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Formal Gevrey class of formal power series solution
for singular first order linear partial differential operators
A ZALFEHRF  (LIEREF] (Hiroshi Yamazawa)

1 Introduction

In this paper, we will study the following first order partial differential equa-
tion

Lu(z) = éaxz)aziu(z) = F(zu(2)) 1)

where z = (z1,---,2,) € C" and 9,, = 0/0z; for i = 1,---,n. We assume the
following conditions through this paper. The functions a;(z) and F'(z, u) are holo-
morphic functions in a neighborhood of the origin in C™ and C™*! respectively,
and a;(z) satisfies a;(0) =0fori=1,---,n.

There are many results for (1). Oshima [O] and Kaplan [K] studied the
existence of holomorphic solutions under some conditions.

We treat a formal power series solution for (1). If the solution converges,
then our result becomes that of [O] and [K]. Our purpose in this paper is to give
precise estimates of (1) in a formal Gevrey class via an appropriate coordinates
change for (1).

We consider three examples in case n = 2. We put

P, = (20, +1) — z12822,
P2 = (Zlazl + 1) — 23822
and .
Py =(%0,,+1)— (zf + 25)822.

The operator P; satisfies the conditions of [O] and [K] and Piu(z) = F(z,u) has
a unique holomorphic solution. '

Next we consider P» and P3;. They do not satisfy the conditions of [O] and
[K], while the equation

PQ’LL(Z) - 22

(2)

1-— 21
has a formal power series solution u(z) = ¥ ug, 5,27 25° with

(B2 — 1)!
(N (51—‘2”-—)52—:. (3)



We find that the solution diverges with respect to a variable 2o, while

B B2

21 23
Z u/Bl 3132 /62 ‘

converges in a neighborhood of the origin by (3).
Our motivation comes from the following example. We consider
2

Pyu(z) = (4)

_1—21'

We expect that (4) has a formal power series solution with similar property as in
(2). But we obtain that (4) has a formal power series solution with

un o> B2+ B)N([B1/2] + Bz — 1)Y[G,/2]!
61,82 = (,61 + 1)!ﬁ2 .

We find that this solution diverges with respect to the both variables (21, 22).
We consider the following equation

e O (5)

This equation has a holomorphic solution ¢(z;) in a neighborhood of the origin
with ¢(z1) = O(2?). For the solution ¢(z;), we change the coordinate

=1z and t = 2o+ ¢(21). (6)

Then the solution u(z) = v(z(2),t(2)) = 3 vs, 5,2°t*2 has that

P82

Z UB1,82 "ﬂT (7)

converges in a neighborhood of the origin.
In this paper, we find a good coordinate as (6) and give an estimate as (7)

for (1).

2 Notations and Main result

The sets R, C and N denote the set of all real numbers, complex numbers
and nonnegative integers respectively. Let 2z € C*, z € C™ t € C™ ™ and
y € C" ™. The set C{y}|[,t]] denotes the set of all formal power series
S lkiii0 Uk (y)zF et with coefficients {ux,(y)} holomorphic functions in a common
neighborhood of the origin.
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Definition 2.1 kLlet w(z,t,y) = Sppzo ki (y)z*t € C{y}[z, t]. If
D Ik[4H>0 ukl(y)‘l”ll—,fi is a convergent power series for d > 0, then we say that

u(z,t,y) belongs to a formal Gevrey space G,fd}(:c,t,y).
We say that d is a formal Gevrey index and ¢ is Gevrey variables with respect to

d.
We give the following two notations for the operator L.

(1)
S={z€U;ai(z)=0fori=1,2,---,n} (8)

where U is a neighborhood of the origin in C".

0z
at the origin.

o
(2) The matrix (_a(0)> denotes the Jacobian matrix of a := (a1(2), - -, an(2))

We assume that (??) satisfies the following conditions (A.1)—(A.4).
(A.1) S is a complex submanifold of codimension n; in U (1 < ny < n).

If we assume (A.1), then there exist m;-holomorphic functions ¢; = (;(2) with
G(0)=0(i=1,2,---,n;) that are functional independent each other such that

S={zelU;(z)=0fori=1,2,---,m}. (9)

(A.2) The function F(z,u) is a holomorphic function in a neighborhood of the
origin of C™ x C with F(z,0) =0 for z € S.

