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1 Introduction

This note is based on [3] and presents a few improvements of it. We are concerned
with local existence and gain of regularity of solutions to the initial value problem for
semilinear Schrédinger equations of the form ‘

Ou —iAu = f(u,0u) in R x R*, (1.1)
u(0, z) = ug(x) in R, (1.2)
where u is a complex-valued and unknown function of (¢,z) € RxR", 2 = (x1,..., %),

i=+/-1,8,=08/0t,0; =0/0x;, 8 = (01,...,0,), A = 8? + --- + 02, n is the spatial
dimension, and the nonlinear term f(u, v) is a smooth function on R? x R?" satisfying

flu,v) = O(Ju)* + |v|*) near (u,v)=0. (1.3)

The existence of time local solutions to (1.1)-(1.2) was studied in [1], [2], [17], [24]
and [25]. The equation (1.1) cannot be treated by the standard energy method, because
the nonlinear term contains Ju. So-called loss of derivatives occurs. To overcome this
difficulty, smoothing effect of dispersive-type equations (see [4], [5], [6], [8], [11], [18],
[19], [23], [27], [32] and [35] for instance) effectively applied to (1.1). More precisely,
the sharp smoothing estimate of e~ (see [24]) or the theory of Schrodinger-type equa-
tions (see [9], [10] and [28, Lecture VII] for instance) makes (1.1)-(1.2) to be solvable
locally in time. In fact we proved the local existence of smooth solutions to (1.1)-(1.2)
by diagonalizing a 2x2 system for *[u, 4] modulo bounded operators and applying Doi’s
pseudodifferential operator discovered in [9] to it. See [1] and [2]. More recently, in [25],
Kenig, Ponce and Vega succeeded in removing the ellipticity condition on the principal
part required in [1] and [2]. The drawback of [1], [2] and [25] is that the initial data are re-
quired to be extremely smooth because the method of proof is based on pseudodifferential
calculus of operators with smooth coefficients.



We are interested in the gain of regularity associated with the spatial decay of the
initial data as well. Such phenomena are generally observed in solutions to various
dispersive-type equations. See [7], [12], [13], [14], [15], [16], [20], [21], [22], [31] and
[33]. Hayashi, Nakamitsu and Tsutsumi ([14] and [15]), and Doi ([12]) studied this prob-
lem for (1.1) in which f(u,0u) was independent of du and da. In [14] and [15] gauge
invariance (see (1.5)) was assumed, and an operator J = (Ji, ..., J,) defined by ‘

Jeu = Tpu + 2it0pu = eI 7424t0, (el Mty

was effectively used, where |z| = /2% + - -- + z2. The operator J satisfies good com-

mutation relations [0, — ¢A, J] = 0 and [0}, Jx] = 4, and acts on nonlinear terms with
gauge invariance as if it were a usual differentiation 8, where &, = 1if j = k, 0 oth-
erwise. In [12] Doi developed their idea and made strong use of microlocal analysis
and paradifferential calculus when the nonlinear term was a holomorphic function of .
Recently, Hayashi, Naumkin and Pipolo ([16]), and Pipolo ([30]) studied this problem
for (1.1) in one space dimension. Their nonlinear term f(u,0;u) depends not only on
(u, @) but also on (0,u, 011), and is gauge invariant. It is very interesting to mention that
they constructed the modified operator only from a multiplier and the Hilbert transforma-
tion, and that to eliminate the loss of derivatives, they obtained one kind of the ordinary
Gérding inequalities for singular integral operators of order one.

There are two purposes in this paper. One is to improve the local existence theorems
in [1] and [2] from the viewpoint of the smoothness of the initial data. Another is to
observe the gain of regularity without restrictions on the spatial dimension. To state our
results, we recall several function spaces and notation. Let m and [ be real numbers. We
set (z) = /1 + |z|? and (D) = (1 — A)}2. H™! is the set of all tempered distributions
on R" satisfying

lullns = ( [ 1Dy u(o) P P

In particular, we put H™ = H™°, |||l = ||'llm,0, L*> = H and ||-|| = ||-]lo. We often
deal not only with scalar-valued functions but also with vector-valued ones, and we use
the same notation of norms for them. In a similar way, (-, -) denotes the inner product of
scalar-valued or vector-valued L?-functions. Any confusion will not occur. Let X be a
Fréchet space, and let I be an interval in R. C¥(I; X) denotes the set of all X -valued C*-
functions on I for k = 0,1,2,.... For any real number s, [s| denotes the largest integer
less than or equal to s. We now present our main results.

