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Integral expressions of harmonic polynomials
on the single orbit:

In the case of real rank 1

Ryoko Wada {7z 9+ 3)

Kure University

Introduction.

It is known that classical harmonic polynomials on Cp are
represented by integral formulas on any SO(p)-orbits except {0}
(see, for example, [2],[5],[7],[13]). According to the
formulation in [4], these classical harmonic polynomials on Cp
can be canonically identified with the harmonic polynomials on
p, where go(p,1) = fR + pR is the Cartan decomposition of
s0(p,1) and p is the complexification of pR. In this situation,

any SO(p)-orbit ' in Cp corresponds to a K,-orbit in p, where K

R R
= exp ad fR. Therefore, from the classical integral formulas of
classical harmonic polynomials, we can obtain the integral
representation formulas of harmonic functions on some KR—ofbits
explicitly (see, for example, [10] Appendix).

Next we consider the cases su(p,1l) and sp(p,1l), which are
classical .real rank one cases except so(p,l). Here we also write
fR + pR the Cartan decomposition of su(p,l) or sp(p,1) and KR =
exp ad fR. As an extension of the above fact, in our previous
papers [10],[11] we obtained integral representation formulas of
harmonic polynomials for these two cases. But these formulas are
expressed in the form of double integrals on some family of

K,-orbits and they are not so simple.

R
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In this paper we obtain the integral formulas on a single

nilpotent K,-orbit for these cases. We here give only one

R

example.

Let %n be the space of homogeneous harmonic polynomials on

N
p of degree n and let #£_ = & % be the irreducible
n k=0 n,k

decomposition as a KR—module, where

0 (QR s0(p,1)),
N = n (QR su(p,1)),
[n/2] (gR = sp(p,1)).

Then for any f € %n Kk and any X € p we have the following

integral formula

sn,m 6k,2 £(X)
- daim #, [ f(eEQR, ,(X.gEy) de,
K
R
where EO € p is
(0 e1+ie2
EO = e1+ie2 0 (QR = SO(pvl))o
\
%
E, = 0 ¢ (gp = su(p,1)),
0 t R
\ "€, 0
,
0 e, t0 e,
0 O 0
E, = 2 (8g = sP(P.1)),
0 O 0
L0 0 -Fe,
and ﬁn k( ,Y) € %n K is some reproducing kernel. For the precise

definitions of irreducible subspaces and reproducing kernels,

see §2, §3.

§1. Preliminaries.

Let be a classical real semi-simple Lie algebra with

SR
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real rank one and g = f + p be the complexification of the
Cartan decomposition QR = fR + pR. Let G be the adjoint group
of g.

Now we define the harmonic polynomials on p. We put K =
exp ad f. For a polynomial f on p and g € K, gf is defined by
(gf)(X) = f(g 'X) (X € p). J denotes the ring of K-invariant
polynomials on p. Let B(X,Y) (X,Y € p) be the Killing form of g.
In the case of real'rank one, the generator P(X) of J is B(X,X),
and according to the definition in [4], a polynomial f on p is
harmonic if and only if (@P)f = 0. Sn denotes the space of
homogeneous polynomials on p of degree n and %n denotes the space
of homogeneous harmonic polynomials on p of degree n. We put R
= {X € p; P(X)= 0} and h( ,Y) = Tr('XY¥) for X,Y € p. Then it is
known that ﬁn is generated by {h( ,Z)n; Z € R} (cf. [4]). For
general theory of harmonic polynomials on p, see [1], [4].

Let KR be the adjoint group of fR. Then we have K, c K. We

R
put ¥ = {X € pR; P(X) = 1}. The set X consists of one KR—orbit.
In the case gR = ¢9(p,1), it corresponds to the unit sphere in Rp
and there exist well-known integral formulas for harmonic
polynomials on ¥ (see, for example [5],[6],[7]). In [10],[11] we

gave an integral representaion formulas of harmonic polynomials

on ¥ in the cases 8p = su(p,1) and sp(p,1).

§2. Integral formulas of harmonic polynomials on the
KR—orbit in su(p,1l) case.
From now we put g = s[(p+1,C) and QR = su(p,1), where p is

an integer satisfying p > 2. Then we have



= {(0 o)
{5 3)
{08 2);
{5

KR

] e

w

and G

U(p)}. For X

Ad SL(p+1,C),
0 x

[ty 0

tzw for z,

where z-.w

0}.

