in \mathcal{K}(Q^{\mathrm{o}})$ . Then (2.7) defines the entrance
law $H\in \mathcal{K}(Q^{\mathrm{o}})$ by Theorem 2.2. 1

It follows by Theorems 2.1 and 2.2 that, under the first moment condition, the transi-
tion semigroup of a general immigration process associated with the $(\xi, \phi)$-superprocess
is given by

$\int_{M(E)}\mathrm{e}^{-\nu(f)}Q_{t}^{N}(\mu, \mathrm{d}\nu)=\exp\{-\mu(V_{t}f)-\int_{0}^{t}S_{r}(\kappa, f)\mathrm{d}r$

(2.9)
$- \int_{0}^{t}\mathrm{d}r\int_{\mathcal{K}(P)}(1-\exp\{-S_{r}(\eta, f)\})F(\mathrm{d}\eta)\}$ ,

where $\kappa\in \mathcal{K}(P)$ and $F$ is a $\sigma$-finite measure on $\mathcal{K}(P)$ satisfying (2.6). Let us look at
two classical examples of the immigration process; some other examples will be given
in section 4.
Example 2.1. Let $a>0$ and $d\geq 0$ be real constants. We consider the one-dimensional
stochastic differential equation

(2.10) $\mathrm{d}Y_{t}=\sqrt{2a|Y_{t}|}\mathrm{d}B_{t}+d\mathrm{d}t$,

where $\{B_{t} : t\geq 0\}$ is a Brownian motion starting from zero. The equation defines a
unique conservative diffusion process $Y$ on $R^{+}$ with generator $L^{a,d}$ such that

$L^{a,d}f(x)=ax \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}f(x)+d\frac{\mathrm{d}}{\mathrm{d}x}f(x)$

and $D(L^{a,d})=C_{0}^{2}(R^{+})$ , twice continuously differentiable functions on $R^{+}$ vanishing
at infinity. Indeed, $Y$ is an MBI-process with the underlying space $E$ degenerating to
a single-point-set, which is a special kind of continuous state branching process with
immigration (CBI-process); see e.g. Ikeda and Watanabe (1989; p235) and Kawazu and
Watanabe (1971). Let $\{Y_{t}(d) : t\geq 0\}$ be the solution to (2.10) with $a=2$ . Then
$\{Y_{t}(d)^{1/2} : t\geq 0\}$ is a Bessel diffusion process with parameter $d$ . That is, the Bessel
diffusion is essentially a particular case of the CBI-process. This connection between the
Bessel diffusion and the immigration process was first noticed by Shiga and Watanabe
(1973).
Example 2.2. Let us recaU the Ray-Knight theorem on Brownian local times. Sup-
pose that $(\Omega, \mathcal{F}^{-}, \mathcal{F}_{t}, B_{t}, \mathrm{P}_{x})$ is a one dimensional Brownian motion with the local times
$\{l(t, x):t\geq 0, x\in R\}$ , which is a continuous two parameter process such that $\mathrm{a}.\mathrm{s}$ .

2 $\int_{A}l(t, x)\mathrm{d}x=\int_{0}^{t}1_{A}(B_{s})\mathrm{d}s$ , $t\geq 0,$ $A\in B(R)$ .

For $b\geq 0$ and $\alpha\geq 0$ , let $T_{\alpha}(-b)= \inf\{t>:l(t, -b)>\alpha\}$ . Then { $l(T_{\alpha}(-b), x)$ :
$x\in R\}$ under $\mathrm{P}_{0}$ is an inhomogeneous Markov process with continuous paths and
$l(T_{\alpha}(-b), -b)=\alpha$ . There are three homogeneity intervals; $\{l(T_{\alpha}(-b), x) : x\geq 0\}$ and
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$\{l(T_{\alpha}(-b), -b-x) : x\geq 0\}$ have the same generator $L^{1,0}$ and { $l(T_{\alpha}(-b), -b+x)$ : $0\leq$

$x\leq b\}$ has the generator $L^{1,1}$ . See e.g. Knight (1981; p137).

3. Construction of immigration processes
Let us review some facts in potential theory; see e.g. Dellacherie et al. (1992) and

Getoor (1990). A family of $\sigma$-finite measures $(J_{t})_{t\in R}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ an entrance rule for
$(Q_{t}^{\mathrm{o}})_{t\geq 0}$ if $J_{s}Q_{t-s}^{\mathrm{o}}\leq J_{t}$ for $t>s\in R$ and $J_{s}Q_{t-s}^{\mathrm{o}}\uparrow J_{t}$ as $s\uparrow t$ . An entrance law
at $r\in R$ is an entrance rule $(J_{t})_{t\in R}$ so that $J_{t}=0$ for $t\leq r$ and $J_{s}Q_{t-s}^{\mathrm{o}}=J_{t}$ for
all $t>s>r$ . (In particular, if $r=0$ we simply say that $(J_{t})_{t\in R}$ an entrance law
for $(Q_{t})_{t\geq 0}.)$ Let $W(M(E))$ denote the space of paths $\{w_{t} : t\in R\}$ that are $M(E)^{\mathrm{o}}-$

valued and right continuous on an open interval $(\alpha(w), \beta(w))$ and take the value of the
null measure elsewhere. The path $[0]$ constantly equal to $0$ corresponds to $(\alpha, \beta)$ being
empty. Set $\alpha([0])=+\infty$ and $\beta([0])=-\infty$ . Let $(\mathcal{H}^{\mathrm{o}}, \mathcal{H}_{t}^{\mathrm{o}})_{t\in R}$ be the natural $\sigma$-algebras
on $W(M(E))$ generated by the coordinate process. The shift operators $\{\sigma_{t} : t\in R\}$ on
$W(M(E))$ are defined by $\sigma_{t}w_{s}=w_{t+s}$ .

To an entrance rule $(J_{t})_{t\in R}$ for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ , there correspon&a unique $\sigma$-finite measure
$\mathrm{Q}^{J}$ on $(W(M(E)), \mathcal{H}^{\mathrm{o}})$ under which the coordinate process $\{w_{t} : t\in R\}$ is a Markov
process with one-dimensional distributions $(J_{t})_{t\in R}$ and semigroup $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ . That is, for
any $t_{1}<\cdots<t_{n}\in R$, and $\nu_{1},$ $\cdots,$ $\nu_{n}\in M(E)^{\mathrm{o}}$ ,

$\mathrm{Q}^{J}\{\alpha<t_{1}, w_{t_{1}}\in \mathrm{d}\nu_{1}, w_{t_{2}}\in \mathrm{d}\nu_{2}, \cdots, w_{t_{n}}\in \mathrm{d}\nu_{n}, t_{n}<\beta\}$

(3.1)
$=J_{t_{1}}(\mathrm{d}\nu_{1})Q_{t_{2}t_{1}}^{\mathrm{o}}-(\nu_{1}, \mathrm{d}\nu_{2})\cdots Q_{t_{n}-t_{n-1}}^{\mathrm{o}}(\nu_{n-1}, \mathrm{d}\nu_{n})$ .

The existence of this measure was proved by Kuznetsov (1974); see also Getoor and
Glover (1987). The system $(W(M(E)), \mathcal{H}^{\mathrm{o}}, \mathcal{H}_{t}^{\mathrm{o}}, w_{t}, \mathrm{Q}^{J})$ is now commonly called the
Kuznetsov process determined by $(J_{t})_{t\in R}$ , and $\mathrm{Q}^{J}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the Kuznetsov measure.
The entrance rule $(J_{t})_{t\in R}$ may be represented as

(3.2) $J_{t}= \int_{R}J_{t}^{s}\rho(\mathrm{d}s)$ , $t\in R$ ,

where $(J_{t}^{s})_{t\in R}$ is an entrance law at $s\in R$ and $\rho(\mathrm{d}s)$ is a $\sigma$-finite measure on $lR$ . The
representation (3.2) yiel&