(A.3) Jordan normal form of (é)E(O)) is

0z
A 0 e e o -« --- 0
41 A O - 0 :
0 w2 :
J(Ap) = 0 0 (10)

0 0 fnget Ang O 0
0 -0 0 0
0 0 0




where )\; is the nonzero eigenvalues for ¢ = 1,2,---,n¢ and p; = 0 or 1 for
?::].,2,"',77,0——1 with 1 Sno < ng.

We will define the following M by using (1(2),. .., (2) in (9). Let C{z}
be the ring of convergent power series at the origin in the variables {z}. Then
we define

M= iC{z}C,(z) (11)

Therefore by (A.1), we have a;(z) e M fori=1,---,n.
We define an ideal that is constructed by some elements of M. Let m be any
positive integer and set {g1(2), -+, gm(2)} € M. Then we define

(g m} =D Clo}as (12)

By (A.3), we can take no-functions {az- ; }:il that are functional independent each
other. If we assume (A.1) and (A.3), then we have

MDODM* D> M?D--- and T{a;,, -, i, } C M. (13)

Hence there exists ¢; such that 6; := sup {d; a; € M?% mod T{a;,, -, aino}} for
each i =1,---,n. If a; € I{ay, -+, a;,, }, then we define §; := co. Then we can
define the following multiplicity 6

6= min{él, (52, crey, (Sn}

and we have
a; € M° mod T{ai,," -, } fori=1,---,n. (14)

We assume condition (A.4).

(A.4)
§>2.

Our main result in this paper is the following.

Theorem 2.2 Assume (A.1), (A.2), (A.3) and (A.4). Further assume that there
exists a positive constant o such that

XO:AZk'L —C

=1

> o(|k| + 1) for Vk = (k1, ko, -, kny) € N™
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oF
where |k| = k1 +ko+---+kn, and c= 3

—(0,0). Then we have the following two
u

results.

1) There exists a unique formal power series solution u(z) such that (77).

2) There exist local coordinates (z(z),t(2),y(z)) € C™ x CM~™ x C*"™™ in q
neighborhood of the origin such that

S ={z€ C%z(z) =0,t(z) = 0}

and

{

u(z) = U(a(2), (2), 4(2)) € G0 (2(2), t(2), u(2)).

If 6 = co then we have ng = n;. We remark that the case § = co are treated in

[O] and [K].

3 Properties of multiplicity and Estimates of
Gamma function

In this section, we give some lemmas that are needed to prove Theorem 2.2.

3.1 Properties of multiplicity ¢

We assume conditions (A.1) and (A.3), and under two conditions we show
that multiplicity ¢ is invariant under a coordinate change and independent of a
choice of ng independent functions from {ay,- - -, a,}. Hence we may assume that
{a1, -, an,} are functional independent by rewiting number. Then we put

§ := min{éy, b2, - -, 6} with §; := sup {d; a; € M?% mod T{a,,---, ano}} )

Lemma 3.1 Assume (A.1) and (A.3). Then the number § is independent of a
choice of ng independent functions from {ai,---,an}.

Lemma 3.2 Assume (A.1) and (A.3). Then the number 6 is invariant under the
coordinate change (Zy,- -, Zy).

3.2 Estimates of Gamma function

Here we show some lemmas needed in Section 4 in order to estimate formal
power series solutions.



Let p, q, r, ki, and ;€ N for i = 1,2,---,7, § > 2 and z! := I'(z + 1) for
x> 0.

Lemma 3.3 Letp+ Y ki=k, and g+ _I; =1. Then we have

=1 i=1

- <

Lemma 3.4 Let p+ ki = k and q+1; = 1. Further if p = 0, assume q > 6.

Then we have
(k+ 750!
k! '

(kl +1+4 S%Th)!
k!

< (k+1)

Lemma 3.5 Let p+ ki =k, g+ 13 =1 and ¢ > 0. Further if p = 0, assume
q > 6. Then we have

(kl + g}I(h + 1))!