X

€ p and g
0

[ 0 Ax]
t(&y) o}

It is known that dim %n =

A e ulp), a € u(l) , Tr A + a = 0}.
X € Cp},
A€ M(p,C), Tr A + q = o},

X, ¥ € Cp},

Ad S(U(p)xU(1)) = {Ad( a0 ); A e

P(X)

P, x-y is the genérator of J,

a2

axjayj

p

2
J=1

€ Cp and 9P = We put 9 = {X

2(n+p-1)(n+2p-3)!

nl (2p-2)! For

ADO =
aa( § | -

) € KR (A € U(p)) we have gX

For X = to X and Y = tO x € p we put Kn k(X,Y) =
y 0 B 0 ’
(x-&)k(y-E)n—k. Let # be the space which is spanned by the

,

n
see that ﬁn =
k=0

n,k
elements Kn k( ,Y) (Y € 9).

From [8] Theorem 14.4 we can easily

@ %n K gives the irreducible decomposition as a

(p+n-1) (k+p-2)!(n-k+p-2) [ (p-1) 2

KR—module and dim xn,k = (p-1) KI(n-K)!
~ 0 re _ 0 e
Let E_ = 2.1/2 t 1] € R and E1 = |t 11 € %2,
(1-r7) e, 0 e 0
where e, = t(1 0 ---0), and e, = t(O 1 «0). Then we have KRE1
=325l and w=u U Kp(aF)).
=0 0xgrgi
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In this section we give integral formulas of harmonic
polynomials on each orbit in %. Now, our main result in this

section is the following

Theorem 2.1. Assume r € (0,1).
(i) For any f € ﬁn K and any X € p we have
(2:1) 8y by g £O0 = dim gy o €y (o] p(eEIR, (X gE e,

R
where Cn k(r) = {I’Zk(l—x‘z)n—k}_l and dg is the normalized Haar

measure on KR.

In particular, we have

(2:2) by g by P00 = aim sy [ £(EEOR, 4 (8B ds,
where EO = { 0 el].
te 0
2
(ii) For any f € %n,k and any h € %m,g we have

(2.3) IK r(gE )n(gl ) dg = 0 if (n,k) = (m,g),
R

(2.4) f(gE.,)h(gE,) dg
K 1 1
R

_ -1 (p-1)'k!(n-k)! . ~ ~
= o(n) ey R dim #, fo(gEr)h(gEr)dg.
R

Remark. It is clear that Theorem 2.1 does not hold for r =

23]

0,1 because %n,kl R~1= {0} (k # n) and %n’lekﬁo = {0} (k = 0).

We can prove Theorem 3.1 by using the next lemma.
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Lemma 2.2 (cf. [10]). (i) For ény f € %n and any X € p we

have

(2.5) by n £(X) = dim £ Ié p(t)( fo(gEt)<x,gEt>mdg)dt,

where we put <X, Y> = Tr(tX?) (X,Y € p) and

p(t) = 52p-2 r§72— 2/21) t2p—3(1_t2)p—2 0<tx<l).
18 r(p-

(ii) For any f € %m and any h € %n we have

(2.6) [ resBRCeENas = Fipy dim g, [ p(0)] £(eE )n(eE,)dgdr.
R

For the proof, see [10] Theorem 2.2.

Corollary 2.3. (i) For any X, Y € p, we put

- k,n-k g
Rn,p(X’Y) =k§0 dim # Kn,k(X'Y)'
Then for any f € %n we have
(2.7t = [ £(EOR, L (X.gEg) ds.

R

(ii) For any X = [to X

] € p (x.x <1, y-y < 1) and any Z
y O

0 =z
= € K , we put
(tw 0 ] R0

1-p

Hy o(X,2) = BEREL ((1-x02) (1-y @)

Then for any f € %n it is valid

(2.8) F(X) = IK £(gEq)H, (X,EEy) d.
R
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§3. Integral formulas of harmonic polynomials on the
KR—orbit in sgp(p,1) case.
In this section we consider the gp(p,1) case (p € N, p = 2).