(3.3) $\mathrm{Q}^{J}(\mathrm{d}w)=\int_{R}s\mathrm{Q}(\mathrm{d}w)\rho(\mathrm{d}s)$ ,

where $s\mathrm{Q}(\mathrm{d}w)$ is the Kuznetsov measure determined by $(J_{t}^{s})_{t\in R}$ . See e.g. Getoor
and Glover (1987). If $(J_{t})_{t\in R}$ is an entrance law at $r\in R$ , then $\mathrm{Q}^{J}$ is supported by
$W_{r}(M(E))$ , the subset of $W(M(E))$ comprising paths $\{w_{t} : t\in R\}$ such that $\alpha(w)=r$ .
If $F$ is an excessive measure for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ and $J_{t}\equiv F$ , then $\mathrm{Q}^{J}$ is stationary, that is,
$\mathrm{Q}^{J}\circ\sigma_{t}^{-1}=\mathrm{Q}^{J}$ for all $t\in R$ . Let $\mathcal{H}^{J}$ be the $\mathrm{Q}^{J}$-completion of $\mathcal{H}^{\mathrm{o}}$ and let $\mathcal{H}_{t}^{J}$ be the
$\sigma$-algebra generated by $\mathcal{H}_{t}^{\mathrm{o}}$ and the ideal of $\mathrm{Q}^{J}\mathrm{n}\mathrm{u}\mathrm{U}$ sets in $\mathcal{H}^{J}$ . Note $\mathcal{H}=\cap \mathcal{H}^{J}$ and
$\mathcal{H}_{t}=\cap \mathcal{H}_{t}^{J}$ where the intersection is over all excessive measures.
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Now we take an entrance rule $(J_{t})_{t\in R}$ for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ and suppose that $N^{J}(\mathrm{d}w)$ is a
Poisson random measure on $W(M(E))$ with intensity $\mathrm{Q}^{J}(\mathrm{d}w)$ . Define

(3.4) $Y_{t}^{J}= \int_{W(M(E))}w_{t}N^{J}(\mathrm{d}w)$, $t\in R$ .

PROPOSITION 3.1. $IIl$ the situation describ$ed$ above, $\{Y_{t}^{J} : t\in R\}$ is a Markov pro-
cess in $M(E)$ having one-dimension$\mathrm{a}ldis$tributions $I(\mathrm{O}, J_{t})_{t\in R}$ and non-homogeneous
transition semigroup $(R_{t}^{r})_{r\leq t\in R}$ given $\mathrm{b}_{\mathrm{J}^{\gamma}}$

$\int_{M(E)}\mathrm{e}^{-\nu(f)}R_{t}^{r}(\mu, \mathrm{d}\nu)$

$= \exp\{-\mu(V_{t}f)-\int_{(r,t]}\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})J_{t}^{s}(\mathrm{d}\nu)\rho(\mathrm{d}s)\}$ .

PROOF: It is easy to see that $\{Y_{t}^{J} : t\in R\}$ has one-dimensional distributions
$I(0, J_{t})_{t\in R}$ . By (3.3), for any $r<t\in R$ and non-negative, bounded Borel function
$F$ on $M(E)$ with $F(\mathrm{O})=0$ ,

(3.5) $\mathrm{Q}^{J}\{F(w_{t});r<\alpha\leq t\}=\int_{(r,t]}J_{t}^{s}(F)\rho(\mathrm{d}s)$.

Then the desired results $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}$ from (3.5) and the Markov property of $\mathrm{Q}^{J}$ . I
From Theorem 2.1 it follows that, if $(N_{t})_{t\geq 0}$ is a skew convolution semigroup, then

$N_{0}=\delta_{0}$ and each $N_{t}$ is infinitely divisible. The next theorem shows that a general
immigration process started with the null measure may be decomposed into two parts,
one part is deterministic and the other part can be constructed from a Kuznetsov
process.

THEOREM 3.2. Suppose that $(N_{t})_{t\geq 0}$ is a skew convolution semigroup with $N_{t}=$

$I(\gamma_{t}, G_{t})$ . Define $G_{t}=0$ for $t<0$ . Then $(G_{t})_{t\in R}$ is an entrmce rule for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ .
Let $Y_{t}^{G}$ be $gi\mathrm{r}^{\gamma}en$ by (3.4) with $J=G$ and let $Y_{t}=\gamma_{t}+Y_{t}^{G}$ . Then $\{Y_{t} : t\geq 0\}$ is an im-
migration process rvith one-dimensional distributions $(N_{t})_{t\geq 0}$ and trmsition semigroup
$(Q_{t}^{N})_{t\geq 0}$ .

PROOF: Recall that $Q_{t}(\mu, \cdot)$ is an infinitely divisible probability measure on $M(E)$ for
all $t\geq 0$ and $\mu\in M(E)$ . Suppose $Q_{t}(\delta_{x}, \cdot)=I(\lambda_{t}(x, \cdot),$ $L_{t}(x, \cdot))$ . By (1.4) we have for
$t>r>0$

$G_{t}=G_{t-r}+G_{r}Q_{t-r}^{\mathrm{o}}+ \int_{E}\gamma_{r}(\mathrm{d}x)L_{t-r}(x, \cdot)$ ,

and hence $G_{r}Q_{t-r}\leq G_{t}$ . Suppose $(N_{t})_{t\geq 0}$ is given by (2.3) with $K_{t}=I(\eta_{t}, H_{t})$ . Since

$G_{t}Q_{t-r}^{\mathrm{o}}= \int_{0}^{t}H_{s}Q_{t-r}^{\mathrm{o}}\mathrm{d}s=G_{r}Q_{t-r}^{\mathrm{o}}+\int_{r}^{t}H_{s}Q_{t-r}^{\mathrm{o}}\mathrm{d}s$ ,
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we have $G_{r}Q_{t-r}^{\mathrm{o}}\uparrow G_{t}$ as $r\uparrow t$ . Thus $(G_{t})_{t\in R}$ is an entrance rule. Suppose $(G_{t})_{t\in R}$ is
represented by (3.2) with $G_{t}^{s}$ in place of $J_{t}^{s}$ . Then for $t\geq r\geq 0$ ,

$\int_{(r,t]}G_{t}^{s}\rho(\mathrm{d}s)=\int_{(0,t]}G_{t}^{s}\rho(\mathrm{d}s)-\int_{(0,r]}G_{r}^{s}Q_{t-r}^{\mathrm{o}}p(\mathrm{d}s)$

(3.6)
$=G_{t}-G_{r}Q_{t-r}^{\mathrm{o}}= \int_{0}^{t}H_{s}\mathrm{d}s-\int_{0}^{r}H_{s}Q_{t-r}^{\mathrm{o}}\mathrm{d}s$ .

The relation $K_{s+t}=K_{s}Q_{t}$ yields

(3.7) $\eta_{s+t}=\int_{E}\eta_{s}(\mathrm{d}x)\lambda_{t}(x, \cdot)$ , $H_{s+t}= \int_{E}\eta_{s}(\mathrm{d}x)L_{t}(x, \cdot)+H_{s}Q_{t}^{\mathrm{o}}$ .

It follows that

$\int_{0}^{r}H_{s+t-r}\mathrm{d}s-\int_{0}^{r}H_{s}Q_{t-r}^{\mathrm{o}}\mathrm{d}s=\int_{0}^{r}\mathrm{d}s\int_{E}\eta_{s}(\mathrm{d}x)L_{t-r}(x, \cdot)$ .

Substituting this into (3.6) gives

$\int_{(r,t]}G_{t}^{s}\rho(\mathrm{d}s)=\int_{0}^{t-r}H_{s}\mathrm{d}s+\int_{0}^{r}\mathrm{d}s\int_{E}\eta_{s}(\mathrm{d}x)L_{t-r}(x, \cdot)$

(3.8)
$=G_{t-r}+ \int_{E}\gamma_{r}(\mathrm{d}x)L_{t-r}(x, \cdot)$ .

Since $\{\gamma_{t} : t\geq 0\}$ is deterministic, $\{Y_{t} : t\geq 0\}$ is a Markov process with one-dimensional
distributions $(N_{t})_{t\geq 0}$ . By Proposition 3.1 we have

$\mathrm{E}[\exp\{-Y_{t}(f)\}|Y_{s} : 0\leq s\leq r]$

(3.9)
$=\exp\{-Y_{r}^{G}(V_{t-r}f)-\gamma_{t}(f)$

$- \int_{(r,t]}p(\mathrm{d}s)\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})G_{t}^{s}(\mathrm{d}\nu)\}$ .

Then we appeal (3.7) to see that

$\gamma_{t}=\int_{0}^{t-r}\eta_{s}\mathrm{d}s+\int_{0}^{r}\mathrm{d}s\int_{E}\eta_{s}(\mathrm{d}x)\lambda_{t-r}(x, \cdot)$

(3.10)
$= \gamma_{t-r}+\int_{E}\gamma_{r}(\mathrm{d}x)\lambda_{t-r}(x, \cdot)$ .