Theorem 1.1 (Local existence for quadratic equations). Assume (1.3). Let 6 be a real
number greater than n/2 + 3, and let § be also a real number greater than one. Then for
any uo€ H*NH®=%° there exist a positive time T depending on ||u||p + ||uo||o—ss and a
unique solution u to (1.1)-(1.2) belonging to C([—T, T]; H'NH®~%%).

Theorem 1.2 (Local existence for cubic equations). Assume that f(u,v) is cubic, that
is, :

flu,v) = O(Jul* + |v*) near (u,v)=0. (1.4)
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Let 0 be a real number greater than n/2 + 3. Then for any uo€H® there exist a pos-
itive time T depending on ||uol|g and a unique solution u to (1.1)-(1.2) belonging to
C([-T,T}; H).

Theorem 1.3 (Gain of regularity). Assume that f(u,v) is cubic and gauge invariant,
that is, for any (u,v) € C x C"* and for any 0 € R

f(e”u,ev) = e“ f(u,v). (1.5)

Let 6 be a real number greater than n/2 + 3, and let m be a positive integer. Then for
any ug€ H™ there exist a positive time T depending on ||ug||g and a unique solution u to
(1.1)-(1.2) belonging to C([~T, T]; H%). Moreover u satisfies

(z)7py € O([-T,T)\ {0}; HY) (1.6)

for |a| < m, where o = (a1,...,0,) € {0,1,2,...}",
0% = Ot - 9%,

al = oy + -+ a,, and

Note that if f(u,v) is smooth, quadratic and gauge invariant, then f(u,v) is cubic.
We would like to emphasize that the existence time 7" in Theorem 1.3 is independent of
m. Therefore we can say that the solution to (1.1)-(1.2) gains regularity according to the
decay of the initial data.

Remark 1.1. Suppose that f(u,v) can be split into f(u,v) = fo(u) + fi(u,v), where
f1(u, v) satisfys the gauge condition (1.5) and fo(w) does not. Then Theorem 1.3 holds
provided m = 1. ,

Our idea of proof is basically the developed version of that of [1] and [2]. We see
(1.1) as a system for '[J%u, mhaKm. For this reason, we study the L?-well-posedness
for linear systems corresponding to nonlinear ones. To eliminate the loss of derivatives,
we make use of block diagonalization and Doi’s operator. Our basic tools are pseudodif-
ferential operators with nonsmooth coefficients.

This paper is organized as follows. In Section 2 we introduce pseudodifferential op-
erators with nonsmooth coefficients and prepare lemmas needed later. In Section 3 we
study well-posedness of linear systems. Finally, in Sections 4, we remark how to apply
the linear theory developed in Section 3 to proving Theorems 1.1, 1.2 and 1.3.

2  P$DOs with nonsmooth coefficients

We here introduce classes of pseudodifferential operators whose coefficients have limited
smoothness. Such an operator was originated by Nagase in [29]. Since then, the theory
about it has advanced and has applied to studying nonlinear partial differential equations.
See [34] and references therein. Let ST be the set of all symbols of m-th order classical
pseudodifferential operators of the type p, . We set S™ = ST, for short. See [26].



Definition 2.1 (Nonsmooth symbols). Letm be a real number, and let s be a nonnegative
number. A function p(z, &) on R* x R™ is said to be a symbol belonging to a class 9B S™

if
Ipllsssmi = Sup &~ )
| |<l

015) < 400

for all nonnegative integer [, where 98° denotes the Banach space of all Clsl-functions
$(x) on R satisfying

04 _ Ao
e = 3 swploo(@) + 32 sup AN
|al<[s] z€R™ la|=]s ] yER l.'L' — ’yl
~N P y
For the sake of convenience, we often use D = —i0 below. If a symbol p(z,§) is

given, then a pseudodifferential operator P = p(z, D) is defined by
1
p ey dyd
we) = g [ bl ut)dude

W/ e“4p(x, £)d (jf

for uc.%, where -6 = 11& + -+ + zp&p, U is the Fourier transform of u, and .&
denotes the Schwartz class on R*. Conversely, if an operator P is given, then its symbol
o(P)(z, £) is determined by o (P)(z, £) = "¢ P¢*>*. In addition, we will often need the
L2-boundedness theorem for pseudodifferential operators with nonsmooth coefficients.

