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Computing point residues for a shape basis case via
differential operators

Shinichi Tajima * and Yayoi Nakamura, |

BEE— (FRAFITER) FHHE (BROKKFRERER)

1 Introduction

In this paper, we study computational aspects of point residues. We concentrate
on a shape basis case and we present algorithms which compute point residues for
this generic case.

In 1987, Gianni and Mora ([2]) proved the following result:

(Shape lemma) Let I be a radical 0-dimensional ideal in Q[2], regular in z,. Then
there are g1(z1), ---, gn(z1) € Q[z1] such that g, is squarefree, deg(g;) < deg(g1)
fori > 1 and the Grobner basis of the ideal I w.r.t. the lexicographical order > with
Z1 > o > 2, 18 of the form

{91(21);22 _92(Z1)a"' azn—gn(zl)}' (1'1)

On the other hand, if the reduced Grébner basis of I w.r.t. > s of this form, then
I is a radical 0-dimensional ideal.

Furthermore, it is known that for ”almost every” system of algebraic equations
with finitely many solutions, after a suitable linear coordinate transformation, the
reduced Grobner basis of the transformed ideal will be in this simple form even
though the system does not coincide with its radical ([5], [6], [7], [15]). The basis
of the form (1.1) is called the shape basis of I.

We study the algebraic local cohomology class associated with the shape basis
of a given 0-dimensional ideal I. We explicitly construct the holonomic system of
linear partial differential equations for the algebraic local cohomology class. By
making use of this holonomic system, we derive algorithms for computing point
residues.

2 Notation and a former result

Let X = C" and fix a coordinate system z = (21,...,2,) of X. We denote by Ox
the sheaf of holomorphic functions on X. Denote by Z the zero dimensional ideal
in Ox generated by holomorphic functions fi,... , fn of z.

PutY ={2€ X | fi =+ = fo = 0}. The algebraic local cohomology group
Hiy,(Ox) which satisfies H[}1(Ox) = limind,Exty, (Ox /I*,Ox), has a structure
of a left D x-module, where Dy is the sheaf of linear partial differential operators on
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X. Let [ ; h ; } be a class in Ext}, (Ox /I, Ox) for h € Ox. Denote by 7 the
1" Jn
algebraic local cohomology class [ h ] defined by the image of [ h ]
T fie I
by the canonical mapping
Eath (Ox/T,0x) = Hiny(Ox)- (2.1)

Denote by Ann the ideal in Dy consisting of annihilators of 7. Then we have
’HFY]((’) x) & Dx/Ann. For the Weyl algebra, it is possible to compute a Grobner
basis of Ann by using the computer algebra system Kan ([8], [9], [14]).

We have the canonical pairing

Resa: .QX XHF&](OX) - C
(vdz,n) +  Resq(¢dz,n)

defined by the point residue Resy((hY)dz/f1 - fn) of a meromorphic differential
form (hyp)dz/f1 - fnat a €Y.

The sheaf of holomorphic differential forms 2x is naturally endowed with a
structure of a right Dx-module by setting (¢(z)dz)R = ((R*¢)(z))dz for a differen-
tial operator R € Dx, where R* stands for the formal adjoint operator of R. Then
we have, for any R € Ann,

Res, ((R*¢(2))dz,n) = Resy(p(2)dz,Rn) =0, a € Y.
Theorem 2.1 ([10], [11]) Put K = {¢(z)dz € £2x | Reso(¢(z)dz,n) = 0,Ya € Y'}.

Then we have

K = {(R*¢(2))dz | R € Ann,(2)dz € £2x }.

3 Construction of the holonomic system in the
shape basis case

Let us consider the system

fi = g1(=1),
O

Ja=2n— gn(zl),
where g;(21) € Q[z1]. Denote by Y the set of common zeros of the system (S5), i.e.,
Y={=(21,...,2)€X | i=-=fa=0} Putnp=[h/f1-- fal G'HFY](OX)
for h € Ox with h(a) # 0, @ € Y. Since 1 depends on the modulo class of h in
Ox /I, the numerator h of the cohomology class 7 can be expressed as an univariate
function of the variable z;.

Let P, Fy, ..., F}, be differential operators defined by following forms:
( / /
91(21) W(z1)
P = sf(g)0+ Y, sf (21)0; + - sf(q1),
i ((g‘)) D )% i ), ) )
A) 4 1 = Gix),
) F, = z-g=)
L F, = Zn _’gn(zl)>

where sf(g;) is the square free part gi(z1)/gcd(g1(21),91(21)) of g1(21), gi(z1) =
89gi/0z1, and 8; := 8/8z;, it = 1,... ,n. Then we have the next theorem.