From now we put g = sp(p+1;C). 8p = sp(p,1),

A 0 B 0
0O a 0 b
IR =1l-B 0o A& o |+ A€ulp), a€eu(l), b ecCy,
z _ B is p x p symmetric
0O -b 0 a
X 0 y
tz 0 tvy o b
PR © 0y o -x |» xy €eC
t5 0 -tk 0
Then we have
(( A O B 0 )
=91 c o -*a ol|'ts=8tc=c]
\\0 7 0 -a ) @ B.v € C
(( 0 x 0 w )
t t
- y O w o |. p
p 11 0 =2 0 -y |? XY 2.V E Ct
G = Ad Sp(p+1,C), and
A 0 BDO t - b=
0 a 0 B AA + "BB = Ip,
KR = ¢Ad B 0 A0 € Ad U(2p+2); tAB _ tEA;
0 -8 0 aq + BB = 1
0 x 0 w
For X = ty 0 tw 0 € p, P(X) = xy + zew = %Tr X2 is the
0 z 0 -y
tz 0 —tx 0
P 52 8°
genarator of J and % = {f € S_; 351(9Xj9yj + aZjawj)f(x) = 0}.

2(n+2p-1)(n+4p-3)!

n! (4p-2) We put % = {X € p;

It is known that dim ﬁn =
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P(X) = 0} and ¥ = (X € ppi P(X) = 1} = s4P-l et g =
A 0 B 0 X
0 a O B8 v 4p .
Adl 8 9 A& o0 € Kp- If we put @(X) = 7 € C Y we have
0 -8 0 g« w
((A(ax + Bw) + B(az - By) )
B(-Bx + qw) + A(ay + Bz)
(3.1) ®(gX) = _ - - _
-B(ax + Bw) + A(az - B8Y)
L A(-B8x + aw) - B(ay + Bz),
re
._1 01 ~
Let E_ = & 0 € % (0<r<l). Then we have @(gEr) =
1/2,
(1-r®)1/?e,
Xf
y, , where
Z
w/
A 1/2
X" = qra1 + B(l r ) 2,
(3.2) yo o= —8r51+ a(l-r )1/2 '2,
” - - - 1 2 —
z” = -arb, - B(1-r%)'/% B,
- 1 2
wo o= —BP81+ oa(l-r ) / a,,
and aj = Aej, bj = Bej (j = 1,2). From (3.2) we can see that
n= u U KR(qﬁr). Let
a0 /1/2g<r<1
A 0 B O
H1= Ad (_) 1 (_) 0 eKR
-B 0 A O
O 0 0 1
and
I 0 0 O
p
H2 = 4Ad 0 a 0 & € KR
0 0 I_O
_ P _
0 -8 0 ¢«



125

Then H1 and H2 are subgroups of K and for any g € K, there are .

R’ R

unique hj € Hj (j=1,2) such that g = h1h2' Furthermore, if gj €
Hj(j = 1,2), we have 818, = ByBy- dhj is the normalized Haar
measure on Hj (j = 1,2). For h € H1 and El € 1 consider the
mapping ¢: Hlﬁl——a s4P-1 gefined by

a Re a

~ -1 01 Im ai
0 Im(-5,)

From the condition on H1 we see that ¢ is bijective and

J f‘(hﬁl)dh1 = I 4 _lfo¢_1(s)ds. where ds is the normalized
H, s*P

O(4p)-invariant measure on SP71. por x = o ! -1

NN N N

T N< M
>
N
"
Lo
TN M

€ p we define

X, X> = (172)Tr(*XX7) = ¢(X)-3(X"),
Ko (X,X7) = (X:X7+2:27)(yey +wew’) + (x-W -z+¥")(y-2"-w-x"),
~ -y _ [[(2p+m) ~ - M ~ m
Km(XdX ) = M (2p) K(gEl,X > <X,gE1> dg,
R

o ’ - o4 Id rd k
K'n,k(x’x ) - Kn"Zk(X’X ){Kz(X,X )} ’

(m = 0,1,2,«++, k

0,1,---,[n/2]). Remark that for any X, X~

€ p, g €K

R
(3.3) Kn,k<X’X ) = Kn,k(X y X)),
(3.4) Kn,k(X'X ) = Kn’k(gX,gX ) -
Next we put K_  (X,X") = (n—2k+1)'1<x,x’>n‘2k{K2(x,x’)}k

(X, X~ € p). If X~ € % we can see that Kn k( ,X7) € £, Then

’

the following proposition is valid.

Proposition 3.1. (i) We have the following formula:
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(m1+m3)!(m2+m3)!