Combining (3.8), (3.9) and (3.10) we get

$\mathrm{E}[\exp\{-Y_{t}(f)\}|Y_{s} : 0\leq s\leq r]$

$= \exp\{-Y_{r}(V_{t-r}f)-\gamma_{t-r}(f)-\int_{M(E)^{\mathrm{o}}}(1-\mathrm{e}^{-\nu(f)})G_{t-r}(\mathrm{d}\nu)\}$,
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that is, $\{Y_{t} : t\underline{>}0\}$ is a Markov process with transition semigroup $(Q_{t}^{N})_{t\geq 0}$ . The

theorem is proved. 1
Let $H\in \mathcal{K}(Q^{\mathrm{o}})$ and let $\mathrm{Q}^{H}$ be corresponding the Kuznetsov measure on $W(M(E))$ .

Set $G_{t}^{H}= \int_{0}^{t}H_{s}\mathrm{d}s$ . If $N(\mathrm{d}s, \mathrm{d}w)$ is a Poisson random measure on $[0, \infty)\mathrm{x}W(M(E))$

with intensity $\mathrm{d}s\cross \mathrm{Q}^{H}(\mathrm{d}w)$ , then

(3.11) $Y_{t}= \int_{[0,t]}\int_{W_{0}(M(E))}w_{t-S}N(\mathrm{d}s, \mathrm{d}w)$ , $t\geq 0$ ,

defines an innnigration process corresponding to the skew convolution semigroup
$(N_{t})_{t\geq 0}$ with $N_{t}=I(\mathrm{O}, G_{t}^{H})$ . This type of constructions for immigration processes
have been considered in Li (1996b), Li and Shiga (1995) and Shiga (1990). We mention
that the general $\mathrm{i}\mathrm{m}m$igration process can only be constructed as in Theorem 3.2 not
in the form (3.11). Another related work is Evans (1993), where a conditioned $(\xi, \phi)-$

superprocess was constructed by adding up masses thrown off by an “immortal particle”
moving around as a copy of $\xi$ .

The construction using Kuznetsov process makes it possible to generalize some ex-
isting results for $(\xi, \phi)$-superprocess to the immigration process. As an example let us
give a characterization for the “weighted occupation time” of the immigration process.
For simplicity we only consider a special case. $\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathbb{I}$ that if $X$ is a $(\xi, \phi)$-superprocess,
for any $\mu\in M(E)$ and $f,$ $g\in B(E)^{+}$ we have

(3.12) $\mathrm{Q}_{\mu}\exp\{-X_{t}(f)-\int_{0}^{t}X_{s}(g)\mathrm{d}s\}=\exp\{-\mu(V_{t}(f, g))\}$ ,

where $V_{t}(f, g)(x)\equiv u_{t}(x)$ is the unique bounded, positive solution to

(3.13) $u_{t}(x)+ \int_{0}^{t}\mathrm{d}s\int_{E}\phi(x, u_{s}(y))P_{t-s}(x, \mathrm{d}y)=P_{t}f(x)+\int_{0}^{t}P_{s}g(x)\mathrm{d}s$

See e.g. Fitzsimmons (1988) and Iscoe (1986). The formulas (3.12) and (3.13) charac-

terize the joint distribution of $X_{t}$ and the weighted occupation time $\int_{0}^{t}X_{s}\mathrm{d}s$ . By (2.9)
we know that

(3.14) $\int_{M(E)}\mathrm{e}^{-\nu(f)}Q_{t}^{\kappa}(\mu, \mathrm{d}\nu)=\exp\{-\mu(V_{t}f)-\int_{0}^{t}S_{r}(\kappa, f)\mathrm{d}r\}$

defines the transition semigroup $(Q_{t}^{\kappa})_{t\geq 0}$ of an immigration process associated with

the $(\xi, \phi)$ -superprocess. Let $h= \int_{0}^{1}P_{s}1\mathrm{d}s\in B(E)^{+}$ . From Li (1996b) we know that
$(Q_{t}^{\kappa})_{t\geq 0}$ has a realization $(W, \mathcal{G}, \mathcal{G}_{t}, Y_{t}, \mathrm{Q}_{\mu}^{\kappa})$ such that for any $g\in B(E)^{+}$ the path
$\{Y_{t}(g\wedge h) : t\geq 0\}$ is $\mathrm{a}.\mathrm{s}$ . measurable and locally bounded, hence $\int_{0}^{t}Y_{s}(g)\mathrm{d}s$ can be
defined $\mathrm{a}.\mathrm{s}$ . by increasing limits.
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THEOREM 3.3. Suppose that condition (2.8) holds. Let $(W, \mathcal{G}, \mathcal{G}_{t}, Y_{t}, \mathrm{Q}_{\mu}^{\kappa})$ be the real-
ization of $(Q_{t}^{\kappa})_{t\geq 0}$ describ$ed$ above. Then for any $\mu\in M(E)$ all$df,$ $g\in B(E)^{+}$ ,

$\mathrm{Q}_{\mu}^{\kappa}\exp\{-Y_{t}(f)-\int_{0}^{t}Y_{s}(g)\mathrm{d}s\}=\exp\{-\mu(u_{t})-\int_{0}^{t}S_{r}(\kappa, f, g)\mathrm{d}r\}$ ,

where $u_{t}(x)$ is defined by (3.13) and

(3.15) $S_{t}( \kappa, f, g)=\kappa_{t}(f)+\int_{0}^{t}\kappa_{s}(g)\mathrm{d}s-\int_{0}^{t}\kappa_{t-s}(\phi(u_{s}))\mathrm{d}s$ , $t>0$ .

PROOF: Under the hypothesis, (4.9) defines an entrance law $L\kappa\in \mathcal{K}(Q^{\mathrm{o}})$ . For any
$t>0$ and $f,$ $g\in B(E)^{+}$ ,

$\mathrm{Q}^{L\kappa}(1-\exp\{-w_{t}(f)-\int_{0}^{t}w_{s}(g)\mathrm{d}s\})$

$= \lim_{r\downarrow 0}\mathrm{Q}^{L\kappa}(1-\mathrm{Q}_{w_{r}}\exp\{-X_{t-r}(f)-\int_{0}^{t-r}X_{s}(g)\mathrm{d}s\})$

$= \lim_{r\downarrow 0}\mathrm{Q}^{L\kappa}(1-\exp\{-w_{r}(u_{t-r})\})$

$=S_{t}(\kappa, f, g)$ ,

where we have appealed (4.9), (3.13) and (3.15) for the last equality. Then using the
construction (3.11) we get

$\mathrm{Q}_{0}^{\kappa}\exp\{-Y_{t}(f)-\int_{0}^{t}Y_{s}(g)\mathrm{d}s\}$

$= \exp\{-\int_{0}^{t}\mathrm{Q}^{L\kappa}(1-\exp\{-w_{t-r}(f)-\int_{r}^{t}w_{s-r}(g)\mathrm{d}s\})\mathrm{d}r\}$

$= \exp\{-\int_{0}^{t}S_{t-r}(\kappa, f, g)\mathrm{d}r\}$ ,

and the desired result follows by the relation $\mathrm{Q}_{\mu}^{\kappa}=\mathrm{Q}_{\mu}*\mathrm{Q}_{0}^{\kappa}$. I

4. Almost sure behavior of Kuznetsov processes
In this section we study the behavior of Kuznetsov processes near their birth times.

The discussion is of interest in providing insights into the trajectory structures of the
immigration process. In particular, this will answer the problem posed in the intro-
duction. Let us consider a $(\xi, \phi)$-superprocess $X$ in $M(E)$ . We shall need to consider
two topologies on the space $E$ : the original topology and the Ray topology of $\xi$ . We
write $E_{r}$ for the set $E$ furnished with the Ray topology of $\xi$ . The notation $M(E_{r})$ is
self-explanatory.
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Recall that if $H\in \mathcal{K}(Q^{\mathrm{o}})$ , the Kuznetsov measure $\mathrm{Q}^{H}$ is supported by $W_{0}(M(E))$ .

Let $(P_{t}^{b})_{t\geq 0}$ be the semigroup of bounded kernels on $E$ defined by

(4.1) $P_{t}^{b}f(x)= \mathrm{P}_{x}f(\xi_{t})\exp\{-\int_{0}^{t}b(\xi_{s})\mathrm{d}s\}$ .

For any $H\in \mathcal{K}(Q^{\mathrm{o}})$ , it is clear that

(4.2) $\gamma_{t}(f)=\int_{M(E)^{\circ}}\nu(f)H_{t}(\mathrm{d}\nu)$

defines an entrance law $\gamma=(\gamma_{t})_{t>0}$ for $(P_{t}^{b})_{t\geq 0}$ . Now fix $x\in E$ and suppose

(4.3) $\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})L_{t}(x, \mathrm{d}\nu)=V_{t}f(x)$

defines an entrance law $L(x)\in \mathcal{K}(Q^{\mathrm{o}})$ . Clearly, $(P_{t}^{b}(x, \cdot))_{t>0}$ is a minimal entrance law
for $(P_{t}^{b})_{t\geq 0}$ , which may be given by (4.2) with $H_{t}(\mathrm{d}\nu)$ replaced by $L_{t}(x, \mathrm{d}IJ)$ . From those
facts it can be deduced easily that $L(x)\in \mathcal{K}(Q^{\mathrm{o}})$ is minimal.