Theorem 2.1 (Nagase [29, Theorem A]). Assume that p(x, &) satisfies
Ip("‘) (z,6)] < Cal®) ™,
P (@, €) — p@(y, &) < Cal€) |z — g7

for || < n+1with0 <7 <o < 1. Then p(z, D) is L?-bounded, that is, there exists a
constant C, depending only on n, o and T such that

Ip(z, D)ull < C:C(p)|lu|

for any u€ L2, where

Clp)= . sup (&' (z,6)))

lal<nt1 4R
(@) (. £) — p(@
+ Z Sup (<€>lal—”rlp ( 76) pg (yag)l)

Nagase proved Theorem 2.1 by the approximation of nonsmooth symbols by smooth
ones. This is said to be symbol smoothing. We will observe that symbol smoothlng isa
strong method to deal with nonsmooth symbols below.

11
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We now introduce symbol smoothing. Let p(z, £) be a symbol belonging to %°S™,
and let p(z) € .% be a Friedrichs’ mollifier satisfying

suppp C {2l <1}, plz) = p(~2) > 0, / pla)dz =1,

We put pos(z) = 20%p(z) for short. Since p(z) is an even function, it follows that
Pa,s(z) = (=1)letBlp, 5(—x). We set .

P'(z,8) = / p(y)p(z — (&) °y,&)dy
= (O [ o(©) y)pla — v, €)dy
on

= (" [ o€ (o =)oty ),
pb($7§) = p(:L”, f) - pﬂ(xa 5)

Then p(z, &) is decomposed as p(x, £) = p*(z, €) + p’(x, €), and p*(z, €) and p’(z, €) are
the smooth principal part and the lower order term of p(z, £) respectively. More precisely,
the properties of symbol smoothing are the following.

Lemma 2.2. Let m and s be real numbers satisfying 1 < s < 2. Assume that p(z, §)
belongs to %8°S™. Then for any multi-indices o and 3

19%(3) (@, €)1 < Collpll g o (€)1 IF=1D /s
() m—1—

P (@, < Callpll e sm o (€)1,

(@) (@) m—1+(s—1)/s—la -

P (@,6) ~ 9 (1,6)] < Callpllavsm o (€)1 D/s el g — o1,

where 7, = T if T > 0, 0 otherwise.

<
<

Using the symbol smoothing, we obtain the fundamental theorem for algebra and the
sharp Gérding inequality.

Lemma 2.3. Let s be a real number greater than one. Assume that p;(z, &) belongs to
PB°S7 for j =0, 1. Set

(I(x7£) :p(](x’f)pl(zag)’ T(:L‘,f) :pl(x7§)-
Then

po(z, D)p:(x, D) = py(z, D)po(z, D) = q(z, D), 2.1

pi(z,D)* = r(z, D) (2.2)

modulo L*-bounded operators, where p,(x, D)* is the formal adjoint of p1(z, D).



Lemma 2.4 (The sharp Garding inequality). Assume that p(x,€) = [pi;(,€)]ij=1,..m
is an m x m matrix of symbols belonging to the class %S, and assume that there exists
a nonnegative constant R such that

p(z,&) +'p(z,£) >0

for |€] > R. Then there exist a positive constant Cy and a positive integer | such that for
any u € (L)

‘Re(p(z, D)u,u) > ~C1 Y lIpijllamsrallull® 2.3)

ij=1

Roughly speaking, Lemmas 2.3 and 2.4 show that pseudodiffetential operators of at
most order one with C*-coefficients can be seen as classical ones of the type 1,0. Since
pg(a:, £) belongs to S /s» an asymptotic formula for pg (z,&) implies (2.1) and (2.2) pro-

vided s > 1. To prove (2.3), we regard that p*(z, ) is in (S 1)m2 and apply the Friedrichs
symmetrization to it in the sprit of [26, Chapter 3, §4]. ‘

