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SATO-KASHIWARA DETERMINANT
AND LEVI CONDITIONS FOR SYSTEMS

GIOVANNI TAGLIALATELA

ABSTRACT. In a paper with A. D’AGNOLO [10] we have introduced a variant
of the SATO-KASHIWARA determinant [33]. This determinant computes the
Newton polygon of determined systems of linear partial differential operators
with constant multiplicities, which gives a necessary and sufficient condition
for C*° well-posedness.

We give here a different presentation of this result. We give also applications
to the Cauchy problem in Gevrey classes that are not discussed in [10].

1. NEWTON POLYGON FOR SCALAR OPERATOR

1. Let h be a scalar operator of order M, with analytic coefficients and charac-
teristics of constant multiplicities, that is '

om(h) = HH?j(ﬂfaﬁ),

where H;(z,£) are homogeneous irreducibles polynbmials such that HHf is

j
strictly hyperbolic.

Let H be one of the H;. DE PARIS [11, Prop. 1] proved that, given an opera-
tor H' with principal symbol H, there exist operators I, 7 = 1,..., M, of order
< M —r — v.deg(H), such that one can locally decompose h in the following
manner:

M
(1) h=Y LH".
r=0

2. According to such decomposition, we construct the Newton polygon of h,
with respect to the characteristic factor H.
Set

NO(h) = {(ord(z;H'”f),ord(z;H"’r) — )

r=1,...,.M }
Consider the family A of the half-planes m of R? of the form

= {(x,y) ERQ‘mx+ny+pSO},
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with m,n,p € Z and mn > 0. The geometric Newton polygon is the intersection
of half-planes 7 in A containing N5 (h):

New; (h) = ﬂ .
TeN
NY%(h)Cn

The boundary of New;(h) has a finite number, say e + 2, of edges with slopes
—0=mg <My << Mg < Mey1 = 0. Denote &' New‘},(h) the set of vertices
of New); (h).

The full Newton polygon of H with respect to H is the set of couples

((ord(@s H™), ord(t, ™) — ), o (1) ),

where (ord(lLH""),ord(I,H™) — v,) belongs to & New} (k). We denote it
by Newg(h).
Ezample 1. Let z = (zo, x1), and

h = D§ + a(z) D3 D} + B(z) Do D} + ~(z) D} + 8(z) D3 DY,

with «, 3, 7, 6 analytic functions in some open set Q C R?.
Assuming o # 0, and ( # 0, the Newton polygon of A is

o ((4,3),8(2)60¢3)

2 | ((5,2),0(2)63¢2)
1 4

| | , , ((6,0),68)
0 l1 I2 l3 '4

3. The decomposition and the v; in (1) depends on the choice of H’, only vy is
invariant (it is the multiplicity of H in the principal symbol of h). However, the
Newton polygon does not depends on the choice of the operator H', of principal
symbol H.

Let H' be an operator of principal symbol H, it’s easy to show by induction
(cf. [39, Lemma I1.1.7)) that for any r € N there exist operators C; ;, j =0,...,r,
of order < j(deg H — 1), such that

r
o 'r—j
o =%,
: ']
Jj=0
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Given a decomposition of h with respect to H' as in (1), we can obtain a
decomposition of h with respect to H'. Each term I. H""" is replaced by terms of

the form l;C,’,mjlfl ! Ur*j, j=1,...,v,. Each of these terms will produce a point
orVr—J o Vr—J .
(ord(c, ;™" 7), oraCy, ) = (e - ),

and it’s easy to see that all of them are on the same horizontal line, on the left
of the point

(ord(l;ﬁ'w), ord(ILH"") — V,),

so they will not change the Newton polygon. Note that also symbols belonging
to an edge of New?};(h) with non zero slope are well defined. However we will not
consider them here.

4. Using the Newton polygon we can state the known results for C* and Gevrey
well-posedness as follows:

Theorem (De Paris [11], Flaschka-Strang [14], Chazarain [8]). In order the
Cauchy problem for h to be C* well posed is necessary and sufficient that
Newg(h) is reduced to a quadrant, for any H.