THEOREM 4.1. Let $\mathrm{Q}^{L(x)}$ denote the Kuznetsov measure on $W(M(E))$ determined by
$L(x)\in \mathcal{K}(Q^{\mathrm{o}})$ . Then we have $w_{t}(E)arrow 0$ and $w_{t}(E)^{-1}w_{t}arrow\delta_{x}$ in $M(E_{r})$ as $t\downarrow \mathrm{O}$ for
$\mathrm{Q}^{L(x)_{-}}a.a$ . paths $w\in W(M(E))$ .

PROOF: The results were proved in Li and Shiga (1995) for the case where $(P_{t})_{t\geq 0}$ is
Feller and $\phi(x, z)\equiv z^{2}/2$ by a theorem of Perkins (1992) which asserts that a conditioned
$(\xi, \phi)$-superprocess is a generalized Fleming-Viot superprocess. The calculations in Li
and Shiga (1995) are complicated and cannot be generalized to the present situation.
We here give a proof of the theorem based on an $h$-transform of the $(\xi, \phi)$-superprocess.
We shall assume $(P_{t})_{t\geq 0}$ is conservative. The proof for a non-conservative underlying
semigroup can be reduced to this case as in Li and Shiga (1995).

Let $\mathcal{R}$ be a countable Ray cone for $\xi$ as constructed in Sharpe (1988) and let $\overline{E}$ be
the corresponding Ray-Knight compactification of $E$ with the Ray topology. Note that
each $f\in \mathcal{R}$ is continuous on $E_{r}$ and admits a unique continuous extension $\overline{f}$ to $\overline{E}$ . We
regard $M(E_{r})$ as a topological subspace of $M(\overline{E})$ in the usual way. Since $\overline{E}$ is a compact
metric space, $M(\overline{E})$ is locally compact and separable. For any fixed $u>0$ ,

(4.4) $R_{t}^{r}(\mu, \mathrm{d}\nu)=\mu(P_{u-r}^{b}1)^{-1}\nu(P_{u-t}^{b}1)Q_{t-r}(\mu, \mathrm{d}\nu)$, $0\leq r\leq t\leq u$ ,

defines an inhomogeneous transition semigroup $(R_{t}^{r})$ on $M(E)^{\mathrm{o}}$ . We define the proba-

bility measure $\mathrm{R}_{u}^{L(x)}(\mathrm{d}w)$ on $W(M(E))$ by

$\mathrm{R}_{u}^{L(x)}(\mathrm{d}w)=P_{u}^{b}1(x)^{-1}w_{u}(1)\mathrm{Q}^{L(x)}(\mathrm{d}w)$ .

Then $\{w_{t} : 0<t\leq u\}$ under $\mathrm{R}_{u}^{L(x)}$ is a Markov process with semigroup $(R_{t}^{r})$ and
one-dimensional distributions

(4.5) $H_{t}(x, \mathrm{d}_{I^{y}}):=P_{u}^{b}1(x)^{-1}\nu(P_{u-t}^{b}1)L_{t}(x, \mathrm{d}\nu)$ , $0<t\leq u$ .
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Since $L(x)\in \mathcal{K}(Q^{\mathrm{o}})$ is minimal, $(H_{t}(x, \cdot))_{0<t\leq u}$ is a minimal (probability) entrance law
for (ffl). Take $f\in \mathcal{R}$ . By (4.3) $-(4.5)$ and the martingale convergence theorem we
have $\mathrm{R}_{u}^{L(x)}- \mathrm{a}.\mathrm{s}$ .

$V_{t}f(x)= \int_{M(E)^{\mathrm{o}}}(1-\mathrm{e}^{-\nu(f)})\nu(P_{u-t}^{b}1)^{-1}H_{t}(x, \mathrm{d}\nu)P_{u}^{b}1(x)$

(46) $= \lim_{r\downarrow 0}\int_{M(E)^{\mathrm{o}}}(1-\mathrm{e}^{-\nu(f)})\nu(P_{u-t}^{b}1)^{-1}R_{t}^{r}(w_{r}, \mathrm{d}\nu)P_{u}^{b}1(x)$

$= \lim_{r\downarrow 0}w_{r}(P_{u-r}^{b}1)^{-1}(1-\exp\{-w_{r}(V_{t-r}f)\})P_{u}^{b}1(x)$.

By (4.1) and (4.6) it follows that $\mathrm{R}_{u}^{L(x)}- \mathrm{a}.\mathrm{s}$ .

$V_{t}f(x) \leq\lim_{r\downarrow}\inf_{0}w_{r}(P_{u-r}^{b}1)^{-1}P_{u}^{b}1(x)\leq\lim_{r\downarrow}\inf_{0}\mathrm{e}^{2||b||u}w_{r}(1)^{-1}$ .

Note that $V_{t}f(x)$ is right continuous in $t\geq 0$ . Then letting $t\downarrow \mathrm{O}$ and $f\uparrow\infty$ in the above
inequality yields that $\mathrm{R}_{w}^{L(x)}- \mathrm{a}.\mathrm{s}$ . $w_{t}(1)arrow 0$ as $t\downarrow \mathrm{O}$ . Since for each $u>0$ the measures
$\mathrm{R}_{u}^{L(x)}$ and $\mathrm{Q}^{L(x)}$ are mutually absolutely continuous on $\{w\in W_{0}(M(E)):w_{u}(1)>0\}$ ,
we obtain the first assertion. By the same reasoning as (4.6) we have $\mathrm{R}_{t}^{L(x)}- \mathrm{a}.\mathrm{s}$ .

$P_{t}^{b}f(x)= \int_{M(E)^{\circ}}\nu(f)_{l}\nearrow(1)^{-1}H_{t}(x, \mathrm{d}\nu)P_{t}^{b}1(x)$

(4.7)
$= \lim_{r\downarrow 0}w_{r}(P_{t-r}^{b}1)^{-1}w_{r}(P_{t-r}^{b}f)P_{t}^{b}1(x)$ .

Clearly, $\mathrm{R}_{u}^{L(x)}$ is absolutely continuous relative to $\mathrm{R}_{t}^{L(x)}$ for $u\geq t>0$ . Since $f\in \mathcal{R}$

is an $\alpha$-excessive function for $(P_{t})_{t\geq 0}$ for some $\alpha=\alpha(f)\cdot\geq 0$ , from (4.1) and (4.7) it
follows that $\mathrm{R}_{v}^{L(x)}- \mathrm{a}.\mathrm{s}$ .

$\mathrm{e}^{-||b||t}P_{t}f(x)\leq\lim_{r\downarrow}\inf_{0}\mathrm{e}^{(3||b||+\alpha)t}w_{r}(1)^{-1}w_{r}(f)$ .

Take $w\in W_{0}(M(E))$ along which the above inequality holds for all $f\in \mathcal{R}$ and all
rationals $t\in(0, u]$ . Let $r_{k}=r_{k}(w)$ be a sequence such that $r_{k}\downarrow 0$ and $w_{r_{k}}(1)^{-1}w_{r_{k}}arrow$

$\hat{w}_{0}$ in $M(\overline{E})$ as $karrow\infty$ , where $\hat{w}_{0}$ is a probability measure on $\overline{E}$ . Then we have

$\mathrm{e}^{-||b||t}P_{t}f(x)\leq \mathrm{e}^{(3||b||+\alpha)t}\hat{w}_{0}(\overline{f})$ .