O < -1k

(I +1)

Lemma 3.6 Let p+ ki = k and g+ 1y = 1. Further if p = 0, assume q¢ > 0.
Then we have
(k1 + 5i5h)!

k+ 550 1)!
k! '

S(k-+1)( .

4 Gevrey estimates

In this section, we will study a particular equation that satisfies the assump-
tions of Theorem 2.2. We show that this equation has a formal power series
solution that belongs to a Gevrey class. In Section 6, we reduce (?7) to (16) by
coodinates change and we can prove Theorem 2.2.

Let £ = (21,%2,"*,Tmy) € C™, t = (t1,t2,-++,tm,) € C™ and y =
(y1,%2, "+, Ymy) € C™2, where mg > 1. We consider the following equation

Lu = F(z,t,y,u(,t,y)), (15)

where

mo mi ma
L= {Nz + pia1ziy + ai(z,t, )} Ox, +3 bz, t,y) 0+ Y ¢z, t,y)9y, (16)
i—1

i=1 =1
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with
ai(z,t, ) = O((|z] + [t] + [y)?), cip (2, L, y) = O((lz] + [t + [y])?), (17)
ai(0,8,9) = b;, (0,4,y) = ¢;,(0,t,y) = O(|t]°) 6§ > 2, by, (x,0,9) =0
forig =1,2,-+-,mg, 11 = 1,2,---,m; and iy = 1,2, -+, mg. It follows from (17)
that .
aio(z7 t7 y) — Z a’ioap)q(y)l‘ptqv bi] (*T7 tv y) = Z bilypﬂ(y)xptq7
Ipl+1gi>1 lpl+lgl>2
Ciy (.’L‘, t, y) = Z Ciz;z’ﬂ](y)mptq
|p|+lg|>1
with

aio,OytJ(y) = bi1,0,q(y> = Ciz,O,q(y) =0 for |(I| =1,---,0—1,
Ainp0(0) = Ciypo(0) =0for |p| =1, by po(y) =0 for ¥Vp € N™.

The function F(z,t,y,u) is a holomorphic function in a neighborhood of the

origin such that
F(0,0,y,0) = 0.

Theorem 4.1 Assume that there exists a positive constant o such that

20:)\sz — C

=1

> o(|k| + 1) for Vk = (k1, ko, -+, kmg) € N™ (18)

. o
for (15) where |k| = k1 + ko + -+ + km, and ¢ = ?9_1/,(0’0’0’ 0). Then equa-

tion (15) has a unique formal power series solution u(z,t,y) which belongs to

G;{‘s%l}(x, t,y).

Proof. Put
u(z,t,y) = Z uk’l(y)xktl, F(z,t,y,u) = Z Fpqr(y)zPtiu’ (19)
K| -+[2]>1 |pl+lgl+r>1
and ( ) >
k| + 5= 10])!
ur(y) = ﬁvk,l(y)- (20)

Then we consider a formal power series v(z,t,y) = x4 1>1 vg1(y)x*t. In order
to prove Theorem 4.1, we will show that a formal power series v(x,t,y) exists



and it converges in a neighborhood of the origin. Therefore u(z,t,y) belongs to
1
£ (@, 1,4 by (20)

We define
e(n,1) = (1,0,---,0),---,e(n,n) = (0,---,0,1) € N* for ¥n = 1,2, - - -,
k(i) = (i?k;f'ijno)ENmO: l(i):(livlév"'alﬁnl)Elev

oy = (e k) and by = (S 30, )
=1 =1 =1 =1
By substituting (19) and (20) into (15), we have the following recurrence relations

mo
AiVe(mo,i),0(Y) + Hile(moyi+1),0(¥) + Y Gjre(moyi)0(Y)Ve(mo.i).0(Y)
=

= Fe(mo,z‘),O,O(y) + FO7071 (y)ve(moﬂ)yo(y) for Z : ]‘7 27 e 7m07 (21)