(3.5) K _(X,X7) = (me1) ™1 3 , \ Y2
m1+m2+2m3= m m,! m2.(m3.)
m m m . m
X (X+X"+2-27) 1(y~§’+w-§’) Z(y-z’—w-x’) 3(z-y’—x-w’) 5

(ii) There exist a_ q € R (q =1,2,---,[m/2]) such that

[m/2] -
7’ m - -4 s ”~ ”~
(3.8) <X,X7>7 = (m+1)K_(X,X7) + q§1 A g Km,q(X,X ) (X,X7€ p)
(iii) There exist bm q e R (qgq=1,2,--,[m/2]) such that
.M a2 -, [m/2] 44 - ,
(3.7) KX,X">" = (m+1)Km(X,X ) + qzl bm’q Km’q(X,X ) (X,X7€ p)

Proof. When g, B € C4p and aq*a = B8 = 0, the following
formula is well known (see [7]):

2™ mir(2p)
r(m+2p)

f (s-)™ (5-8)™ ds = (a-B)™.

| S4p—1
From this formula and (3.2) we have

~ .\ _ [(2p+m) o, ey & mmeas.y o
Ry(X.X7) = 2 IHngl{al-(ax BH) <D, - (a2 +857))

x{a,+ (ax-Bw)-b, - (az+By))"dn, )dn,

fH ((aX”-BW") - (ax-Bw)+(&z +By") - (az+By)}"™ dh,

2
2m 2m m m m
1 2 3, -=.4 =, -,
= 5 ([rar i Pea) PaB) * ang)mi(xkTezez)
|m]=m H2
m m m
i v 2 s ~ 3 —r —d 4
y yeyTHwew”) “(zey’-xew’) “(yez’-wex")
1 1 1 1 )
m; ! my! mg!om,!
4
where |m| = 3 mj. This gives (3.5) because
Jj=1
2m 2m m m (m,+m,)!(m,+m,)!
1 2 3,--. 4 _ 173 273
2
(ii) We can prove (3.6) by induction.
(iii) Using (3.6) we can prove (3.7) easily. q.e.d.

From (3.8) we can see that kn L ( X7) e # if X"e %. Now

1
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%n,k denotes the subspace of ﬁn which is spanned by {Kn,k( ,2)
Z € }. From (3.4) and (3.7) it is clear that ﬁn K is the
, , [n/2]
KR—lnvarlnt space and %n = kgo %n,k’
1ot b
From now we put EO = ¢ 0 € % and E1 = @ 11 € X. We
0
€2 0

already showed KRE1 = ¥ and integral formula of harmonic
polynomials on KRE1 ([11]). Our purpose of this section is
getting the reproducing kernel of ﬁn g on each orbit in %.

Our main theorem in this section is the following

Theorem 3.2. Assume /1/2 < r< 1.

(i) For any f € %n Kk and X € p we have

(3.8)  Cp oy (¥)by p6y oF(X) = dim #, fK r(eB )R, (X, gE])de,
where C_ , (r) = fl {(2r2—1)t + 1—1'2}11_2k rzk(1¥r2)kdt.
’ 0
In particular, we have
(3:9) 8y by o0 = aimay o [ £(£BQR, (X, 6B, dE.
R
(ii) For any f € %n,k' h € %m,l and X € p we have
(3.10) [ reB)n(eEdg = 0 if (n,k) % (m,0),
K
R
(3.11) | f(eEB(eE)dg = ¢, [ 1(gEy)H(gEy)de,
“r KR

where Cn = {dim %n K (n—k+1)!k!r(2p)}/{r(n+2p)(n—2k+1)2}.

k

To prove Theorem 3.2, we need some lemmas.

Lemma 3.3 ([11]). For any f € %n, h € %m and any X € p we
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have

o o . 1
(3.12) fé p(t)fK r(gE, ) <X, gE ™ dg dt = (dim ) Ve, L £(X),
R

where for t € [0,1] we define

1
reze - 3)
p(t) = 24p—3 73 2 t4p—5 (1-t )2p 3( t2—1)2.
r{zp-2)
(3.13) [ £(gE))B(gE )de
“R

_ n!r(2p) .. 1 5 T
- BLLER) gim g, Iofo(gEt)h(gEt)p(t)dg dt.
R

For the proof see [11] Theorem 2.2.

~ n-2k k
Lemma 3.4. We put hn,k(x) = <X,E1> {KZ(X’EO)} (X € p).