Theorem (Ivrii [17], De Paris-Wagschal [12], Komatsu [23]). If the mazimum
slope of Newy(h) is p, then the Cauchy problem for h is 4% well posed, for

1
any d < 1+5,f0r any H.
If the Cauchy problem for h is v well posed, then the mazimum slope of

New(h) is smaller than for any H.

d—1’

The Cauchy problem for the operator in Example 1 is v well posed, for any d <
3 3
3" It is not well posed in v¢, with d > 2 if a #Z 0.

5. We give the definition of upper and lower Gevrey order of an operator, that
we will use in the following.
Consider the ordering of Z* for which

CERIENCE) s i —i < (1-s)(f - )

)
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the inequality being strict if ' > j. The upper Geuvrey s-order of h is the max-

imum of the couples (i,7) belonging to New% (h), according to the order <.

('13)

The upper Gevrey s-symbol is the associated symbol in Newg(h), and we note it
by a$7°)(R).

Similary, we define the lower Gevrey r-order as the maximum of the couples

(4,7) belonging to New% (h), according to the order <:
(Tv')

(Z,J)( %) = j=j< (@ —i)/(1=r)
T,
the inequality being strict if i’ > 7. The lower Gevrey r-symbol is the associated
symbol in Newg(h), and we note it by a( )(h).

Necessary and sufficient condition for Gevrey and C* well posedness can be
stated as follows:

Theorem. If o ’3)(h) = 02’1)(h), then the Cauchy problem for h is well posed
in e, foralll <d<s.

If the Cauchy problem for h is well posed in v%, then ag")(h) = 01(,{1)( h), for
all1 <r <d.

In order the C’auchy problem for h to be well posed in C°°, it s necessary and
sufficient that a (h) = UH Y(h) for all s (or equivalently a (h) = or;'{’l)(h) for
all r).

6. We define the “sum” of two Newton polygons as follows: given N; and N,
Newton polygons, let h; and h, be differential operators such that Ny = Newp (h1)
and Ny = Newg (hy); then |

N1 + N2 = NeWH(hl o hg)

The sum does not depends on the choice of h; and hs, it is commutative and
reqular, that is

N; + Ny = N; + Nj = Ny = Nj.

With this sum the set of Newton polygons becomes a commutative monoid,
and the application

{differential operators} > {Newton polygons}
is a morphism from a (non commutative) ring into a (commutative) monoid. The
problem is now to extend such morphism to matrices of differential operators.
2. NON COMMUTATIVE DETERMINANT

1. Many authors have studied the problem of extension of a morphism from a
ring into a monoid to matrices with entries in the ring.
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‘The most important example is the morphism “principal symbol” from a ring
of differential operator to a monoid of symbols.

Let A a square matrix of differential operators of order < M, the “classical”
principal part of A is defined by

det O'M(Au),

where o) (Ay) is the homogeneous part of degree M of the symbol of A,,.
A more refined principal part can been defined as follows (cf. [27]): let r;, s;
integers.such that ord(Ay) < r; — s;, then consider

(2) det o, _s;(Ay).

If det o, _s; (A1) # 0, one say that A is normal and one can use (2) as principal
part of A.

Hoverer one can find invertible matrices such that det Ur,-—sj(Au) = 0, then
such definition is useless for matrices that are not normal. Moreover product of
normal matrices is not necessarly normal.

2. Since in the constant coefficient case one can consider the principal part of
determinant of the full symbols of the elements of A, as principal part of A,
HUFFORD [15] defined the determinant of a general matrix as the principal part
of the DIEUDONNE determinant. This principal part coincides with (2) if the
matrix is normal.

However, since DIEUDONNE determinant is defined on fields, this principal part
is a priori a meromorphic function. SATO-KASHIWARA [33] proved however that
it is in fact holomorphic.

