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An example of random snakes by Le Gall and its applications

#D €= Shinzo Watanabe, Kyoto University

1 Introduction

The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to
construct a class of measure-valued branching processes, called superprocesses or
continuous state branching processes ([Da], [Dy]). A main idea is to produce the
branching mechanism in a superprocess from a branching tree embedded in excur-
sions at each different level of a Brownian sample path. There is no clear notion
of particles in a superprocess; it is something like a cloud or mist. Nevertheless,
a random snake could provide us with a clear picture of hlstorlcal or genealogical
developments of ”particles” in a superprocess. : ‘

In this note, we give a sample pathwise construction of arandom snake in the case
when the underlying Markov process is a Markov chain on a tree. A simplest case
has been discussed in {War 1] and [Wat 2]. The construction can be reduced to this
case locally and we need to consider a recurrence family of stochastic differential
equations for reflecting Brownian motions with sticky boundaries. A special case
has been already discussed by J. Warren [War 2] with an application to a coalescing -
stochastic flow of piece-wise linear transformations in connection with a non-white
or non-Gaussian predictable noise in the sense of B. Tsirelson.

2 Brownian snakes

Throughout this section, let £ = {£(¢), P;} be a Hunt Markov process on a locally
compact separable metric space S endowed with a metric dg(-,*). In examples
given in later sections, we mainly consider the case when £ is a continuous time
Markov chain on a tree, however. We denote by D([0,00) — S) (D([0,u] — S))
the Skorohod space formed of all right-continuous paths w : [0, 00) (resp. [0,u]) —
S with left-hand limits (call them simply cadlag-paths) endowed with a Skorohod
metric d(w, w') and dy,(w, w'), respectively (cf. [B]).

In this section, we recall the notion of Brownian ¢- snake due to Le Gall ([Le 1],
[Le 2]). It is defined as a diffusion process with values in the space of cadlag stopped
paths in S so that we introduce, first of all, the following notations for several spaces
of cadlag paths in S and cadlag stopped paths in S:

(i) forz € S, W,(S) = {w € D([0,00) — S’) | w(0) =z},



(iii) for z € S,

WetP(S) = {w = (w,t) | t € [0,00), w € Wy(S) such that w(s) = w(sAt) },

(iv) WP (S) = Usens W5 P(5)-

For w = (w,t) € W*P(M), we set ((w) = ¢ and call it the lifetime of w. Thus we
may think of w € W*(S) a cadlag path on S stopped at its own lifetime ¢ (w).
We endow a metric on W*%?(S) by

C(w1)AL(w2)
(w1, w3) = ds(un(0), wa(0)) + [¢w1) — C(wa)l + [ Ll uf)du

where w(* is the restriction of w € W(S) on the time interval [0,u]. Then, W*P(S)
is a Polish space and so is also W#(S) as its closed subspace (cf. [BLL]).

2.1 Snakes with deterministic lifetimes

Let z be given and fixed. For each 0 < ¢ < b and w = (w,((W)) € WteP(S) such
that a < ((w), define a Borel probability Q¥,(dw’) on W*(S) by the following
property:

(i) ¢(w') = b for Qy-a.a. W',
(i) w'(s) = w(s),s € [0,a], for Qyp-a.a. W',

(iii) under QY,, the shifted path {(w')$(s) = w'(a+s),s > 0} is equally distributed
as the stopped path {£(s A (b — a)),s > 0} under Pyq).

Let ((t) be a nonnegative continuous function of ¢ € [0,00) such that ((0) = 0.
Define, for each 0 < t < ¢’ and w € W2%P(S), a Borel probability P(t, w;1', dw') on
WZP(S) by

P(t,w;t',dw') = ch[t,t’],g(t’)(dwl) (1)

where

T #1 — v
mét,t] trsl}gtlg(u).

It is easy to see that the family {P(¢,w;t',dw’)} satisfies the Chapman-Kolmogorov
equation so that it defines a family of transition probabilities on Wtor(S). Then, by
the Kolmogorov extension theorem, we can construct a time inhomogeneous Markov
process X = {X! = (X*(-),{(t))} on W:P(S) such that X° = x where x is the
constant path at z: x = ({z(-) = z},0). Note that ¢(X*) = ((¢). If {(?) is Holder-
continuous, then it can be shown that a continuous modification in ¢ of X exists
(cf.[Le 1], [BLL]). In the following, we always assume that ¢(t) is Holder-continuous
so that X! is continuous in ¢, a.s..