(i) For any X € p we have

(3.14) fK h, | (8EQ)K, | (X,gE)dg = AL 1 h (X)),
R
where
A - (n-k+1)! k! [(2p-2) r(2p)(n-2k+1)~°
n,k ©  T(2p+n-k-1)[(2p+k-2) (2p+n-1)

(ii) For any X € p we have

0 if k < 4,

{]

(3.15) IK h, L (8EQ)K ,(X,gE))dg

(3.16) fK B (BEQ)K, | (X,8E)dg
R

An k n, k(X)

Lemma 3.5. (i) If (n,k) = (m,Q) we have for any X,Y € p

(3.17) fK R, ,(8Eq K, | (X,gEq)dg = 0.
R
{ii) For any gy € K,, X € pand r € [0,1] we have

~

(3.18) fK R, (8Eq.8oE 0K, (x.8B)dg = A K | (X,g.8)
R
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Lemma 3.6. For any f € %n K we have

(3.19) fo<gE0)km,£(x,gEo>dg = 8 b g An gk FOO (X €p).
R

Proposition 3.7. (i) The following formula is wvalid:
-1

(3.20) An,k = (dim %n,k)
. [n/2]
(ii) %n = @ %n q gives the irreducible decomposition
q=0 ’

as a K,-module.

R
Proof. (i) For f,h € %n x ve define the inner product

( , ) as follows:

(f,g) = f(gE,)h(gE,)dsg.
0 0
K
R
Assume that N = dim ﬁn K and that {fj;lsjsN} is any orthonormal

basis of ﬁn Kk with respect to ( , ). We put for any X, Y € p

P(X,Y) z f (Y)f (X).

j=1
For any X € R there exist c.(X) e C(j=1,2,--,N) such that
- N
Kn,k( » X) ‘JZICJ(X)f

Since for Y e # P( ,Y) € %n k' Ve have from (3.19)

_ ol X
P(X,Y) = Aj', IK P(gEq, V), | (X,gE()dg
R

anly _z ;X 3 [ T 000, (85T (B de

0=1 Ik

R

- a’t 5 T (Y) = AL B (X,Y) (X,Y € %)
- n,k JEICJ( ) J( ) - n,k n,k ’ ’ .
Therefore, we get

N -
= 3 [ T (eEy)t;(eEy)de = [ P(gE.6E))de
j=1 R K
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-1 ~ -1 ~
= Ap k). Kn, k(8Fg-8Eg)de = Ay I Kn,k(Eg-Eglde.
K K
R R
Since Kn,k(EO’EO) = 1, we obtain (3.20).
[n/2]
(ii) We can see #_ = @& ¥« from (3.19). From [3] we
n k=0 n,k

can see that the number of the KR—irreducible subspaces of Sn

is 1 + 2 + «+ + ([n/2]+1). Therefore the number of irreducible
, n
subspaces of %n is [n/2]+1, because Sn = kfo ﬁkJn—k (cf. [4]),

where Jm is the space of the K-invariant homogeneous polynomial

of degree m. Therefore we get (ii). q.e.d.

Remark. Propositon 3.7 may be known, but the author does

not know the references.

Proof of Theorem 3.2. We obtain (3.9) by (3.19) and (3.20).

By the same method of the proof of Lemma 3.4 we have

(3.21) IK b, (BEOR, (XgBl)de = AL Cp (0)hy (X)),
R
where ¢y (r) = [ r?*(1-r®)X(1a1%r24181% (1-0%))
' H
2
(3.21) gives (3.8) because hn K 18 the generator of ﬁn,k'

By (3.19) we see that £ ,(X) = IK h, (B0, (X, gE )ds
R

n-2k
dhz.

€ ﬁm e From (3.7),(3.12) and (3.19) we can see that there
exist Cm q € R\N{O0} (g = 1,2,-++,[m/2]) such that
~e ~s m
f b, (gEL) <X, gE " dg
K
R
[méZ] o~ - [méZ] . x)
- ScC I h (g8 )% (X,gF¥ )dg = C .
q=0 ™a Jg n,k*®"r’"m,q r qc0 ™4 ma

On the other hand, for some Cn,k(r)’ Cn,k(r) € C we have
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~ ~ m ~ n
IK hy (880X, g8 > dg 6m,nCn’k(r)IKhn,k(gEO)<X,gEO> dg

R R
- 6n,m Cn,k(r)hn,k(x) € %n,k'
Therefore fm 0 = 0 if (n,k) # (m,g8), and this equation shows

(3.10).

(3.22) I;IKRhn’k(gEt)

(3.21) implies

~

Kn k(X.8E )p(t)dg dt

1
,ap-3 [(2P~3)M(2p+n-k-1)r (2p+k-2)

fK n, (8EQ)R | (X,gE,)dsg.

n'/? r(2p-2)r(ap+n-2) R

(3.11) follows from (3.13) and (3.22). qg.e.d.
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