0 = Fo,e(ma,i)0(y) + Fo01(¥)(1/(6 — 1)) vge(mi(y) for i =1,2,---,my  (22)
and for |k| + |I| > 2

mg
,ui—l(ki -+ 1)
v + m Uk+e(mo,i)—e(mo,i—1),
k,l(y) ; (Zi:()l )\'Lkl . F0’071(y)) k+ ( 0 ) ( 0 l)l(y)
iy (k} +1)
+ m : ai, ,O(y)vk e\m 7i 7l(y) (23)
2 % (I8 Nk — Fopa(y)) P heorelmon i)

lpl =1
= L—L-IL—1I
where
[ 1 |k|!
P (T8 ki — Fooa(v) (R + 2 11D)!
(k@ + 527 llo)D!
X Z FP»QJ‘(y) H lk ] I'l Uk(i),l(i)(y))
ptkyy =k i=1 @1
q+l{,,} =1
pl+lgl+r>1
(p,q,7) #(0,0,1)
1 k!
 — !

(78 Ak — Foo1(y)) (1E| + 5= 11!

= (k! + 1+ s51wD!
X Z Z (kzl + 1)0‘1',]7711(?/) ( )(]k | _:1;' vk(1)+e(mo,i),l(y),
=1 ptkay =k (1) :
g+l =1
lpl + lal = 2
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1 |&|!
I, = —
T (T Mk — Fooa()) (Bl + g1
il (Il + sty + D)
X Z Z (lzl + 1)bi,p,q(y) 6|k1 ! vk(1),l(1)+e(m1,i)(y)
=1 ptkoy =k 1l
q+1a) =1
[o] + lgl > 2
and
|
L = 1 |&|!

(7 Niki — Foo,1(y)) ([k] + £ 1))!

™2 (Ikyl + 527 1w !
X Z Z Ci,p,Q(y) Ik |, 8yivk(1)yl(1) (y)
=1 p+kuy =k il
lpl+lgl =21

Let us show that {vk;(y)}x+jy>1 are inductively determined.
For v(z,t,y) = . vea(y)z*t', we define

|kl+]E]>1
@m= Y )z and [[(V)mll, = Y max ve(y)]
a * _lyl<ro
|E|+]E|=m [k]-+]T|=m

The system equation (21) and (22) have a holomorphic solution {vk ()} (+=1
for sufficiently small |y| by the conditions @;e(me,)0(0) = 0 and (18). In a word,
we have (v);.

Next we consider (v),, for m > 2. For (23) we define

L) = Wm+ Y, {mo (o (ki+1) . | |
- T i VST S AR — Fooa(y) ke(moyi)—e(mo,i~1)
(k1 +1) }kl
+ m ai, YO'Uk elm 71. ,l} T t .
p+l§: k ijol Ajkj — Foo.1(v) p,0Vk(1)+e(mo,i)
lpl =1
Then (23) becomes

(L) = {(0)ms " <m0} (24)

For (Lv),,, we have the following lemma.

Lemma 4.2 Assume (18). Then there exist positive constants o1 and ro such
that

[(LV)mllro 2 01]|(©)m]lro- (25)
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For m’ < m, we assume that (v),, is determined. By (24) and Lemma 4.2, we
have (v)y,. Therefore (v),, is inductively determined for all m > 1. In a word,
equation (15) has a unique formal power series solution.

Next we show that v(z, t,y) converges. So we will give an estimate of vg;(y).
By Lemma 3.3, 3.4, 3.5,3.6 and 4.2, we obtain the following inequality from (23)

oall(Wmllre < S max ()] H @) 1

<
1ol + lal + gy =m YISTO
lpl + gl +7r>1
(p,q,7) #(0,0,1)

mo

+ Y > M8 [, g (1)1 (Ve 41 1o (26)

=1 |+ lgl tmgy =m YISO
lp| +lq] = 2
, my
+ (6-1) Z Z max |bi,p,q(3/)|H(U)m(l)H”To

— ly|<ro
=1 |p| +lgl+m@y =m
Ipl +lql > 2

mo 1

+ > > T 28X |Cpa (W) 11(8y0)my o

; k| + 2=l ivi<ro
St ial by =m Bl Tl
Ipl+lql =21

where my;y = Y.7_; m; and 03 = 01/03.