Theorem 3.1 Let Ann be the left ideal in Dx consisting of annihilators of n. Then
Ann is generated by P and F;, 1 =1, ..., n in (A).
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Proof. Recall the isomorphism
OX[*(ZI Uu---u Zn)]
Y Ox[H(Z U - UZ; U UZ,))

where Z; = {z € X | fi(2) = 0} and Ox[+Z] stands for a sheaf of meromor-
phic functions with poles at Z. By this isomorphism, we can readily see that
operators in (A) annihilate . Let gy = []/_,(z1 — a1,,)™ be the factorization
of g1 over C. Then we have n, € ’H["O(L](OX) such that n = g + -+ + 7,, where
a, = (ay,,92(a1,),. . ygn(a1,)) €Y, e =1,... ,v. Let U be a sufficiently small
neighborhood of a point o € Y and assume that Up NY = {ax}. Let us find the
annihilators of i) on Uy. Denote by g; ; the modulo class of g; in Ox /({21 — o x)™*).
Put fik(21) = 2i — gik(21). If weset hy =h/ ], (21 — @1,,)™, we have

R ]
7 = .
T [(21 — o k)™ ok fak

Hi(Ox) = (3.1)

Then we have

hl
Pr= (21— o1 1)01 + (21 — o ) Zgﬁ,k&' +mp — E&(n —ak),
k

ik (3.2)
Fl,k = (zl - O{l,k)mk, . (33)
and
Fi’k = z,'-—g,’,k(zl), t=2,...,n (3.4)
as annihilators of 7 on U. Note that the annihilator Py can be rewritten as
14
zZ]— 4
Pi= (21 —a1)01 + (21 — 01 k) D gi 105 + Zmr—l—-----l—ﬁ — = (21— a1,k)-
¢ ’ 21 — Q. h
itk =1 ! (35)

We set Ann, = {R € Dx | R = 0}. Since (Pi, Fik,... ,Far) C Anng, we
have a surjective morphism Dx /(Pg, Fi k, ... , Fn k) =& Dx/Ann; — 0. Recall that
Dx [ Anny is a simple holonomic system, the multiplicity of Dx / Anny is equal to 1.
We can see that the multiplicity of Dx /(Pi, Fy , ... , Fy k) is also equal to 1. Thus
Dx/Ann, = Dx[{(Pe,Fiky.-.,Fnx) and finally we have (Py, Fi g,...,Fn ) =
Anng. On the other hand, the localization of P and F;, ¢ =1, ..., n to Ui have
the following forms:

1
Pla, = p
’ak (Zl - 01,1) s (21 - Oll,k—l)(zl - al,k+l) e (21 - al,n)
= (21 —a1%)01 + (z1 — o1 1) Zgz{,kai
i#k

- He;a(zl — on,0)
WP Ihl vy o

oz — o)z — apgr) - (21— 1)

n
"‘“h‘(zl - al,k)

v
1 .
= (21— )01+ (21 — a1 k) Zgé,k&- + ZmL——(‘Zl — o k)
1

itk = 71T X
n
=7 (1 =), (3.6)
Filo, = (z1—a1x)™, ' (3.7)

Fila,

Zi — gi,k(zl), 1= 2,. ey . (38)
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According to the formulas from (3.3) to (3.8), we have Ply, = Pi, Fily, = Fi.
Then we have Anny = (Plu,, Filve,--- » Fnlu,). If we denote by Ann|y, the re-
striction of the ideal Ann to Uy, we have Ann|y, = Anng. Thus, we obtain that
Annly, = (Plv,, Filu,,--- > Fulu,). Consequently, Ann = (P, Fy,... ,F,). O

3.1 Properties of P’*

The following relations between operators P and Fj, 1 =1,... ,n hold:

Corollary 3.1

9i(=1) .
* * - F [} 1= 17
[P, F]1=14 ged(gi(z1), 9, (1)) '

, 1=2,3,...,n.

Proof. Since g; is a univariate polynomial of z;, we have
[P*,FY] = —sf(g1)-g;
/
9
= —— 21 R
ged(g1,91)
For:= 2,3, ..., n, we have

[P*, F{] = —sf(g1)g; + sf(g1)g; = 0.