Definition 2.1. The W*?(S)-valued continuous process X = (X*) is called the
¢-snake starting at © € M with the lifetime function ¢(t). Its law on C([0,00) —
W:tr(S)) is denoted by P.



We can easily see that the following three properties characterize the £-snake starting
at x € M with the lifetime function {(t):

(i) ¢(X*) = ¢(t) and, for each t € [0, 00),
Xt:s€e[0,00) = X'(s) e S
is a path of ¢-process such that X*(0) = z and stopped at time ((t),

(ii) for each 0 <t < ¢,

XY(s) = XU(s), se[o,me[s,t]],

(iii) for each 0 <t < ¢, {X¥(s);s > mf[t, ]} and {X*(:);u < t} are independent
given X* (mS[t, t]).
2.2 Brownian snakes

In the following, we denote by RBM*([0,0)) a reflecting Brownian motion R =
(R(t)) on [0, 00) with R(0) = z.

Definition 2.2. The Brownian {-snake X = (X!) starting at z € S is a W2tP(S)-
valued continuous process with the law on C([0,00) — W2%P(S)) given by

) = ¢()\PE
P, () /C([Om)ﬁ[o’w))‘mop () @

~where PF is the law on C([0, c0) — [0,00)) of RBM°([0, >0)).
It is obvious that X° = x, a.s..
Proposition 2.1. ([Le 1], [BLL]) X = (X*) is a time homogeneous diffusion on
W:tr(S) with the transition probability
Ptw,aw)= [ 0f*)(da,a)Quylaw) 3)
0<a<b<oo ’
where ©;™) (da, db) is the joint law of (ming<,<; R(s), R(t)), R(t) being RBM‘™)([0, 00));
explicitly,
2(¢(W) +b—2a) _cwts-20?

0™ (da, db e S PR 4
t ( ) \/W {0<a<bA((w)} ( )
w)hb)2
+ EB—S«%L 1{O<b}60 (da) db.

7t

The lifetime process ((t) := ((X') is a RBMO([O, 00)) and, conditioned on the
process ¢ = (((t)), it is the &-snake with the deterministic lifetime fuction ((t).

Remark 2.1. The term ”Brownian” in a Brownian snake indicates that its branch-
ing mechanism is Brownian, that is, its lifetime process is a reflecting Brownian
motion, not that its underlying Markov process is Brownian; it can be an arbitrary
Markov process.



2.3 The snake description of superprocess {u(t), P,}

Let z € S and X = (X*) be the Brownian &-snake starting at z. Then ((X*) is a
RBM?®([0,00)). Let

(t,a) = hm— / Lg.ate)(C(X?))ds (5)

elo 2

be its local time at a € [0, 00).

Let Mp(S) be the space of all finite Borel measures on S with the topology of
weak convergence and Cy(S) be the space of all bounded continuous functions on S.
Introduce the usual notation

/f u(dz), pe Mp(S), f€CuS).

Let (u(t), P,) be the (¢, ¥(z, z) = —z?)-superprocess ([Da],[Dy]): It is a diffusion
process on Mp(S) with the branching property of which the log-Laplace functional

u(t,z) = —logEs [exp(—(u(t), f))l, t>0, z€S,
is the solution to the initial value problem

3u_

o= Lu+y(ou), u(0+,) =,

where L is the generator of £&. Then, for ¥ > 0 and z € S, the process u(t) under
P,s, can be constructed from the Brownian {-snake X = (X*) starting at z in the’
following way: Define u(t) € Mp(S),t > 0, by

171(7,0)
W, = [ F(XNUds1), £ € CuS), ©)
where (X) = X*(¢(X*)) € S: the position of X! stopped at its lifetime ((X*) and

174(7,0) = inf{u | I(u,0) >~}
Theorem 2.1. (Le Gall [Le 1], [Le 2]) {u(t)} defined by (6) is exactly the
(€,v(z,2) = —z%)-superprocess {p(t)} under P,.;,.