We define F}, ;-(Ro), @ipq(Ro), bipgq(Ro) and cipq(Ro) as follows;

o3, max {[|(v)1|ro, [|(Fy0)1llro}
Fo0.1(Ro) =0, Fpg0(Ho) := R

(Ipl + lgl = 1),

Mg + My
Fpar(Bo) := max [Fpqr(y)] (1Pl +1g] 47 2 2), ipg(Fo) := max laipg(y)l,
bipa(Ro) := max [bipg(¥)l, Cipa(flo) 1= max |cipq(v)l (27)
Let 0 < 19 < Ry < 1. We consider the following equation
1 Fpar
+ 1 S Z @i.p,q(Bo) xlpl+al-1y (28)

Ry — 19 = iplTal22 (Ry — rg)lpl+lal-2

n 6—1 Z Z bi,p,q()RO) xlpl+lal=1y

Ro =m0 i pl+1gl>2 (R — ro)lpitlal=2

(6—1)e & $ Cipq(Fio) xlpl+Haly
Ry — 10 i Ipl-+1gl=1 (Ro — o)lpitla=1
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By the condition £y 1 = 0 and implicit function theorem at Y = X = 0, equation
(28) admits a holomorphic solution Y (X).

Proposition 4.3 We obtain that (28) has a holomorphic solution’y,,>1 Y (o) X™
with the estimates

[(¥)mllro < Yo (7o) (29)
[0y, 0)mllre < emYp(ro) fori=1,---,ma.

We use the following lemma in order to prove Proposition 4.3.

Lemma 4.4 If (v),, satisfies

C
H(v)ero S 'm‘ fO’l" 0< ro < RO
for some p > 0 and C > 0, then we have
+ 1)eC _
”(ayiv)mllro < (1%—77'2))“1 fOT‘ t=1,2,---,m9

where ||(V)m||r, = Z|k|+|z|:m maXiy|<rg |’Uk,l(y))-

Proof of Proposition 4.3. By substituting },,>; Ym(r0)X™ into (28), we have the
following recurrence relations

o3Y] = Z F,q0(Ro) for m=1 (30)
Ipl-+lgl=1
and for m > 2
Fpqr(Ro) -
03(Bo —0)¥m = > varfo) __pry
1Pl + lgl + mprp =m (Ro — ro)lPitlal+r=2 i=1 (

Ipl +lql+r 21

Zm° 3 @ip,q(Fo)
+ »Pq Ym (31)
4 — Ip|+lq|—2 (1)
=1 pl+ gl =1+ muy =m (Bo —mo)iPitle
lp| + lgl > 2

+ (5 _ 1) % Z bi,p,q(RO)

(Ry — ro)lPiHlal=2""®

=1 Jpl + gl =1 +my =m
lpl + lgl > 2

+ (=13 ) Cipalflo)

Y
; — o )IPlHa=1 7T
= ol 4 1ol 4 gy =m (Fo o)

Ipl + gl =2 1



Then Y;,(ro) is inductively determined for m > 1 by (30) and (31) as in the case
of (v)m, and we obtain that Y, becomes a form C,,/(Ro — o)™ ! with Cp, > 0
by easy calculation. By (27) and (30), we obtain (29) for m = 1.

Next we assume (29) for m’ < m (m > 2). By (26) and (31), we obtain

H(U)mHm < (RO - TO)Ym(""O) < Ym(""O)- (32)
By ||(0)m|lre < (Ro — 10)Ym = Cm/(Ro — 19)™ % and Lemma 4.4, we have
e(m—1)Cp, emY. (r |
H(ayiv)mu'fo < (RO _ To)m_l = ’Ym( 0)' ‘ (33)

Hence we obtain Proposition 4.3 for m > 1. Q.E.D.
By Proposition 4.3, we have that v(z,t,y) converges. Hence this completes
the proof of Theorem 4.1. Q.E.D.

5 Holomorphic solution of system equation

In this section, we consider the existence of a holomorphic solution for a
nonlinear first order partial differential equation. By the result, we obtain the
existence of coordinates change for main theorem to be reduced to the form
studied in Section 4. In fact, we prove Main theorem by using the coordinate
change in the next section.