0
This corollary implies that, if ¢ € Z, then P*p € 7 holds. Thus, we have the
next proposition.

Proposition 3.1 P* acts on the sheaf Ox/Z, i.e.,
P Ox/I - OX/I.

Let Z be the ideal generated by ged(gi(z1),91(21)), 22 — g2(21), - - -, 2n — gn(21)
in Ox. Then P* has the following property:

Theorem 3.2 A necessary and sufficient condition for P*p(z) € T is ¢(2) € 1.

Proof. We prove first that the condition is sufficient. Since F} = F; = f;, we have
P*(xfi;) = (P*x)f; for any x € Ox by Corollary 3.1. Since the operator P* can be
written in the form

v __gi(z1) h(z1) _ - 91(21) ORY,)
P = ) . ) & Eda (e, GE % o
we have A
P*(ged(g1, 91)p) = ~%8l(mgcd(m,gi)w)

g1 / ’
=) ——9:0i(gcd(g1, 9
iz:; ng(gl,gi) ( ( 1 1)90)

1 n
= —(;;81 ho + 2919§5i¢)91

1=2

1 n
~(z01hp + ) _019i050) fr-
=2
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These formulas imply the sufficiency. In order to prove the necessity, we set

o(2) = 1 (2)ged(gn (1), 94 (21)) + #2(2) f2(2) + - + @n(2) ful2) + 00 (21),

where ¢q, @1, -.., Yn € Ox and ¢y is an univariate polynomial of z; with
dego(z1) < degged(g1(21),91(z1)). Since P*¢ € I by Corollary 3.1, there is
an univariate polynomial ¥(z;) of z; such that P*po(z1) = ¥(z1)f1. On the other
hand, we have

g1 h
P*pg = —Z2=0) ————p-
P T M ecd(gr, gp)

Thus we have

91 h

_K& .E;Cd—(gbm% =¢fi -
ged(gr, o))" lggﬁ?ﬁmﬁ
Yo = (_E/ gl(t)¢(t)f1(t)dt> ged(g1,9))-

Since o & Z, we have @o = 0. This completes the proof. O
From the exact sequence 0 = I/ — Ox/I — Ox/I -+ 0, we have that
dm[(X,Z/7) = dmI(X,0x/I) — dmI(X,0Ox /1) = v. Put d = deggi(z1).

Then, we have the following corollary:

Corollary 3.2
(i) dimI(X,Im(P*: Ox /T - Ox/I))=d—-v.
(ii) dimI'(X,Ker(P*: Ox /T = Ox /1)) =v.

Let vj(z1) be the image of z{ by P* in I'(X,0x/I) for j =0,... ,d —v — 1. Put
K = {v(z) € Ox | Resa(v(2)dz,n) =0, € Y'}.

Corollary 3.3

I'(X,K/I) = Span{vy(21), . .- ,vd—v—1(21)}-
That is, any v(z;) which satisfies Res, (v(21)dz,n) = 0 for @ € Y and degv(z;) <
d — 1 can be expressed as a linear combination of vo(z1), ..., vg—p—1(21).

3.2 Localization

Let g1(z1) = gf}‘l(zl) e gi‘y’}'\,(zl) be the factorization of g,(z) over Q. Let g; x(z1)
" be the remainder of division of gi(z1) by g{%(21). Put fir(2) = ¢'%(21) and
fir(z)=zi—gix(z1)fork=1,..., Nand ¢ =2, ..., n. Denote by I} the ideal in
Q[2] generated by fy x(2), ..., fa,k(2). Let F; be the differential operator of order
zero defined by F; ; = fi . From Corollary 3.1, we have the following formulas:

Corollary 3.4

. — 91,9 kg, =1,
W’EA:{OKH# ”)M)M'izzsn.m (3.10)

These formulas imply the next result.
Lemma 3.1 P* acts on the vector space Ox [T}, i.e.,

P Ox/Ik — Ox/Ik.



Thus we can localize results in Section 3.1 to Z;. Put v, = deggi r(21) and
dy = Vijtr. Then we have the following:

Corollary 3.5
(i) dimF(X,Im(P* : Ox/Ik - Ox/Ik)) =d, — V.

(i) dimI(X,Ker(P*: Ox/Ii = Ox[Ii)) = .

Let vg ;(21) be the image of Z by P* in T(X,Ox /i) for j = 0,... ,di — vg — L.
Denote by Y} the set of common zeros of fi, ..., fok. Put K = {v(z) € Ox |
Resa(v(2)dz,me) = 0, € Yy }.