3. We now recall DIEUDONNE determinant. (See [13] and [6] for complete de-
tails).

Let K be a field, not necessarily commutative, and set K* = K\ {0} and
[K*, K*] the commutator multiplicative subgroup of K*, that is the subgroup of
K* generated by the elements of the form ryr 'y~', with z,y € K*. Denote
K= (K*/[K*,K*]) U {0}.

Let Mat,,(K) be the ring of m x m matrices with elements in K, Dieudonné [13]
(see also [6]) proved that there exists a unique multiplicative morphism

Det: Mat,,(K) — K,
satisfying the axioms:

1. Det(B) =¢ Det(A) if B is obtained from A by multiplying one row of A on
the left by ¢ € K (where T denotes the image of ¢ by the map K — K);

2. Det(B) = Det(A) if B is obtained from A by adding one row to another;

3. the unit matrix has determinant 1.

Such a determinant satisfies natural properties as
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[am—y

. Det(AB) = Det(A) Det(B),

Det(A @ B) = Det(AB),

3. an m xm matrix A is invertible as a left (resp. right) K-linear endomorphism
of K™ if and only if Det(A) # 0;

4. if K is commutative, then K = K, and the DIEUDONNE determinant coincides

with the usual determinant.

N

4. The DIEUDONNE determinant is computed with the usual Gauss method. Let
GL,,(K) be the group of non-singular matrices, SLy,(K) the subgroup of unitary
matrices (a matrix U is unitary if it is obtained from the unit matrix I, by
replacing the zero in the i-th row and j-th column (i # j) by some element of K).
The usual Gauss method shows that given A € Mat,,(K) there exist unitary
matrices Uy, ..., U, such that U;---U,A is a matrix obtained from the identity
matrix by replacing the 1 in the m-th row and m-th column by some element
in K.

5. Now, let R be a noncommutative ring having the Ore property [32]: given
a,b € R there exists p, ¢ € R such that pa = ¢b. The Ore property is the necessary
and sufficient condition, in order that R admits a quotient field K.

Any morphism ¢ from R into a commutative monoid M can be extended as a
morphism (that we still denote by ¢) from K to KM, where KM is the quotient
monoid. By the universal property of K, ¢ factorizes trough K, according to the
following diagram:

/T (p T |
K d KM

N A

In order to extend the morphism ¢ to Mat,(R), one can consider the map
20 Det o where 2 is the natural injection of Mat,(R) in Mat,(K) induced by the
injection R — K:

7

Mat, (K) K KM

=X

K
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So we have the following

Theorem (Adjamagbo [4], Moussy [31]). Let R be an Ore domain, M a com-

mutative monoid, and ¢: R — M such that (a) is a regular'element of M for

any a € R. Let KM be the quotient monoid KM = (R)™'M. '
There exists a unique map

det ,: Mat,(R) — KM

such that
1. det ,(AB) = det ,(A) det ,(B),
1 0 ... 0
2. det, O - = a, where a denotes the itmage of a by the map
; 1 0
0 0 a
K — K.

Note however that det , has values in the quotient monoid. One may ask when
the extension is “regular”, in the sense that det ,(A) € ¢(M) for any A € Mat,(R).

6. ADJAMAGBO gave a positive answer in the case the ring R is a filtered ring,
M is the associated graded ring (which is of course assumed to be commutative
and factorial) and ¢ the natural symbol map R — GR [2], giving so an algebraic
version of SATO-KASHIWARA result [33]. He obtain also a result for geometric
Newton polygons on Weyl algebras [3].

7. We return to our problem. Let Og be the ring of homomorphic functions
on a open set 2, and Dgq the ring of differential operators, with homomorphic

coefficients on 2. Using ADJAMAGBO results we can prove that we can extend

o$¥ and o' to matrices with entries in Dg, and also that

Mat,(Dq) — { geometric Newton polygons },

is well defined. This can be enough for the applications, but it’s not enough to
prove that the map ‘

Mat,(Dq) — { full Newton polygons },

is well defined. .
To prove this, we can use SATO-KASHIWARA original argument.