Let w = (w17 s 7wn) = (w17 20ty Wngy Wno+1, " 7wn) = (wlv w”) e C", pE
N™ and ¢ € N™, and bj;(w, ®), ¢j(w, ®) are convergent power series in a neigh-
borhood of the origin in C® x C™ where ® = (&4,---,®,,) for j =1,---,m and

I=1,---,n. We assume that b;;(w, ®), c;(w, ®) have the following expansion
bis(w, @) = D> bjrpew {w {2}
[pl+lgl>1
cj(w,®) = Z Cipa(w' ) {w'}P{ 2}
lpl+lgl=1 '

where bj;5.4(0) = ¢jp,4(0) =0 ([p| + |g| = 1).
We consider the following system equation

no n

E(Aiwi + Mi—lwz’—l)@wi@j = ij,l(w; (I))awlq)j + Cj(wa P) (34)

=1 =1
with j =1,---,m.
Then we have the following proposition.
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Proposition 5.1 Assume that there exists a positive constant o4 such that

Sk
=1

Then we obtain that (34) has a tuple of unique holomorphic solution (®1(w),- - -,
®,,(w)) in a neighborhood of the origin with ®;(0,w") =0 for j=1,2,---,m

_>. 04lk| fOT' Vk = (k17k27 o '>kno) € N™.

We can prove Proposition 5.1 as in Theorem 4.1. We omit a proof.

6 Proof of Theorem

In this section, we transform equation (??) to the one studied in Section
4 (Theorem 4.1) via a coordinate change. Hence Main theorem is completely
proved by Theorem 4.1.

Suppose that (2) = (n1(2), - - -, M(2)) is a local coordinate in a neighborhood
of the origin. Then by 1 = n(z), the operator L becomes

L=3 dind, (35)

where
Zl a;(2)0,;m(2) = d's(n(2)) (36)
fori=1,---,n.

Lemma 6.1 Assume (A.1) and (A.3). There exist some coordinate changes 7
such that

1. a’l(ﬂ) = Nif)s + pi1Mi—1 + b (77) for i=1,---,ng

ai(m) =bi(n) - for z =ng+1,--,n. (37
2. bi(n) = O(Inl*) for i=1,---,n
3' bz(07 0 nnl—l-l; nn1+2, * ,'r]n) = 0 fOT‘ ’L —= 1’ 27 PP ,n

Proof. We omit a proof. Q.E.D.
By Lemma 6.1 we may assume that L is in the form

no

L =Y (Nizi+ pic1zim1 + bi(2)) 65, + Z bi(2)0,,, (38)

=1 i=ng+1

where
bi(0,+-+,0, zn, 41, -+, zn) = 0 and bi(2) = O([z]?)



for i = 1,2,---,n. Put 2’ = (21, *,2ny) 2 = (Zngs1, ", %n,) and 2" =
(zn1+lu"')zn)-

Lemma 6.2 Assume that (38) satisfies that there exists a positive constant o
such that ’

ZO:)\Z/% —C

=1

> o(|k| + 1) for some c and all k € N™. (39)

Then there exists a tuple of holomorphic function ($1(2',2"), -+, ®p,—no (2, 2"))
with ®;(0,2") =0 forj=1,---,n1 —ng such that
ni—ngp

L(zngyj — ®4(2,2")) = Z E; j(2)(2ng1s — ®i(2', 2")) (40)

where E; ;(z) is a holomorphic function in a neighborhood of the origin with
EZ'J'(O) =0 fO?"?:,j = 1,"‘,?7,1 —Nyg.

Proof. We consider the following equation in order to prove Lemma 6.2

no

Z {)\zzz + MHi—12i—1 + bi(z’, (P, Z”I)} Gzifbj(z', Z/”)

=1

+ D0 b2, 2,2")8:,05(2, 2") = bag4s(2', @, 2")
1=ni+1

for j = 1,---,ny — ng, where & = (®y,---,P,,_,,). By condition (39), there
exists a positive constant o4 such that

S Ak

i=1

> 0'4!kl for k € N™.

We have that (41) satisfies the assumptions of Proposition 5.1 by putting m =
ny —ng, 2 — w' and 2" — w”, where m, w' and w” in Section 5. Therefore
we obtain that (41) has a tuple of holomorphic solution {®;(2’, 2)}71™ with
®;(0,2")=0for j=1,---,n1 — ng.