Corollary 3.6
1—‘()(7 K:k/Ik) = Spa'n{vk,()(zl)a LR )Uk,dk—l/k—l(zl)}-

That is, any v(z;) which satisfies Resqacy, (v(21)dz, ) = 0 and degv(z;) < dp — 1
can be expressed as a linear combination of vk 0(21), - - -, Vk,dy—vs—1(21)-

4 Algorithm

We describe algorithms for computing point residues. Let fi(2), ..., fa(2) be
polynomials in Q[z1, ... ,2,] of the form (S) and dz = dz; A --- Adz,. Let us
consider a meromorphic differential form 0(z)dz/fi(z) - fo(z) with a polynomial
6(z) € Q[z]. Denote by @ the remainder of # by I. Now we introduce three vector
spaces

U ={u(z1) € Qlz] | degu(z) <d—1}, (4.1)
1
V ={v(z1) € Q[z1] | degv(z1) <d—1, Resq (v(zl)dz, [m]) =0, a E(i’é,)
and
w(z1)

has at most simple poles}.

W = {w(z) € Q[z] | degw(z) <d -1, fie-
19 fn (4.3)

The dimensions of these vector spaces are dimU = d, dimV = d—v and dimW = v,
respectively. Let P be the annihilator of the cohomology class [1/f; - - - f,] defined
in (4), i.e.,

g1(#1) _
ged(g1(z1), 91 (1))

P = Sf(gl)al + Z Sf(gl )gz{(zl)ai +
=2

Denote by v;j(z1) the remainder of P*z{ by ¢1(2), j=1,...,d —v — 1. Let Jac be
Jacobian of fy, ..., fn. In this case, Jac = g{(21). Let w;(z;) be the remainder of
Jac- 2} by gi(z1) for e =0, ..., v—1.

Proposition 4.1

HU=VeWw
(i) V = Span{vg(z1),... ,vd-p-1(21)}
(ii)) W = Span{wo(z1), ..., wy—1(21)}
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For computing the residues, we write

d—v—1 v—1
9(z) = > ajvi(z1)+ > bewe(z).
j:O £=0

Then we have

v~-1
Resqey (}-;e—(f—%—-dz) = Resgey (—Z}%—*—f);wjdz)

v—1
Resyey ((‘EJ_&%;‘ Z bng) dz) .
o fn =

Since Jac EZ:_OI bezfdz/fi ... fn is a meromorphic n-form with only simple poles,
we can proceed as follows:
Let g1(z1) = g11(21) - gf ¥ (21) be the factorization of gi(z1) over Q. Denote

by g the remainder of g; by g/’ ,';c and o}, the remainder of EZ;(} bezt by g1 x. Let
Jr be the ideal of Q[z,t] generated by g1k, 22 — g2,ks +++» 2n — gn,k and proyp —t.
We obtain a univariate polynomial gi(t) of ¢t as the generator of Jr N Q[t]. Then
ok(t) = 0 is the equation for residues of 8dz/f; ... f, at Yi.

Algorithm 1 (point residues for shape basis case)

Input g;(21), 22 — g2(21), -, 2n — gn(z1) : the shape basis, 0(z) € Q[z]
0(z1) + the remainder of 6(z) by (91(21),22 — g2(21), -+ » Zn — gn(2z1))
sf(g1) + g1/8cd(g1,91)

v « degsf(g)

d + deg gy

for j from Otod—-v-—1

gL e g1 ged(gi, g1)

ged(gr,99)” ged(g1,97) ged(gr, 97)

vj ¢ the remainder of — Z{ by fik

for { from Q0 tov —1

wyg + the remainder of g 2% of g1
90— 50 agvy — iy bewe
(a0y--- y@d—p—1,b0,-.. ,by_1) + the coefficients s.t. ¥ =0
gy g’y & the squarefree factorization of gi
for k from 1 to N

for ¢ from 2 to n

gik + the remainder of g; by gi'%

o + the remainder of EZ:_(} bez® by g1 k

Je — (G1,k:22 = G2,kr- -~ »Zn — Gn k) BkOk — L)

G + Grébner basis of Ji w.r.t. the lexicographical order z >t
Output {Gy,...,Gn}

Example 1 Put z = (z,y). Let us consider fi = z%(22* —1)3, fo =y —(2* + 1)
and = 35zy>® — x?y +y— 1. The annihilator P of the cohomology class [1/ fy f2] is
P = (22 — )0, + (62° — 32%)8, + 20z — 4. Then we have V = Span{vy,... ,vs},
where vy = 1422 — 3, vy = 122% — 2z, vy = 102* — 22, v3 = 82°, vy = 6z + 2,
vs = 4" + 22°, vg = 228 + 32% and W = Span{wy,w;, w2}, where

we = 80z — 9627 4 3625 — 423,

wy; = 24x% — 242°% 4 624,

wy = 24z° — 242" + 62°.