1 An element m in a commutative monoid M is called regular if mn = mp implies n = p.
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8. Consider the following diagram

Mat,(Eq) Ea z Oq
Ia ...... | la W ~
I X gz_
Mata(KEa)  Kéq 1 Mq
R\& /
K&

where ¢ is the principal symbol, and Det the DIEUDONNE determinant.

Set det sk (A) = o(Det(A)). A priori one has detsk(A) = g— € Mgq. SATO-
KASHIWARA proved that if Z = {(m,ﬁ) ] g9(x,&) = 0}, then there exists U C Z
with codim U > 2 such that in the complement of U det gk (A) is holomorphic.
Using then Hartog’s Theorem they conclude that det gk (A) is holomorphic ev-
erywhere.

Now, considering Det(A), one has Det(A) = Q~'P, for some P and @ in
£a. Repeating SATO-KASHIWARA proof with Z = {(z,£) I o(Q)(z, &) = }
we can prove that there exists U C Z with codimU > 2 and such that, in
the complement of U, Det(A) is the image by m of some P € &g, that is there
exists P € Eq defined up to commutators that represent generically (out a set of
codimension 2) DIEUDONNE determinant.

Using the trick of the dummy variable we can prove that if A is a matrix of
differential operators, then Det(A) is generically defined in D, where Dq is the
canonical image of Dq in K&,. '

3. LEVI CONDITION FOR SYSTEMS

1. Using previous remark we obtain then

Theorem. Let A a square matriz of differential operators of order < M, and
assume that

(3) det opr(A H H;"(z,£),

where H;(z,&) are homogeneous irreducibles polynomials such that HHj 8
J
strictly hyperbolic.
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Then there exists a canonically define Newton polygon Newy(A) along each
irreducible factor H, having the following properties

1. the Cauchy problem for A is C*° well posed if and only if Newy (A) is reduced
to a quadrant, for any H;

2. if the mazimum slope of Newgy(A) is < p, for any H, then the Cauchy
1
problem for A is 4% well posed, for anyd < 1+ =;
p

if the Cauchy problem for h is 4% well posed, then the mazimum slope of

Newp (A) is smaller than , for any H.

d—1
The first part of this Theorem can be proved for more general matrices. Indeed
we can replace (3) with

detSK(A) = HH]mJ(iE,f)

We can prove then that Newp(A) is reduced to a quadrant if, and only if, the
Da-module associated to A has reqular singularities in the sense of KASHIWARA-
OsHIMA [22]. D’AGNOLO-TONIN [9] have prove that the Cauchy problem for
such Dg-module is well posed in C*. |

However as we are interested also in Gevrey well-posedness we will restrict to
“classical” matrices and we will assume (3).

2. In order to prove our result, we recall that MATSUMOTO [28, Theorem 3.1]
proved that any system with constant multiplicities can be microlocally reduced,
out of an analytic set, to a direct sum of matrices of pseudo-differential operator
having the following normal form

A; = I(Do — A\j(w; D)) + J;|D'| + by (; D),

where
01 0 0 0 0
0 : _ :
Jj = 10 bj =
01 ~O 0 ~O
00 00 (b;),’ (bj),’j;

Moreover, one can assume A; = 0 and (bJ)’,jj 0.

3. To prove the Theorem, it’s enough to prove the Theorem for systems in the
normal form. We have
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Dy Dy 0 ... 0\ (1 -Di DI .. (=1 Dy
0 Dy D : 0 Dy —DoyD, :
0 D;
I \v DB D _D5—2D1
(b5)5 (b5)7-1 Do \0 0 Dyt /
1 0 0
0 Dy O
- 0
Dyt 0
x % * %%
where

W = DV+Z UJ(b VDJ 1D1UJ

(we don’t need to explicit the others terms on the last line). We have then

Det A=W.