Next put 7j = 2pg+; — ®;(2, 2"). Then we have

n

Ltj = Z (bi(2, @, 2") — bi(2)) 0,P(2", 2" ) + brgtj(2) — bpg1i(2/, ®,2").  (41)
=1

Further we can put

ni—mng n1—ng

bi(2, ®,2") —bj(2) = 3 €ij(2)(znori = Bi) = Y eig(2)i  (42)

=1 1=1
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for holomorphic functions e; ;(z). Therefore we have the desired result. Q.E.D.

By Lemma 6.2 and the coordinate change 7; = zng4; — ®;(2/,2") with j =

1,---,n; — ng, L becomes the following form
no ni1—ng
L= {Nzi+pi1zic1 +a(2,7,2")} 0.+ Y cnoyi(2,7,2")0y (43)
i=1 i=1
+ Y ald, T, 2",
i=n1+1
where ¢;,(0,0,2") = ¢;,(¢,0,2") =0 for ip = 1,---,no.n1 + 1,--+,m, i = ng +

1,ng+2,---,ny and ¢(2/,7,2") = O((|2'| + |7| + |2"])?) for i = 1,-- -, .
In the following lemma, we seek multiplicity 6. So we refer to multiplicity.
We have

ng
a2, 1,2") = Z di j(Njzj + pj—1zj-1 +¢5) + O(|71%) (44)

j=1 v
for i =mg+1,---,n by (14), Lemma 3.1 and 3.2, where d, ; = d, ;(2',7,2") is a
holomorphic function. Then we obtain the following result.

Lemma 6.3 There exist local coordinates (x,t,y) € C™ x C™7™ x C*™™ such
that (43) becomes the following form

no n1—no
L=Y {Xzi+ pia@ia + Az, 6,9)} 0o, + D Angril@,t,9)0,
n—ni
+ Z An1+i(x7t7 y)aym
i=1
where Ay, (0,t,y) = O(Jt]°) and A;(0,0,y) = Ai,(z,0,y) =0 forip = 1,---,n,
i1=1,---,ng,m+1,---,nand iz =ng+ 1,n9 +2,---,ny.

_ ’ " —_ —
Proof. Let z;, = Nigzig + Hig—12io—1 + Cig (2,7, 2"), iy = 75, and ¥i, = Zijyyn, for

0=1,2,---,n9,%9 =1,2,---,m; —ng and i = 1,2,---,n — n;. Then we have
no n1—no n—ni
L= Z(ino)aﬂvio + Z (Ltil)atil + Z (Lyiz)ayig'
io=1 =1 ig=1

For x; = Nizi+pi—1zio1+c(2,ty) (i=1,2,--+,ng) by implicit function theorem
at £ = 2/ =t = 0, we obtain ng-holomorphic functions 2z’ = (21(z,t,y), z2(z, t, y),
s Zno (T, 8, y)) with 2;(0,0,y) =0 for i =1,2,---,ng. By (44), we have

ci(2(0,1,9),t,y) = O(Jt]") (45)
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fori=ng+1,---,n. Put

no ni—ng

Aip(z,t,y) = {Z(Am Flic12im1+¢)0s Y CagyiOn

i=1 i=1

1=n1-+1

z'=z (w,t,y)

and A;, (2,t,y) = Ciy|o=s(wy) fOr 49 =1,2,--- ,ngand iy =ng+ 1,n9+2,-- -, n.
Then by (45) we have
Ai(0,t,y) = O([t]°)

fori =1,---,n. Since we have

Lziy, = Xig(NigZip + Hig—12ig—1 + Cig) + Pig—1(Nig=12Zio—1 + Mig—2Zig—2 + Cig—1)

ngy ni—no . n
+ Z()\izi + pic12i—1 + €)0s, ¢ + Z Cno+i0r;Cig + Z €0, Cig s
=1 i=1 i=ny+1
Ltil = Cno+ip and Lyiz = Cny+ig
forig=1,2,---,m0,4 =1,2,---,n; —ng and i = 1,2,---,n — ny, we obtain the

desired result. Q.E.D.

By Lemma 6.3, we find that (1) becomes (16) by putting mg = ng, m; = ny — ng
and my = n — ny. Hence this completes the proof of Theorem 2.2 by Theorem
4.1.
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