3 ¢-snake where £ is a Markov chain on a tree

3.1 The case that ¢ is trivial

The s1mplest case of Brownian £-snakes is when the state space S of the underlying
motion & = {&} consists of a single point: S = {a}, so that ¢ is a trivial motion
& = a. In this case, the snake can be identified with its lifetime so that it is a
reflecting Brownian motion R = (R(t)) on [0, c0) with R(0) = 0.



3.2 The case that ¢ is a holding time process

The next simplest case was studied in [Wat 2] (cf. also [War 1]). This is the case
when S = {a, b}, the state b being a trap, so that

a, 0<t<e
.é(t)“{b, t>e ’

where e is an exponential holding time with parameter 6, i.e., with mean 1/6. In
this case, the snake X = (X*) which starts at the constant path at a moves in the
following subspace W of WtP(S):

W={wy,; z=y=00r0<z<y<o0}
where Wi, € WiP(S) is defined by
(i) wyo,0) = a: the constant path at a,
(ii) for z > 0, Wiz0) = (w, {(W[s,2))) Where w(t) = a and ((W4)) = =,

(iif) for 0 <z <y, Wizy) = (w, ((W[gy))) Where

a, 0<t<z
w(t):{b t>z

and ((Wigy)) = ¥
Then, W =2 D := {(0,0)} U{ (z,9) | 0 < z <y < oo } and the topology coincides
with the relative topology of R2.
For a given constant # > 0 and a Brownian motion (B;) on R with By = 0 (denote
it simply by BM°(R)), consider the following stochastic differential equation:
6
dXt = 1{Xt>()}dBt + El{thg}dt, X() =T 2 0. (7)
Let
Ri=B;+L;, Li=-— olélshglt B, (8)

so that R; is RBM?°([0,00)) and L; is its local time at 0 thus giving its Skorohod
decomposition of R, (cf. [IW], p.120).

Theorem 3.1. (1) The SDE (7) has a solution X = (X;) such that X; > 0 for all
t. Furthermore, the law of the joint process (By, X;) is uniquely determined.

" (2) Let (B, X;) be a solution of (7) with X, = 0 and set
X9 =R, and X =X,

where R, is given by (8). Then, with probability one, it holds that
XV <x® forall t>0

and that
XM =x implies XV =x =0.



The second part of the theorem implies that, if we set
zo=X{" - X" and y =X, (9)
then, with probability one, (z;,y:) € D for all ¢ > 0.

Theorem 3.2. ([War 1],[Wat 2]) The Brownian &-snake X = (X?) starting at a is
given by
Xt = Wize,p]

where (z,y:) is given by (9).

Proof of Theorem 3.1. The uniqueness of solutions for equation (7) can be
deduced in the usual way as follows (cf. [IW]). Let (B, X;) satisfy the equation (7).
It is easy to see that X; > 0 for all ¢ > 0, a.s.. Set A; = f§ 1(x,>0yds and A;"' be
the right-continuous inverse of t — A;. Then

A7t
W, = / 1x,>0pdB, is BM°(R) and X, =z +W:+d
0 t ‘

where
| 0 A
(bt = -2—/0 1{Xs=0}d3-

This is a Skorohod equation (cf. [IW], p.121) so that X, := X 4,1 is RBM°([0, c0))

and ¢; is the local time at 0 of E X, and ¢; are uniquely determined from W; as
¢r = —infocs<t(z + W,) A0 and X; = W; + ¢;. Sincet = A;+ 1N 1{x,=0}ds, we have

t

2
Al =t+ 5¢t'

Let a; = [; 1{x,=0}ds. By Knight’s theorem ([IW], p.86), W; := f;t—l lix,=0)dB; is
a BM°(R) which is independent of W = (W;). Then,

t t —_—
B, = /0 1(x,>0)dB, + /0 1(x,~0ydB, = Wa, + Wa,.

Also, we have

2
at:t——At: 5¢At'

In summing up the above discussions, we can deduce that the joint process
(B(t), X:) is uniquely determined from two mutually independent BM ‘R)ys W =
(W;) and W = (W) as follows:

=~ 2
X =1z + Wi+ ¢, A{1=t+§¢t, A, = the inverse of t — A7}

2 —~ —
at:t—At:5¢At, Xt:XA” Bt:WAt+Wat-

This clearly implies the uniqueness in law of the process (B, X;)-



Conversely, given two mutually independent BM°(R)’s W and 1717, if we define
(B, X;) as above, then we can show that it satisfies the equation (7). This proves
the first part of the theorem.