The remainder 8 of @ by (f1, f2) is § = (105/2)z® + 10527 — (105/4)z® — 25 +

(875/8)x* + 2 — 2% + 35x. It can be written as § = —(35/2)v; + vy + (2425/16)v3 +
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(3555/64)v4 — (739/4)vs — (1965/32)vs — (211/4)wo + (935/128)w; + (1055/6)ws.
Put ¢ = —(211/4) + (935/128)z + (1055/6)z*. For I} = (z*,y — (z° + 1)), we
have oy = —211/4. Thus, Resjo,1)(0dz/f1f2) = 4(=211/4) = —211. For I, =
((222—1)3, y—(2+1)), we have g2 = (935/128)x+(211/6). Then G5 = (—32768t>+
6914048t — 356848007, —2805x + 128t — 13504, —2805y + 64t — 3947). Thus we have
02(t) = —32768t + 6914048t — 356848007 = O which t = Respy(1,)(0dz/f1f2)
satisfies.

4.1 Localization

By using Corollary 3.6, we get an algorithm for computing the point residues of
6dz/f1 - fn. Let Uk, Vi, and W}, be vector spaces given by

Uy := {u(z1) € Q[z1] | degu(z1) < di — 1},

Vi :={v(z1) € Q1] | degv(z1) < di — i, Res, (———Pﬂ—dz) =0,a € Y1},

Jig o fnk
and
w(z1) .
Wi = {w(z1) € Q[z1] | degw(z) < di — 1, AT has at most simple poles}.
1Lk fnk

The dimensions of these spaces are dim U, = dg, dim V;, = dg—vy, and dim Wy = vy,
respectively.

Denote by vg j(z1) the remainder of P*z] by fig, 7=0,...,dg —vp— 1. Let
wg, j(21) the remainder of Jac- 2{ by fl,k(zl) for£=0,..., v — 1 Then we have
the next proposition.

Proposition 4.2
(i) Uy =V, © Wy
(il) Vi = Span{vk,o(z1),--- , Uk dp—vi—1(21)}
(iii) Wy = Span{wi o(z1), ... s Wk —1(21)}

Let 8,(z1) be the remainder of §(z) by fi (1), where §(z;) is the remainder
of 6(z) by I. we can write §,(z) into

dr—vEp—1 v —1
Ou(z1) = D arjvri(z)+ Y browke(z)
j=0 =0

and we have

0 Jacy el g ozt
Res, dz = Resy £=0 2LV dz ).
e (fl"'fn ) e ((fl,k"'fn,k Hj;tk fii

Thus we have that the residue of 6dz/f; ... fn at @ = (a1,... ,a,) € Y} is equal to
ek . bk,fal/H]¢k fi,j{a1)). In other words, for computing residues, we can
proceed as follows:
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Input g1(z1), 22 — g2(21), ---, Zn — gn(z1) : the shape basis, 8(z) € Q[z]
0(z1) « the remainder of 0(2) by (91(z1), 22 — 92(21), .-+ , 2n — gn(21))
g (21) - 9N (21) & the squarefree factorization of gi(z
for k from 1 to N
fie & gl
Vi  deg g1k
di ¢ Pk - Vk
0, + the remainder of 6 by fi
for : from 2 to n
gik = the remainder of g; by fi
fik < 2i — Gik
for j from Q0 to dy, — v — 1
91 . j-1 [} ng(gl,gi)

ged(g1,97)” ! ged(gy,9)) ged(gn, ) *

Uk,j < the remainder of — by fik

for { from O to vy — 1
Wy ¢ ¢ the remainder of fl' kze by f1 k
dy—vi—1
Ok 4= 0 — 550" T anjvr — kg br,ewne
(k05 -+~ »Okdy—vi—15Dk,05 -+ - 5 Dk we= 1)  the coefficients s.t. 9, =0

Tk {91k farks- o ey Ve Z,g_ bezf = t [T f18)
Gy + Grobner basis of Ji w.r.t. the lexicographic order z >t