3 Linear systems with nonsmooth coefficients

Roughly speaking, Theorems 1.1 and 1.2 are the local existence theorems of the system

for *[u, @], and Theorem 1.3 is that for *[[J*u}ja|<m, [J*U]ja)<m]). SO, this section is de-
voted to studying the well-posedness of the initial value problem for 2] x 2/ systems of
Schrédinger-type equations of the form

Lw=g(t,r) in (0,T)xR", (3.1
w(0,z) = wo(z) in R", (3.2)

where w is a C%-valued and unknown function, g(t, z) and wy(z) are given functions, T'
is a positive time, [ is a positive integer, and the operator L is defined as follows:

L= Iyd, —iBxA + Y BM(t,2)d + C(t, ),

k=1

I, is the p x p identity matrix (p = 1,2,3...),

I, 0
Ex=5L&[-1]= [Ol —Il]‘ ,
B*(t, ) = [b5(t, %)) j=1,...21> and O(t, 2) = [ci; (¢, T)ij=1,...21- In [1] and [2] we studied
the case of [ = 1 by diagonalization and Doi’s method. We here develop the idea of [1]
and [2] and solve (3.1)-(3.2). :

13
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Lemma 3.1. Assume that fori,j =1,...,2landfork =1,...,n
k . 72 1 . 0
Cij(tv 'T) € C([Oa T]a ‘@O)a
and assume that there exists a nonnegative function ¢(t, s) on [0,T] x R such that
#(t,s) € C([0, T}; Z*(R)),

+00
sup #(t, s)ds + sup
t€[0.7] J —o00 t€[0,T]
TER

< +o00,

/T ;9 (t, s)ds
0

n l
Z Z(“’Z(t,iﬁﬂ + |b€l+z’)(l+j)(t? z)|) < ¢(2, zp) (3.3)

k=1 ¢,57=1

for (t,7) € [0,T] x R* and for p = 1,...,n. Then (3.1)-(3.2) is L2-well-posed, that
is, for any wo€(L*)* and for any g L*(0, T'; (L?)%) there exists a unique solution w to
(3.1)-(3.2) belonging to C([0,T1]; (L*)%).

Lemma 3.1 is basically proved by a energy inequality and duality argument. For the
sake of convenience, we denote the [ x[ block diagonal part of B*(t,z) by B¥%28(¢, 1),
that is,

Bb42(t, z) = [bfj(t, )i j=1,... B [bfj(t, )i j=t41,...21-

We here introduce pseudodifferential operators as follows:

A(t) = Igl - —;-Z Egl(Bk(t, .’L‘) et B’“’diag(t,x))ak(l — A)—l,
k=1

K(t) = [Ilkl (t, x, D)] D [Ilkll (t, z, D)],
kl (t’ z, é-) = e—p(t,z,{)) k’l (t’ z, é-) = ep(t,$,§)7

2,6 = /0 7 51, 5)dse; ()

The block diagonalization is accomplished by A(%), and Doi-type operator K (t) elimi-
nates the loss of derivatives. We make use of them in a transformation w — K (¢)A(t)w.
This is automorphic on (L2)%. Applying K (t)A(t) to £, we have

K()A®#)L = (10 — iEaA + Q) K (t)A(2)

modulo L?-bounded operators, where

n

o(Q(t) = > _(2Iug(t, x;)€; + iB*8(t, 2)E;).

=1

It follows from (3.3) that o(Q(t)) + to(Q(t)) > 0 for |¢| > 1. Then, using the sharp
Gérding inequlity (2.3), we can obtain the energy inequality for K (¢)A(t)w.
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4 Proof of Theorems 1.1, 1.2 and 1.3

Finally, we remark how to apply Lemma 3.1 to the proof of Theorems 1.1, 1.2 and 1.3.
When we make use of Lemmas 2.3 and 2.4, we require

u € C([-T,T); B,

so that
f(u,0u) € O([-T,T]; #°).

Then, in view of the Sobolev embedding, we require
ue C([-T,T); H%), 6>n/2+3.
In order to make use of Lemma 3.1, we set

( M<x>—67

M (D)2 eut, 5, 35) Pd;,
ot = 2 o

MY S [ DOt 5,2, P

\ I BI<m

for Theorems 1.1, 1.2 and 1.3 respectively, where M > 1,0 < ¢ < land I; =
(.’131, oy 1, Tjgly e e ey :I,'n)
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