For the proof of the second part, we consider the process (B, X;) satisfying (7),
X; > 0for ¢t > 0 and X, = 0. Using the same notations as above, set

St . Wt - —g—t

Then we have
¢ 9 rt
X, = /0 1ix,50ydBs + §/0 1(x,0yds
= Bt — /Ot I{Xs:b}st -+ g/ot I{sto}ds = Bt - Sat'

Set _
_S-t = St + Kt, where Kt = — inf Ss,

0<s<t

so that S; is a reflecting Brownian motion with drift gt towards the origin. For R;
and L; defined by (8), we have, therefore,

thBt—Sat:Rt—Lt—gat‘FKat

and we can show that L, = K,, (cf. [War 1]) so that we have finally

Xt - Rt - Sat.

This proves that X;(= t(l)) < R(= Xt(o)).
Next we show that X; = R; implies that X; = 0. We have seen above that

R, — X; =S,

where a; = [; 1{x,~0jds. Note that the processes (X;) and (S;) are mutually inde-
pendent because of the independence of W and W. Let £ = {¢t| S, =0 }. If
C = {an} C (0,00) is a deterministic countable set, then

PCNZ#D) <Y Pla, € 2) =3 P(S,, =0) =0. (10)

Let
{te(0,00]X>0}=[0,00\{t] X =0}=ea

where {e,} is a countable family of disjoint open intervals. Since a; is constant
(:= fB,) on each interval e,

D:{at|t€Uea}:{ﬁa}



is a countable set. The random sets D = {,} and Z are mutually independent
because processes (X;) and (S;) are mutually independent. Hence, by the Fubini
theorem and (10), we have

PMDNZ#0)=0, ie. PONZ=0)=1,
which implies that, almost surely,
X;>0=135,, >0, equivalently, R;—X;=0= X;=0.

Proof of Theorem 3.2 We remarked above that £-snake X = (X*) starting at a
is given by
X' = Wizt

where (x4, y;) is a diffusion process on D starting at (0,0). If we set
Xe=y—z and Ry=y,
then (X;, R,) is a diffusion process on D = {(0,0)}U{ (A,0) |0< A <o <00}
starting at (0,0) and, by (3), its transition probability is given explicitly as follows:
plt, (o), dNdo’) = [ ©7(da, db)gl” (ANdo),
0<a<b<oo ’

where

g0 (dNdo')

L{o-r<a} * 0o oA (dX) - 0y(do”’)

Lio-x>a} - Ljo<n<or—a} 0 - e =N=a) L g)' . 6y (do’)
Lig_aza) - €277 - §o(dX') - 6p(do”).

+
_+_
Here ©¢(da,db) = P,(ming<s<; R(s) € da, R(t) € db), P, being the probability law

governing the standard reflecting Brownian motion R = (R(t)) with R(0) = o: It is
glven explicitly by

2(0 +b— 20,) (cr+b za)2

@g (da, db) \/ﬁ 1{O<a,<b/\a} dadb
2 o b 2
+ -—t- —eRe 1{0<b}50 (da)d

T

From this explicit expression, we can prove directly that R; is a RBM([0, c0)) and
that, if R, = B; + L, is the semi-martingale decomposition (indeed, the Skorohod
decomposition) of Ry, then (X}, B;) satisfies SDE (7) (cf. [DS]).

3.3 The case that £ is a Markov chain on a tree.

Here, we only consider a tree without terminating branches, for simplicity. By a
tree, we mean a collection S of finite sequences a; - - - an, of positive integers with
the following properties:



(1) 1€ 8S.
(2) a1---apm € S =>a; =1.

(3) If a1---an € S, then there exists a positive integer 1 < N := N(ay---an)
such that

a1 Amame1 €S ifand only if 1 <a, <N.
In particular, a; ---a,,1 € S.

Thus, S consists of
1, 11,12,...,1N(1), 111,112,...,11N(11), 121,122,...,12N(12), ...,.