4. KAJITANI [19, Theorem 3], proved that the Cauchy problem for A; is C*®-
well-posed if and only if

(4) ord(b;)y < —(v; — 3),

forj=1,...,r,l=1,...,l;,3=1,...,v; — 1, and (4) is equivalent to say that
the Newton polygon of W is reduced to a quadrant. This proves first statement
of the Theorem. '

5. Assume that the maximum slope of New, (W) is p, we have

v — J 4+ ord(b;)"
1 —ord(b;)y

that is

(5) ord(B,)! < —(m—J)-}—i—(m—J—*—l),

where s = 1+1. Condition (5) is sufficient for v* well-posedness if d < s (cf. [35]).
D

On the other side if Cauchy problem for h is ¥¢ well-posed, then (5) is verified
with d < s (cf. [30]), and we obtain also the necessity.
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6. DBy similar method we can prove the following

Theorem. If det *)(A) = det OV (A), then the Cauchy problem for h is well
posed in v%, for all1 < d < s.

If the Cauchy problem for h is well posed in ¥, then det ™)(A) = det C1(4),
foralll <r <d.

In order the Cauchy problem for h to be well posed in C*, it’s necessary and
sufficient that det ) (A) = det “V(A) for all s (det ™) (A) = det OV (A) for allr).

'T'his last result is very useful when we have to compute the determinant. Indeed
if Ais (, ) normal that is there exists n,, m, € Z? such that ord®® 4,, < n,—

and deto m, A 7 0, then
det 9(A) = det U,fl'l’_s_)mJAU.

4. EXAMPLES

D2 + aD; BD;
vD, D2 + 6D,
lytic functions of z = (zg, 1), and vy £ 0. If s <2, A is (-, s)-normal, and

0 if s <2,
d t(’s)A = 60 1 3
) {ﬁé‘ + (@ + 8)E2¢, + (ab — By)E? if s =2.

If a4 #0orad—fy #0, then det VA # det D A, so Cauchy problem
for A is not C*-well-posed. If a4+ =0 and ad — fy =0, A is not (-, s)-normal,
for s > 2. Let

P,=+*D; and P,= v2 D} — 2yyy Do + oy Dy + i,
with 1 = 2(75)% — ¥760 — @) + @17, so that Pro (Df+aD;) = Pyo(vD;). We

have
1 0\ _(Di+aDi BD:i \_ (Di+aD; D
—Pl P2 ’YDl Dg+6D1 o 0 %4
with

W =Dy — 2y% D5 + uDg — 2v(8 — ¥89) DoDs
— [v(%8 — ¥80)0 + 276(78 — %66)] Dx.
We have aH (D2 + ole) =2 UH (Pz) for every s. Then

Example 2 (cf. [19, 38]). Let A = , with «, 3, v, § ana-

' if s <3
det( S)A = U W 50 ! 1 1 ’
7 & ( )= {gé + (760 — ¥0) /€36 if s =3.

Note that if 7j0 — 0y = 0 then W = v*Dg — 2y, D3 + uD?, so det 9 A = &2,
for all s. Remark that the function (y,d — vdg) /7y is analytic.
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Ezample 3. Consider the matrix
A= D%+D0D1—D0—D1 D(z)—D%+aDo+(1+OZ)D1+,B
D%—-Do-i-l D0D1—D%+D0+QD1+’Y .

Since Aq; and A, are operators with constant coefficients, we have

1 0 An A _ (Aun A
—Ay An) \An A 0o W)
where W = A11A22 - A21A12 = Dg -+ Z W”D:)D{ and
i+5<2
We=1-a+a—F+7v
Wih=9-a
Wop=-1l—-a—ay+on—26i—7+%+21

(we don’t need to explicit the terms W;o, since they will never contribute to
Newton polygon). Note that A;; is not invertible as an operator acting in C*°,
but Gauss algorithm is performed in the quotient field of £q, where it is invertible,
so we can write det VA = U%’s)W, for all s. The Newton polygon of A is then

b A

Wo,2 #0 Wo2=0, W1 #0

H

v

Woe=Wi1=0,Wo1 Z0 Woo=Wi1=Wp1 =0
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