Letting $t\downarrow \mathrm{O}$ gives $f(x)\leq\hat{w}_{0}(\overline{f})$ , so we have $\hat{w}_{0}=\delta_{x}$ . Those clearly imply $w_{r}(1)^{-1}w_{r}arrow$

$\delta_{x}$ in $M(E_{r})$ as $r\downarrow \mathrm{O}$ , and the second assertion $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ immediately. 1
Now we consider an $h$-transform of the underlying semigroup. Set $h(x)= \int_{0}^{1}P_{s}1(x)\mathrm{d}s$

for $x\in E$ . Since $h\in B(E)^{+}$ is an excessive function for $(P_{t})_{t\geq 0}$ ,

(4.8) $T_{t}f(x)=h(x)^{-1} \int_{E}f(y)h(y)P_{t}(x, \mathrm{d}y)$
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defines a Borel right semigroup $(T_{t})_{t\geq 0}$ on $E$ . See e.g. Sharpe (1988). Let $(T_{t}^{\partial})_{t\geq 0}$ be a
conservative extension of $(T_{t})_{t\geq 0}$ to $E^{\partial}:=E\cup\{\partial\}$ , where $\partial$ is the cemetery point. Let
$E_{D}^{\partial}$ denote the entrance space of $(T_{t}^{\partial})_{t\geq 0}$ with the Ray topology. Let $E_{D}^{T}=E_{D}^{\partial}\backslash \{\partial\}$

and let $(\overline{T}_{t})_{t\geq 0}$ be the Ray extension of $(T_{t}^{\partial})_{t\geq 0}$ to $E_{D}^{T}$ . Then $(\overline{T}_{t})_{t\geq 0}$ is ako a Borel
right semigroups.

Let $\kappa\in \mathcal{K}(P)$ be non-trivial and assume

(4.9) $\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})H_{t}(\mathrm{d}\nu)=S_{t}(\kappa, f)$

defines an entrance law $H:=L\kappa\in \mathcal{K}(Q^{\mathrm{o}})$ . Let $\mathrm{Q}^{L\kappa}$ denote the corresponding
Kuznetsov measure on $W(M(E))$ . Then we have

THEOREM 4.2. For $w\in W(M(E))$ define the $M(E_{D}^{T})$-valued $p\mathrm{a}$th $\{h\overline{w}_{t} : t\in R\}$ by

(4.10) $h\overline{w}_{t}(E_{D}^{T}\backslash E)=0$ and $h\overline{w}_{t}(\mathrm{d}x)=h(x)w_{t}(\mathrm{d}x)$ for $x\in E$ .

Then for $\mathrm{Q}^{L\kappa_{-}}a.a$ . $w\in W(M(E)),$ $\{h\overline{w}_{t} : t>0\}$ is right continuous in the topology
of $M(E_{D}^{T})$ and $h\overline{w}_{t}arrow 0$ as $t\downarrow \mathrm{O}$. Moreover, for $\mathrm{Q}^{L\kappa_{-}}a.a$ . $w\in W(M(E))$ we $h\mathrm{a}\mathrm{v}e$

$w_{t}(h)^{-1}h\overline{w}_{t}arrow\delta_{x(w)}$ for some $x(w)\in E_{D}^{T}$ as $t\downarrow 0$ .

PROOF: By the results in Fitzsimmons (1988), if $f\in B(E)$ is finely continuous relative
to $(P_{t})_{t\geq 0}$ , then $\{w_{t}(f) : t>0\}$ is right continuous for $\mathrm{a}.\mathrm{a}$ . $w\in W(M(E))$ . Since the
excessive function $h\in B(E)^{+}$ is finely continuous, so is $fh$ for any bounded continuous
function $f$ on $E$ . It follows that $\{hw_{t} : t>0\}$ is right continuous for a. $\mathrm{a}$ . $w\in W(M(E))$ .
We may define a cumulant semigroup $(U_{t})_{t\geq 0}$ by $U_{t}f=h^{-1}V_{t}(hf)$ . Then $\{hw_{t} : t>0\}$

is a Markov process with Borel right transition semigroup given by (1.3) with $(V_{t})_{t\geq 0}$

replaced by $(U_{t})_{t\geq 0}$ . Let $E_{r}^{T}$ denote the set $E$ furnished with the relative topology from
$E_{D}^{T}$ . Applying the results in Fitzsimmons (1988) again we conclude that $\{hw_{t} : t>0\}$

is right continuous in $M(E_{r}^{T})$ for $\mathrm{a}.\mathrm{a}$. $w\in W(M(E))$ . Therefore, $\{h\overline{w}_{t} : t>0\}$ is right
continuous in $M(E_{D}^{T})$ for $\mathrm{a}.\mathrm{a}$ . $w\in W(M(E))$ . Note that

$\{$

$\overline{\psi}(x, z)=h(x)^{-1}\phi(x, h(x)z)$ , $x\in E$ ,
$\overline{\psi}(x, z)=0$ , $x\in E_{D}^{T}\backslash E$ ,

defines a branching mechanism $\overline{\psi}(\cdot, \cdot)$ on $E_{D}^{T}$ . Let $(\overline{U}_{t})_{t\geq 0}$ be the cumulant semigroup
given by

(4.11) $\overline{U}_{t}\overline{f}(x)+\int_{0}^{t}\neg \mathrm{d}s\int_{E_{D}^{T}}\overline{\psi}(y,\overline{U}_{s}\overline{f}(y))\overline{T}_{t-s}(x, \mathrm{d}y)=\overline{T}_{t}\overline{f}(x)$, $t\geq 0,$ $x\in E_{D}^{T}$ .

Then $(\overline{U}_{t})_{t\geq 0}$ corresponds to Borel right transition semigroup $(\overline{Q}_{t})_{t\geq 0}$ on $M(E_{D}^{T})$ . For
any $t>0$ and $x\in E_{D}^{T}$ , the measure $\overline{T}_{t}(x, \cdot)$ is supported by $E$ , so $\overline{T}_{t}\overline{f}(x)$ and $\overline{U}_{t}\overline{f}(x)$

are independent of the values of $\overline{f}$ on $E_{D}^{T}\backslash E$ . Indeed, if $f=\overline{f}|_{E}$ for $f\in B(E_{D}^{T})^{+}$ , then
$\overline{U}_{t}\overline{f}(x)=U_{t}f(x)$ for all $x\in E$ . We may write $\overline{T}_{t}f$ and $\overline{U}_{t}f$ instead of $\overline{U}_{t}\overline{f}$ and $\overline{U}_{t}\overline{f}$

respectively. Clearly, the definitions of $\overline{T}_{t}f$ and $\overline{U}_{t}f$ can be extended to all non-negative
Borel functions $f$ on $E$ by increasing limits. As shown in Li (1996b), there exists a
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measure $\rho\in M(E_{D}^{T})$ such that $\kappa_{t}(f)=p(\overline{T}_{t}(h^{-1}f))$ and $S_{t}(\kappa, f)=\rho(\overline{U}_{t}(h^{-1}f))$ . Then
$\{h\overline{w}_{t} : t>0\}$ is a Markov process with transition semigroup $(\overline{Q}_{t})_{t\geq 0}$ and

$\mathrm{Q}^{L\kappa}(1-\mathrm{e}^{-h\overline{w}_{t}(\overline{f})})=\rho(\overline{U}_{t}\overline{f})$.

Now the results follow by Theorem 4.1 applied to $(\overline{U}_{t})_{t\geq 0}$ and $(\overline{T}_{t})_{t\geq 0}$ . I
By Theorem 2.2 we have an entrance law $K:=l\kappa\in \mathcal{K}^{1}(Q)$ given by

(4.12) $\int_{M(E)}\mathrm{e}^{-\nu(f)}K_{t}(\mathrm{d}\nu)=\exp\{-S_{t}(\kappa, f)\}$ .

Obviously, $K=l\kappa$ determines a unique entrance law in $\mathcal{K}(Q^{\mathrm{o}})$ . Let $\mathrm{Q}^{l\kappa}$ denote the
corresponding Kuznetsov measure on $W(M(E))$ .

THEOREM 4.3. For $\mathrm{Q}^{l\kappa_{-}}a.a$. $w\in W(M(E)),$ $\{h\overline{w}_{t} : t>0\}$ is right continuous and
$h\overline{w}_{t}arrow p$ for some $\rho\in M(E_{D}^{T})$ as $t\downarrow 0$ .

PROOF: We use the notation introduced in the proof of Theorem 4.2. Clearly, { $h\overline{w}_{t}$ :
$t>0\}$ under $\mathrm{Q}^{l\kappa}$ is a Markov process with transition semigroup $(\overline{Q}_{t})_{t\geq 0}$ and

$\mathrm{Q}^{l\kappa}\exp\{-h\overline{w}_{t}(\overline{f})\}=\exp\{-p(\overline{U}_{t}\overline{f})\}$ .

Thus the assertions hold by the uniqueness of transition probability. 1
Finally, we consider the path behavior of the Kuznetsov process determined by a

general entrance rule. Let $(J_{t})_{t\in R}$ be an entrance rule for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ satisfying

(4.13) $\int_{r}^{t}\mathrm{d}s\int_{M(E)^{\mathrm{o}}}\nu(E)J_{S}(\mathrm{d}\nu)<\infty$ , $r<t\in R$ .