Forr=a,---an €S, weset A(T) ={ a1 amams1 | 1 < a1 < N(7) } and call
n € A(T) a child of 7 so that A(7) is the set of all children of 7. 1 € S is called
the root of S.

Let a tree S be given and fixed. S is a countable set and we endow on it the
discrete topology. Suppose we are given the following quantities:

(1) 6(r) >0 for 7€ S.
(2) m(r,n)>0forT€ Sandnye A(7) such that
> w(r,p) =1, Vres.

neA(T)

Then a Hunt Markov process £ = (&) on S starting at the root 1 can be determined
as follows. & = 1 and stays at 1 during the exponential holding time with parameter
(1), (i-e., with wean 1/6(1)). Then it jumps to 7 € A(1) with probability « (1, 7).
Then it stays at 7 during independent exponential time with parameter (7) and
then jumps to n € A(7) with probability (7, 7), and so on. _

We are interested in the Brownian £ snake X = (X;) starting at the constant path
at the root 1, particularly in its sample paths structure. As we shall see, the sample
paths of the snake can be constructed by applying recurrently the construction given
in the previous subsection.

Step 1. We construct (Xt(o),Xt(l)) € [0,00)% with (Xéo), Xél)) = (0,0) in the same
way as in subsection 3.2: For a BM°(R) B,

() _ o
X, =By+L;, where L;= olggfgt B;. (11)
and , o(1) [
(1 _ ,
Xt —/0 1{Xs(1)>0}st =+ T/() 1{X§1)=0}d3' (12)

We have seen above that the law of the joint process (Xt(o), Xt(l)) is uniquely deter-

mined and that, with probability one,

X0 >xP, and, X{”=x{" = x{”=x"=0. (13)
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Set
nV=1¢8. (14)

Step 2. For each sample path of Xt(l), define
0,000\ {t| X" =0}={Je’

where {e(D} is a family of disjoint open intervals. Each e()) is called an ezcur-
sion interval of X" away from 0. Given the joint process (X©, XM n®), we
set up a family {p()} of A(1)(C S)-valued random variables, indexed by excur-
sion intervals {e{}, which are mutually independent (under the conditional law
P(-]X©, X1 n(®)) and identically distributed as

P =7 XO XD 0Oy = 7(1,7), 7€ A(1).
Define n{", t € [0,00) \ { t | XV =0}, by
) =p) teel | (15)

Thus, we have defined the joint process (X©, X1 n(® n()) on [0,00)% x S2. Note
that n(t) = (ngl)) is defined only for such ¢ that ¢t > 0 and Xt(l) > 0.

Step 3. By repeating a same argument as in subsection 3.2, we can show that
there exists a joint process (X©, XM X®) n® n1) on [0,00)% x S? such that

(i) The process (X©@, X1 n® nM) on [0,00)? x S? has the same law as that
given in Step 2. '

(i) If B, is defined by (11), then (X©®, X®) X @ n(® n) satisfies SDE (12) and
the following SDE combined together:
x® = [ dB, + t0( (1)1 d (16)
t T Jy x®>0xP>01%Ps T g g Ms ") L xMs0,xP =035
Furthermore, the law of the joint process (X©, X, X® n(® n(1) is uniquely de-
termined. Also, we can show that, with probability one,
XV > x®, and, XM =x? = x"=x7=0. (17)

?

Step 4. For each sample path of Xt(2), define

[0,00) \ {#| x® 20}=Ue(;)
8

where {eg)} is a family of disjoint open intervals. Each eg) is called an ezcursion
interval of Xtm away from 0. Since Xt(l) > Xt(z), each excursion interval e,(;) is
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contained in exactly one excursion interval e{l) of X). Given the joint process
(XO, XxO X@ n0) nM) we set up a family {pg)} of S-valued random variables,
indexed by excursion intervals {eg)} of X® which are mutually independent (under
the conditional law P( - | X©@ XM X® 50 »n1))) and distributed as

P(pP =7 |XO, X0, X® 50 n®) =x(o{,7), 7 e A(pd),

(v is determined by the unique excursion interval e{}) of X! containing e(ﬂz)). Define
ni, t € [0,00)\{t| X =0}, by
n® = pE,Q), te eg). (18)

Thus, we have defined the joint process (X, X1 X @ n©) n1) n() on [0, 00)3 x
S3. Note that n(® = (ngz)) is defined only for such ¢ that ¢ > 0 and X? > 0.