Output {Gy,... ,Gn}

Example 2 Let us consider the same f; and fy with Ezample 1. For I} = (z*,y —
(z3+1)), Vi = Span{142?-3,122* 2z, —z*} and W, = Span{4z®}. The remainder
9, of by a* is x3—x24-35x. It can be written as 0, = (211/4)w; 0—(35/2)vy 14+v1 2.
Thus we have Gy = (t+211,z,y—1). In the same way, we have 8, = (211/24)w, o+
(935/512)11)2’1 + (375/256)1)2’0 + (459/16)’02,1 + (1343/128)’02,2 -— (513/16)1)2’3. Thus
we have G2 = (—32768t2 + 6914048t — 356848007, —2805z + 128t — 13504, —2805y +
64t — 3947) for I, = {(2z% — 1)*,y — (2® + 1)).

Example 3 Put z = (z,y). Let us consider f; = (¢ +1)!3(2z2 - 1)° and f, =
— (325 + 32* — 223 + 22? — 2z + 2). The annihilator P of the cohomology class

[1/f1f2] given in (A) is

P = (2% 4+ 1)(222 — 1)0, + (362° + 4227 — 122° + 225 — 102* — 823 + 42® — 4z +

2)0, + 88z + 10z.

Let us compute the residue of 0dz/ fi fa, where 6 = 35z3y® — 2y* + 2zy — 1. Along

the algorithm 2, for I} = {(222 —1)%,y — (32% + 3a* — 22° + 222 — 20 + 2)), we have

that 9
a1
R ——dz ) =R dz |,
es{v (1,)] (f1f2 ) SV (f1,1f1,2 Z)

_ (_7T4TTIS501 _ 126787493190876461 )
o 5036466357  380240477766549504" ) © L

Jac; = 9216217 — 36864z + 64512213 — 6451221 4 403202° — 1612827 + 403225 —
576x° + 36z. Thus we have

where

Gy = (417734204338866689619963936768t> — 1612447467044961048518379700224¢

—1778835134830001896609499526073,
1826154596005141z + 457019805007872t — 882044634267648
14609236768041128y — 10968475320188928¢ — 39094030445746101).
On the other hand, for I, = ((2? + 1)!3,y — (32® + 32* — 22° + 222 — 2z + 2)),
we have that Respy(1,))(0dz/ f1 f2) satisfies
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855519650485998980341686142500864t2 + 3302292412508080227365641626058752¢
+19261767639724614140497003918883305 = 0,

126787493190876461z + 29249267520503808t + 56450856593129472 = 0,

y=0.

We can apply our algorithms for any 0-dimensional ideal which has the shape
basis even though the given generators are not the shape basis.

Example 4 Let I be the ideal in Q[z,y] generated by (2% +y*)* + 32’y — ¢, z? +
y* — 1. Then I has the shape basis

{16° — 242* + 927,y — (42* — 5z + 1)}

with respect to the lezicographical order y = x. By the transformation law of the
residue ([1]), we have

Resqey ([((zz Ty + 3wzyh_ y3) (22 + y? — 1)]) = Resaey ([%])

for some h € Q[z,y], where Y is the set of common zeros of (2% +y?)% + 322y — ¢°
and 22 +y* — 1 and A = —42? + 1.
Let us compute residues

Resaey ([((wz R PR 3m2yh— y3)(a? +y? — 1)])

for h = 34a%y + 2z3y* — 32% + 42. Put 0 = hA = ~136yz” + (—8y* + 34y)z® +
1204 + 2y%2® — 17122 + 42.
The annihilator P of the algebraic local cohomology class [1/ f1 f2] given in (A)
18 .
P = z(4z® — 3)8, + (—8z"* + 62%)9, + 242 — 6.
Put I = (z%,y — 1) and I, = (163" — 242> + 9,y — z? + 5/4). Then we have

(fi, i) =L NI,
For I, we have v; o = —3, wy o = 2z and §; = —14v; . Thus the residue

Res(o,0) ([((zz T+ 3$zyh_ y3) (22 + y2 — 1)])

is equal to zero. On the other hand, for I, we have vy o = 122? — 3, vy = 8a?,
wy o = 64a® — 48z, wq; = 48z2% — 36 and

9 — 2_];?’_w + ._];w p— 5_%1) + }_(.)_1.1)
Y9 — 512 2,0 ) 2,1 4 2,0 32 2,1-

Thus we have Jo = (2(213/512 + (1/8)x) — t,4x* — 3,2y + 1) and

Go = (—12288 + 27264t — 14099, —64z + 192t — 213,2y + 1).
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