We may assume $(J_{t})_{t\in R}$ is given by (3.2) with the entrance laws $\{(J_{s+t}^{s})_{t>0} : s\in R\}$

taken from $\mathcal{K}(Q^{\mathrm{o}})$ .

THEOREM 4.4. In the situation described above, for $\mathrm{Q}^{J_{-}}\mathrm{a}.a$. paths $w\in W(M(E))$ the
process $\{h\overline{w}_{t} : t\in R\}$ defined by (4.10) is right $con$tinuous in $M(E_{D}^{T})^{\mathrm{o}}$ on the interval
$(\alpha(w), \beta(w))$ and $h\overline{w}_{t}arrow h\overline{w}_{\alpha}$ for some $h\overline{w}_{\alpha}\in M(E_{D}^{T})$ as $t\downarrow\alpha(w)$ . Moreover, for
$\mathrm{Q}^{J_{-}}\mathrm{a}.a$. $pa\mathrm{t}hsw\in W(M(E))$ with $h\overline{w}_{\alpha}=0$ , we $ha\mathrm{t}^{7}ew_{t}(h)^{-1}h\overline{w}_{t}arrow\delta_{x(w)}$ for some
$x(w)\in E_{D}^{T}$ as $t\downarrow\alpha(w)$ .

PROOF: Let $\mathrm{Q}^{H}$ be the Kuznetsov measure on $W(M(E))$ corresponding to the entrance
law $H\in \mathcal{K}(Q^{\mathrm{o}})$ represented by (2.7). Then

$\mathrm{Q}^{H}(\mathrm{d}w)=\mathrm{Q}^{L\kappa}(\mathrm{d}w)+\int_{\mathcal{K}(P)}\mathrm{Q}^{l\eta}(\mathrm{d}w)F(\mathrm{d}\eta)$ .

By Theorems 4.2 and 4.3, for $\mathrm{Q}^{H}- \mathrm{a}.\mathrm{a}$. $w\in W(M(E))$ the process $\{h\overline{w}_{t} : t>0\}$ is right
continuous in $M(E_{D}^{T})$ and $h\overline{w}_{t}arrow h\overline{w}_{0}$ for some $h\overline{w}_{0}\in M(E_{D}^{T})$ as $t\downarrow \mathrm{O}$ . Furthermore,
for $\mathrm{Q}^{H_{-}}\mathrm{a}.\mathrm{a}$ . $w\in W(M(E))$ with $h\overline{w}_{0}=0$ , we have $w_{t}(h)^{-1}h\overline{w}_{t}arrow\delta_{x(w)}$ for some
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$x(w)\in E_{D}^{T}$ as $t\downarrow \mathrm{O}$ . Then the desired result holds by the representation (3.3) of the

measure $\mathrm{Q}^{J}(\mathrm{d}w)$ . $1$

Clearly, (4.13) is satisfied by the entrance rule $(G_{t})_{t\in R}$ mentioned in Theorem 3.2.
By Theorem 4.4, $\mathrm{Q}^{G_{-}}\mathrm{a}.\mathrm{a}$ . paths $w\in W(M(E))$ start propagation in $E_{D}^{T}$ . Combining

this with the construction of the immigration process given by Theorem 3.2 answers the

problem posed in the introduction.
Example 4.1. Suppose that $\xi$ is the minimal Brownian motion in $H:=(0, \infty)$ with

transition semigroup given by

$P_{t}f(x)= \int_{H}[g_{t}(x-y)-g_{t}(x+y)]f(y)\mathrm{d}y$ ,

where $g_{t}(x)=\exp\{-x^{2}/2t\}/\sqrt{2\pi t}$. In this case, we may identify $E_{D}^{T}$ as $R^{+}$ . Let
$\kappa\in \mathcal{K}(P)$ be defined by $\kappa_{t}(f)=\partial_{0}P_{t}f$ , where $\partial_{0}$ denotes the upward derivative at the

origin. Then $S_{t}(\kappa, f)=\partial_{0}V_{t}f$ . Define $(^{\kappa}Q_{t})_{t\geq 0}$ by

$\int_{M(H)}\mathrm{e}^{-\nu(f)}\kappa Q_{t}(\mu, \mathrm{d}\nu)$

$= \exp\{-\mu(V_{t}f)-\int_{0}^{t}(1-\exp\{-\partial_{0}V_{s}f\})\mathrm{d}s\}$ .

$h’(0^{+})\overline{U}_{t}(h^{-1}f)(0).$ By the proofs of Theorems 4.3 and 4.4, $h\overline{w}_{t}arrow h’(0^{+})\delta_{0}$ and hence
$w_{t}(H)arrow\infty$ as $t\downarrow\alpha$ for $\mathrm{Q}^{G_{-}}\mathrm{a}.\mathrm{a}$ . $w\in W(M(H))$ . Intuitively, the immigration process is

generated by cliques of immigrants with infinite $m$ass coming in $H$ from the original. The

semigroup $(^{\kappa}Q_{t})_{t\geq 0}$ has no right continuous realization; see Li (1996b). This example

also shows that the transformation $w_{t}rightarrow h\overline{w}_{t}$ is necessary if one hopes to get the limit
$\lim_{t\downarrow\alpha}w_{t}$ for $w\in W(M(H))$ .

Example 4.2. Under the conditions of the previous example, assume further that
$\phi(x, z)\equiv z^{2}/2$ . We define $(Q_{t}^{\kappa})_{t\geq 0}$ by

$\int_{M(H)}\mathrm{e}^{-\nu(f)}Q_{t}^{\kappa}(\mu, \mathrm{d}\nu)=\exp\{-\mu(V_{t}f)-\int_{0}^{t}\partial_{0}V_{s}f\mathrm{d}s\}$.

By the results in Li and Shiga (1995), the semigroup $(Q_{t}^{\kappa})_{t\geq 0}$ correspon&to an im-

migration diffusion process $(W, \mathcal{G}, \mathcal{G}_{t}, Y_{t}, \mathrm{Q}_{\mu}^{\kappa})$ such that $\{Y_{t}(\mathrm{d}x) : t>0\}$ is $\mathrm{Q}_{\mu^{-}}^{\kappa}\mathrm{a}.\mathrm{s}$ .

absolutely continuous relative to the Lebesgue measure on $H$ having continuous density
$\{Y_{t}(x) : t>0, x>0\}$ which satisfies $Y_{t}(0^{+})\equiv 2$ and solves the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ stochastic

partial differential equation with singular drift term:

$\frac{\partial}{\partial t}Y_{t}(x)=\sqrt{Y_{t}(x)}\dot{W}_{t}(x)+\frac{1}{2}\triangle Y_{t}(x)+d_{0}$ ,

where $\dot{W}_{t}(x)$ is a time-space white noise, $\triangle$ denotes the Laplacian on $H$ with Dirichlet

boundary condition, $\mathrm{a}\mathrm{n}\mathrm{d}-d_{0}$ is the derivative of the Dirac function at the origin. More
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precisely, $\langle d_{0}, f\rangle=f’(0^{+})$ for $f\in C_{0}^{2}(R^{+})$ , twice continuously differentiable functions
on $R^{+}$ vanishing at zero and infinity. The immigration process may be constructed by
a special form of (3.11). Using a similar argument as in the previous example one sees
that the process is generated by infinitesimal masses entering from the original.

5. Stationary immigration processes
An interesting feature of the associated immigration processes is their stationary dis-

tributions may be represented by excessive measures of the original $\mathrm{M}\mathrm{B}$-process. Based
on this fact and the construction using Kuznetsov processes, we may give some inter-
pretations of the results of Fitzsimmons and Maisonneuve (1986) in terms of stationary
immigration processes.

Suppose that $X=(W, \mathcal{G}, \mathcal{G}_{t}, X_{t}, \theta_{t}, \mathrm{Q}_{\mu})$ is a Borel right $\mathrm{M}\mathrm{B}$-process with transition
semigroup $(Q_{t})_{t\geq 0}$ , where $W$ is the space of paths $\{\omega_{t} : t\geq 0\}$ that are $M(E)^{\mathrm{o}}$-valued
and right continuous on the interval [$0,$ $\beta(w))$ and take the null measure $0$ elsewhere.
The path $[0]$ constantly equal to $0$ corresponds to $\beta([0])=0$ . Given two probability
measures $F_{1}$ and $F_{2}$ on $M(E)$ , we write $F_{1}\preceq F_{2}$ if there is a probability $G$ such that
$F_{1}*G=F_{2}$ . Let $\mathcal{E}^{*}(Q)$ denote the set of all probability measures $F$ on $M(E)$ such that

(5.1) $\int_{M(E)^{\circ}}\nu(1)F(\mathrm{d}\nu)<\infty$

and $FQ_{t}\preceq F$ for all $t\geq 0$ . We write $F\in \mathcal{E}_{i}^{*}(Q)$ if $F\in \mathcal{E}^{*}(Q)$ is a stationary distri-
bution for $(Q_{t})_{t\geq 0}$ , and write $F\in \mathcal{E}_{p}^{*}(Q)$ if $F\in \mathcal{E}^{*}(Q)$ and $\lim_{tarrow\infty}FQ_{t}=\delta_{0}$. Clearly
$\delta_{0}\in \mathcal{E}_{i}^{*}(Q)$ . (The $\mathrm{M}\mathrm{B}$-process may have other non-trivial stationary distributions.)
The following theorem shows that $\mathcal{E}^{*}(Q)$ is identical with the totality of stationary
distributions of immigration processes associated with $X$ .