Step 5. Again repeating a same argument, we can show that there exists a joint
process (X, X x @ xG) n0) n® n) on [0,00)* x S such that

(i) The process (X©@, X X @ n0 n1) n?) on [0,00)% x S* has the same law
as that given in Step 4.

(ii) If B; is defined by (11), then (X, X X@) X nO n1) n?) satisfies SDE
(12), SDE (16) and the following, combined together:

. : | t ; ' l )
‘(t( ) = / {“(.gl)>0a}<£2)>OaX§3)>0}st ’ 2 / 0(”-(9 )): {)(§1)>07X.£2)>0:4‘(§3)—0} )
0 (19)

Furthermore, the law of the joint process (X, XM X X®) n0 n) n@) js
uniquely determined. Also, we can show that, with probability one,

X?>x® and, XP=xP = x?=x"=o. (20)

We continue these steps recurrently. Then we obtain the following joint process
(XO, X0, x® X ... 50 0 5@ 56 ).

ngk) is S-valued and it is defined for such ¢ that ¢ > 0 and Xt(k) > 0. We have also
that, with probability one,

X0 >xP > x>

and
ng) _ t(k+1) . Xt(k) _ Xt(k+1) — =0

Hence, we have that, with probability one,
X0 > XM > o> xP > xFY = X =... =0, for some k > —1

or
X0 > xP > .5 xMs xS s,
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Definition 3.1. Define N, = k V 0 in the first case and N; = oo in the second case.
Proposition 3.1. For each fixed t > 0, P(N; < o0) = 1.

The proof is given by Warren ([War 2]) in the case (7) is constant and it can be
modified to the general case.

For given n > 1, 29 > 0,2, > 0,...,%, > 0 and 79 = 1,71,...,7, € S such that
m € A(Tk_1), K =1,2,...,n, we define a path w € D([0,00) — S) by

'1, OSt<.’l'0
T1, To Lt < Zo+ T

wlt) = | e

.-
Tn—1, Lo+ X1+ F+Tpo<t<To+x1+ "+ Tp
Tn, t>xzo+x1+- 0+ Tp-1-

Then we define w = (w, {(w)) € W{'(S) by setting
C(W) =$0+.Z'1+"'+$n

and denote it by Wz, ..z0i70,.0m) -
We now define, from the joint process (X, XM ... n©® nM) ...} constructed
above, a W' (S)-valued process

X : [0,00) 3t —> X' € Wi(S)
in the following way:
(i) When X =0, ie., when x = Xt(l) =... =0, we set

X! =1; the constant path at 1 € S.

(i) When X9 >0and N, =k, i.e., when
XO 5 x® 55 x® 5 xED _ xF g

we set

Xt =W 0 1 1 2 k 0 1 k)y -
(XO_xD xO_x@ _ xH); nO p 1) 0y

Theorem 3.3. X = (X!) defines a diffusion process on W3*?(S) and it coinsides
with the Brownian &-snake starting at 1.

The proof can be reduced, locally, to that of Theorem 3.2: namely, in each excursion
interval of X1, for example, we can deduce that Xt(z) satisfies the equation (16)
and so on. Details will be omitted.
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4 Some applications

4.1 A theorem of the Ray-Knight type

Consider a simple case of S = {1,11,111,...}, i.e., A(7) = {r1} for all 7. We
identify

m
——
_1"'165

with the integer m — 1 so that the root 1 is now denoted by 0. Then the above joint
process (X(©@, XM ... ) is uniquely determined (in the law sense) by the following
system of SDE’s:

Xt(o) =B;+ L;, where L;=— inf B,
0<s<t

¢ 0(0) rt
Xt(l) = /1{X(1)>0}dBS+Q/ l{Xs(l):O}ds’

1 t
X = / Lo, x®50y4Bs + ()/ Lix®50,x 20y 35

k 6k -1
Xt() = /1 xW¥so,.. xF 1)>0X<’°>>0}dB + ( D) )/0 1{X§1>>0,...,X§’°‘”>0,X§’“):o}ds’

X© is a RBM°([0, 00) and let l(t a) be its local time at a:

I(t,a) = lim — / Lia,ate) (X5 7"))ds.

el0 2

Set, for v > 0,

1=1(1,0)
P = [ Ll ) £20, k=0,1,....
0

Then we have

Theorem 4.1.  The joint process (ug ),,ugl), --+) defines a diffusion process on

[0,00)™ starting at (v,0,0,---) uniquely determined by the strong solution of the
following SDE:

dl® = V2u®vo-al® —6(0) - uVdt,
) = PV + (000)- 10 o) - )

..’

du? = Vopl vo-db? + (0(k — 1) p* TV — 0(k) - ") at,

where b°, 6", ... ¥ ... are mutually independent BM°(R)’s.