THEOREM 5.1. Let $F\in \mathcal{E}^{*}(Q)$ . Then it $m\mathrm{a}y^{r}$ be written uniquely as $F=F_{i}*F_{p}$ ,
where $F_{i}= \lim_{tarrow\infty}FQ_{t}\in \mathcal{E}_{i}^{*}(Q)mdF_{p}\in \mathcal{E}_{p}^{*}(Q)$. Moreover, there is a unique skew
convolution semigroup $(N_{t})_{t\geq 0}$ such that $\lim_{tarrow\infty}N_{t}=F_{p}$ .

PROOF: Let $(N_{t})_{t\geq 0}$ be the distributions on $M(E)$ satisfying $F=(FQ_{t})*N_{t}$ . By the
branching property of the semigroup $(Q_{t})_{t\geq 0}$ one checks for any $r\geq 0$ and $t\geq 0$ ,

$(FQ_{r+t})*N_{r+t}=F=(FQ_{t}\rangle*N_{t}=\{[(FQ_{r})*N_{r}]Q_{t}\}*N_{t}$
(5.2)

$=(FQ_{r+t})*(N_{r}Q_{t})*N_{t}$ .

It follows that $(N_{t})_{t\geq 0}$ satisfies the relation (1.4), so it is a skew convolution semigroup
associated with $(Q_{t})_{t\geq 0}$ . By the definition of $\mathcal{E}^{*}(Q)$ , we have $FQ_{r+t}\preceq FQ_{t}$ , so the
following limits exist and give the Laplace functionals of two probability measures $F_{i}$

and $F_{p}$ :

(5.3) $L_{F_{i}}(f)= \uparrow\lim_{t\uparrow\infty}L_{FQ_{t}}(f)$ , $L_{F_{p}}(f)= \downarrow\lim_{t\uparrow\infty}L_{N_{t}}(f)$ .

Clearly, $F_{i}\in \mathcal{E}_{i}^{*}(Q)$ and $F=F_{i}*F_{p}$ . On the other hand,

$F_{i}*F_{p}=F=(FQ_{t})*N_{t}=F_{i}*(F_{p}Q_{t})*N_{t}$ ,
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so $F_{p}=(F_{p}Q_{t})*N_{t}$ . Therefore $F_{p}\in \mathcal{E}^{*}(Q)$ and $\lim_{tarrow\infty}F_{p}Q_{t}=\delta_{0}$ . The uniqueness of
the decomposition is $\mathrm{i}\mathrm{m}m$ediate. 1

Let $\mathcal{E}(Q^{\mathrm{o}})$ denote the class of all excessive measures $F$ for $(Q_{t}^{\mathrm{o}})_{t\geq 0}$ satisfying (5.1).
Let $\mathcal{E}_{i}(Q^{\mathrm{o}})$ be the subset of $\mathcal{E}(Q^{\mathrm{o}})$ comprising invariant measures, and $\mathcal{E}_{\mathrm{p}}(Q^{\mathrm{o}})$ the subset
of purely excessive measures. The classes $\mathcal{E}(Q^{\mathrm{o}})$ and $\mathcal{E}^{*}(Q)$ are closely related. Indeed,
$F\in \mathcal{E}^{*}(Q)$ is infinitely divisible if and only if $F=I(\rho, J)$ for $p\in M(E)$ and $J\in \mathcal{E}(Q^{\mathrm{o}})$

satisfying

(5.4) $\int_{E}\rho(\mathrm{d}x)\lambda_{t}(x, \cdot)\leq\rho$ and $\int_{E}\rho(\mathrm{d}x)L_{t}(x, \cdot)+JQ_{t}^{\mathrm{o}}\leq J$ .

Under the condition (2.8), $F\in \mathcal{E}^{*}(Q)$ is infinitely divisible if and only if $F=I(0, J)$ for
some $J\in \mathcal{E}(Q^{\mathrm{o}})$ .

Let $J\in \mathcal{E}(Q^{\mathrm{o}})$ . Then $I(\mathrm{O}, ])\in \mathcal{E}^{*}(Q)$ . The corresponding stationary immigration
process may be constructed as follows. It is well-known that $J$ has the Riesz type
decomposition $J=J_{i}+J_{p}$ , where $J_{i}\in \mathcal{E}_{i}(Q^{\mathrm{o}})$ and $J_{p}\in \mathcal{E}_{p}(Q^{\mathrm{o}})$ . Moreover, $J_{p}$ may be
represented as $J_{p}= \int_{0}^{\infty}H_{t}\mathrm{d}t$ , where $H\in \mathcal{K}(Q^{\mathrm{o}})$ is given by

(5.5) $\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})H_{t}(\mathrm{d}\nu)=\mathrm{Q}^{J}\{1-\mathrm{e}^{-w_{\alpha+t}};0(f)<\alpha<1\}$ .

See Fitzsimmons and Maisonneuve (1986). Let $\mathrm{Q}^{J}$ be the Kuznetsov measure on
$W(M(E))$ determined by $J$ . Let $N^{J}(\mathrm{d}w)$ be a Poisson random measure with inten-
sity $\mathrm{Q}^{J}(\mathrm{d}w)$ and define

(5.6) $Y_{t}^{J}= \int_{W(M(E))}w_{t}N^{J}(\mathrm{d}w)$ , $t\in R$ .

As for the proof of Theorem 3.2 one may show that $\{Y_{t}^{J} : t\in R\}$ is a stationary im-
migration process having one-dimensional distribution $I(\mathrm{O}, J)$ and transition semigroup
$(Q_{t}^{H})_{t\geq 0}$ given by

$\int_{M(E)}\mathrm{e}^{-\nu(f)}Q_{t}^{H}(\mu, \mathrm{d}\nu)$

(5.7)
$= \exp\{-\mu(V_{t}f)-\int_{0}^{t}\mathrm{d}s\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})H_{s}(\mathrm{d}\nu)\}$ .

The Kuznetsov measures determined by $J_{i}$ and $J_{p}$ are restrictions of $\mathrm{Q}^{J}$ to $\{w\in$

$W(M(E))$ : $\alpha(w)=-\infty\}$ and $\{w\in W(M(E)) : \alpha(w)>-\infty\}$ respectively; see Fitzsim-
mons and Maisonneuve (1986). Then

$Y_{t}^{(p)}= \int_{W(M(E))}w_{t}1_{\{\alpha>-\infty\}}N^{J}(\mathrm{d}w)$, $t\in R$ ,
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defines a stationary immigration process having transition semigroup $(Q_{t}^{H})_{t\geq 0}$ and one-
dimensional distribution $I(0, J_{p})$ . Intuitively, $\{Y_{t}^{(p)} : t\in R\}$ is the “purely immigrative”
part of the population. On the contrary,

$Y_{t}^{(i)}= \int_{W(M(E))}w_{t}1_{\{\alpha=-\infty\}}N^{J}(\mathrm{d}w)$ , $t\in R$ ,

is a stationary Markov process with semigroup $(Q_{t})_{t\geq 0}$ and one-dimensional distribution
$I(0, J_{i})$ , which represents the “native” part of the population.

Suppose that $T$ is an exact terminal time for $X$ . That is, $T$ is a $(\mathcal{G}_{t})$-stopping time such
that (i) $t+T(\theta_{t}\omega)=T$ for $\mathrm{a}\mathrm{U}t$ and $\omega$ with $t<T(\omega)$ and (ii) $T( \omega)=\downarrow\lim_{t\downarrow 0}[t+T(\theta_{t}\omega)]$

for every $\omega\in W$ . Assume that $T([0])=\infty$ . For $J\in \mathcal{E}(Q^{\mathrm{o}})$ , we may define the
balayage $R_{T}J\in \mathcal{E}(Q^{\mathrm{o}})$ as in Getoor (1990). The birthing and truncated shifl operators
$\{b_{t} : t\in R\}$ and $\{\theta_{t} : t\in R\}$ on $W(M(E))$ are defined by

(5.8) $\{$

$b_{t}w_{s}=w_{s}$ if $s>t$ and $b_{t}w_{s}=0$ if $s\leq t$ ;
$\theta_{t}w_{s}=w_{t+s}$ if $s>0$ and $\theta_{t}w_{s}=0$ if $s\leq 0$ .