4.2 Construction of a coalescing stochastic flow

The following application is due to Warren ([War 2]).
For a,b,c € Rsuchthat b>0, a+b>0, 0 <c<a+b, define a transformation

hape: [0,00) D T hype(z) € [0,00)

by
z+a, x>b
hape(@) —{ c, 0<z<b

Then, T := {hepe; 8 20, a+b >0, 0<c < a+ b} forms a semigroup of
transformations and the composition rule is given by

c, c<V

h///Oh :h,” » 9 a,,:a+al b”:bv b’—a C”“_‘ .
o’ b ¢ a,b,c a”,b”,c” > 3 ( )a c+al’ C>b’

The topology of T is defined by the Euclidean topology of the parameter (a,b,c).
We consider the same joint process (X X (1), ... ) as in the previous subsection
in which #(k) =6 >0, k=0,1,.... Hence

X9 =B, + L, where L;=— inf B,
0<s<t

and (X, X® ...} is uniquely determined (in the law sense) by the following
SDE:

w _ [ o r
X0 = [1pmagdBt g [ 1o gds

/ 1{X(”>0X(2)>o}dB + 2/ 1 (xM50,xP= o}ds

Y

X" = / L x50, x0 D50, x# 50, 4Bs + 2/ L (x50, x5V 50,x % =0} 45

2
O
1l

Define a family of T-valued random variables ¢,;, 0 <s <t, by

¢S,t - ha,b,cy a = Bt Bs; b=— lnf (B - B )) Cc= Xt(NS’t_*_l)

s<u<t
where Ns,t = infsgugt{Nu}.

Theorem 4.2. ([War 2]) The family of transformations {¢s:, 0 < s < t} is a
stochastic flow in the sense that

(i) ¢ss=1id, Vs.
(11) ¢u,t o ¢s,u = ¢s,t; Vs <u <t

(iii) If0 < s; < 53 <83 < -o, then @ 5y, Pss, " aIE independent.



(iv) (stationarity) For s <t and h >0, ¢, £ Osthtth-
(v) (continuity) For each s >0, [s,00) 3t ¢,; € T is continuous, a.s..

Obviously, the one-point motion [s,00) 3 ¢t — X; := ¢,,(x), for each z € [0, 00)
and s > 0, is a reflecting Brownian motion on [0, c0) with a sticky boundary at 0
uniquely determined (in the law sense) by SDE

0
dXt - 1{Xt>0}dBt -+ 51{Xt:0}dt, Xs =T.

If F;; is the o-field generated by ¢y, s < u < v < ¢, then the family of o-fields Fsr
generates a predictable noise in the sense of Tsirelson ([T]). A remarkable fact is that
this noise is not a Gaussian white noise, that is, there is no Wiener process W (t) (in
any dimension) which can generate F,; as F;; = o{W(v) — W(u);s <u < v < t}.

Remark 4.1. If we set

T = {fa,bb = hapo; >0, a+b> 0}

and ,
T2 = {9ap = hapate; 6> 0, a+b > 0},

then 7; and 7, are algebraically isomorphic subgroups of 7 and, if we define two
families of random transformations {¢§12, 0 < s <t} and {¢§22 , 0 < s <t} by
setting

i = fos, 881 =gas where a=B,— B, b=— inf (B,-B,),

these families are stochastic flows which generate the same Gaussian white noise
{Fs.} given by F,; = 0{B, — By;s < u < v < t}. One point motions are, for
{¢glt) }, a Brownian motion on [0, cc) with an absorbing boundary (i.e. a trap) at 0
and, for {ngzt)}, a reflecting Brownian motion on [0, c0).
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