Clearly, $W$ is isomorphic to {$w\in W_{0}(M(E))$ : $w_{\alpha+}$ exists in $M(E)$ }. Using this
isomorphism, we define a $(\mathcal{H}_{t})$-stopping time $T$ on $W(M(E))$ by

$T(w)= \downarrow\lim_{t\downarrow\alpha}[t+T(\theta_{t}w_{+})]$ ,

where $\theta_{t}w_{+}\in W$ is defined by $\theta_{t}w_{+s}=\theta_{t}w_{s+}$ . Then the pure excessive part $(R_{T}J)_{p}$ of
$R_{T}J$ may be represented as $(R_{T}J)_{p}= \int_{0}^{\infty}R_{T}H_{t}\mathrm{d}t$ with

$R_{T}H_{t}(F)=\mathrm{Q}^{J}\{F(w_{T+t});0<T<1\}$ .

By Getoor (1990; 7.5, 7.9) we have

(5.9) $\mathrm{Q}^{R_{T}J}\{G(w)\}=\mathrm{Q}^{J}\{G\circ b_{T}(w);T<\beta\}$ .

The next theorem follows from (5.7) and (5.9) immediately.

THEOREM 5.2. Define $\{b_{T}Y_{t}^{J} : t\in R\}$ by

(5.10) $b_{T}Y_{t}^{J}= \int_{W(M(E))}b\tau w_{t}N^{J}(\mathrm{d}w)$ , $t\in Bl$ .

Then $\{b_{T}Y_{t}^{J} : t\in R\}$ is a stationary immigration process $h$aving one-dimensional
distribution $I(\mathrm{O}, R_{T}J)$ and the transition semigroup $(Q_{t}^{T})_{t\geq 0}$ whose Laplace functiollal
is given by the right hand side of (5.7) with $R_{T}H_{t}$ in place of $H_{t}$ .

Imagine a situation in which the realistic immigration is given by $\{Y_{t}^{J} : t\in R\}$ .
Suppose that the immigrant $w\in W(M(E))$ is first found not at the entering time $\alpha(w)$

but only at the random time $T(w)\geq\alpha(w)$ . Then Theorem 5.2 asserts that the observed
process $\{Y_{t}^{J} : t\in R\}$ is still a stationary Markov process.
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The immigration processes defined by (5.6) or (5.10) are usually not right continuous,

but they may have right continuous modifications. For $w\in W(M(E))$ , we set

$\{$

$w_{t+}= \lim_{s\downarrow t}w_{s}$ if the limit exists in $M(E)$ ,

$w_{t+}=0$ if the above limit does not exist in $M(E)$ ,

and define the process $\{^{0}Y_{t}^{J} : t\in R\}$ by

(5.11) $0Y_{t}J= \int_{W(M(E))}w_{t+}N^{J}(\mathrm{d}w)$ , $t\in R$ ,

Since $\mathrm{Q}^{J}\{w_{t+}\neq w_{t}\}=\mathrm{Q}^{J}\{\alpha=t\}=0$ , we have $0Y_{t}^{j}=Y_{t}^{J}\mathrm{a}.\mathrm{s}$. for every $t\in R$ . In
other words, $\{^{0}Y_{t}^{J} : t\in R\}$ is a modification for $\{Y_{t}^{J} : t\in B\}$ .

THEOREM 5.3. Suppose that $X$ is a $(\xi, \phi)$-superprocess.
(i) If $J\in \mathcal{E}_{i}(Q^{\mathrm{o}})$ , then $\{^{0}Y_{t}^{J}\equiv \mathrm{Y}_{t}^{J} : t\in R\}$ is $a.s$ . right continuous.
(ii) If $J\in \mathcal{E}_{p}(Q^{\mathrm{o}})$ is a meas $u\mathrm{r}e$ potential, that is,

$\int_{M(E)^{\circ}}(1-\mathrm{e}^{-\nu(f)})J(\mathrm{d}\nu)=\int_{0}^{\infty}\mathrm{d}s\int_{M(E)^{\circ}}(1-\exp\{-\nu(V_{s}f)\})G(\mathrm{d}\nu)$,

where $\nu(1)G(\mathrm{d}\nu)$ is a finite measure on $M(E)^{\mathrm{o}}$ , then $\{^{0}Y_{t}^{J} : t\in R\}$ is $a.s$. right
continuous.

PROOF: Since (i) is easy, we only give the proof of (ii) here. For $k=1,2,$ $\cdots$ let

$W_{k}(M(E))=\{w\in W(M(E)) : w_{\alpha+}(E)\geq 1/k\}$ .

By Fitzsimmons and Maisonneuve (1986) the path $\{w_{t+} : t\in R\}$ is right continuous
for $\mathrm{Q}^{J_{-}}\mathrm{a}.\mathrm{a}$. $w\in W(M(E))$ and $\mathrm{Q}^{J}([\bigcup_{k=1}^{\infty}W_{k}(M(E))]^{c})=0$. Define

$0_{Y_{t}^{(k)}}= \int_{W_{k}(M(E))}X_{t}(w, \cdot)1_{\{\alpha(w)\geq-k\}}N^{J}(\mathrm{d}w)$, $t\in R$ .

Clearly, $\{^{0}Y_{t}^{(k)} : t\geq-k\}$ is a Markov process in $M(E)$ with semigroup given by

$\int_{M(E)}\mathrm{e}^{-\nu(f)}Q_{t}^{(k)}(\mu, \mathrm{d}\nu)=\exp\{-\mu(V_{t}f)$

$- \int_{0}^{t}\mathrm{d}s\int_{M(E)}(1-\mathrm{e}^{-\nu(V_{s}f)})1_{\{\nu(E)\geq 1/k\}}G(\mathrm{d}\nu)\}$ .

Observe that for each $l>-k$ the process $\{^{0}Y_{t}^{(k)} : -k\leq t\leq l\}$ is $\mathrm{a}.\mathrm{s}$ . a finite sum of

right continuous paths and $0Y_{t}^{(k)}arrow 0Y_{t}^{J}$ increasingly as $karrow\infty$ , so the result follows
as Theorem 4.1 in Li (1996b). I
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THEOREM 5.4. Suppose that $X$ is a $(\xi, \phi)$ -superprocess. Let $J\in \mathcal{E}(Q^{\mathrm{o}})$ and let { $Y_{t}^{J}$ :
$t\in R\}$ be defined by (5.6). For $r>0$ set

$r_{Y_{t}^{J}=} \int_{W(M(E))}w_{t}1_{\{t\geq\alpha+r\}}N(\mathrm{d}w)$, $t\in R$ .

Then $\{^{r}Y_{t}^{J} : t\in R\}$ is an $a.s$. right continuous stationary immigration process $md$

$rY_{t}^{J}arrow Y_{t}^{J}$ increasingly $a.s$. as $r\downarrow \mathrm{O}$ for $e\mathrm{t}^{7}eryt\in R$.

PROOF: Clearly, $JQ_{r}^{\mathrm{o}}\in \mathcal{E}(Q^{\mathrm{o}})$ and

$JQ_{rp}^{\mathrm{o}}=J_{i}+ \sqrt Q_{r}^{\mathrm{o}}=J_{i}+\int_{0}^{\infty}H_{r}Q_{s}^{\mathrm{o}}\mathrm{d}s$.

Using (3.1) one may check that the Kuznetsov measure on $W(M(E))$ determined by
$JQ_{r}^{\mathrm{o}}\in \mathcal{E}(Q^{\mathrm{o}})$ is the image of $\mathrm{Q}^{J}$ under the mapping $\{w_{t} : t\in R\}\mapsto\{w_{t}1_{\{t>\alpha+r\}}$ : $t\in$

$R\}$ . It follows that $\{^{r}Y_{t}^{J} : t\in R\}$ is a stationary immigration process corresponding to
$JQ_{r}^{\mathrm{o}}$ . By Theorem 5.3, $\{^{r}Y_{t}^{J} : t\in R\}$ is $\mathrm{a}.\mathrm{s}$ . right continuous. Now the desired result
is immediate. 1
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