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1 Introduction

In this proceeding, we consider the initial value problem for the nonlinear Schrédinger
equation with nonlinear term of derivative type, i.e.,

i0u = —Au + F(u, @, Vu, Vi)
ult:O = Uo,

(NLS) {

where u is a complex valued unknown function of (¢,z) € R! x R® (n > 2) and @ is
the complex conjugate of u. A is the Laplacian in the n dimensional space and Vu =

(d1u, - - -, Opu). The nonlinear term F' is the polynomial on C2+27 of degree p = 2 or 3,
ie.,
_ a « Q242
F(z1, 22,23,y 2242m) = 9, Ca2f125%25% -+ 25450 s
jal=p
where C, € C and a = (a3, -, Q242n)-

There are many results known about (NLS). Kenig-Ponce-Vega [11] showed the well-
posedness for small initial data by applying the smoothing effects of linear solutions.
Chihara [4] proved the problem for large initial data. His idea is based on the energy
method through the pseudo differential operator technique. These results are shown by
imposing large regularity on the initial data. (Recently, Chihara [3] has solved (NLS)
under the condition ug € H*°(R™) with s > n/2 +3.) :

Our concern in this work is to solve (NLS) for the initial data with small regularity.
We obtain the following results. (One can see the notations in theorems just after the
statements.)



Theorem 1.1 (the case p =3) let s > (n + 3)/2. then, for ¢ € H*'(R™) with ||d||s0
sufficiently small, there ezists a unique solution u to (NLS) on [0,T] (T depends on ||¢||s,0)
such that

u € C([0,T); H*°(R™)). (1)

Theorem 1.2 (the case p=2) Let s > (n+3)/2,s' > (n+2)/2 and t' > 1/2 satisfy
s> s'+1'. Then, for ¢ € H*O(R™)NH*"* (R") with ||p||s » sufficiently small, there exists
a unique solution u to (NLS) on [0,T] (T depends on ||¢||s'¢) such that

u € C([0, T]; H*°(R") N H**¥ (R™)). 2)
The solutions in Theorem 1.1 and 1.2 gain the regularity in the following sense.

Theorem 1.3 The solutions in Theorem 1.1 and 1.2 satisfy

I|6;+1/2UIIL29(L2A) <oo for1<j<n. (3)
J T,Zj

Notations.
In the above theorems, the function spaces L (L7.- ) and H?"(R") are defined by
et}

’I‘

L’;.J,(L;,’gj) = {u;”uHLp (i) = / (/ /n lu(t, x ’dtd:g) dz; < oo},
where Z; = (21, -+, Zj_1,Tj41," " *, Tn)-

H?"(R") ={f € & |fllo;r = K&} (D) fllzz < oo},

where (z) = (1 + |z[%)¥? and (D)°f = F~Y(¢)°Ff (F and F~! stand for the Fourier
and inverse Fourier transform, respectively). 0 f = F ‘1|§j|"‘["]§j[-”]f f. [o] is the largest
t
integer which does not exceed 0. U(t)¢ = exp(itA)¢ and G(t)F = / U(t — s)F(s)ds.
0
We consider the initial value problem (NLS) by solving the integral equation :

u(t) = @(u)(?)
= U(t)up —iG(t)F (u, a, Vu, V). (4)

Since the nonlinear term contains some derivatives, it causes, so called, the loss of deriva-
tive. Because of this difficulty, it is impossible to estimate the second term in (4) by the
unitarity and Strichartz’ type estimates of U(¢) ([2], [17] and [19]). To overcome the loss
of derivative, we make use of the smoothing properties of U(t) and G(t), i.e.,
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Lemma 1.4 (Hayashi-Hirata [8]) Let ¢ € L*(R") and F € L; (L35 ). Then, we have
*3

102UV llgaz .y < Cligllze, | (5)
,11]‘
18;° GO Fllupaz < ClIFllugaz )
111_7'
”ajG(')FHLg‘]’.(L;A) < C||F||L;j(L;A_)- (7)

To introduce the maximal functions, we demonstrate the estimates of ®(u) in (4). For
simplicity, we consider the case F(u, @, Vu, Vi) = dududu. Applying (6) in Lemma 1.4
to ®(u), we can show that

lo @@l < lluollso + ClIO; " (Oududkw) s oz )
s

IN

lluolls,0 + C||8u8ua;—1/2aku||%j (82 .)
s
+||(some lower order derivatives)||r1 (12 - (8)
zj Tx;

J

Note that, to obtain the last inequality, we use Leibniz’ rule for fractional derivatives ([5]
and [12]). Since, by Holder’s inequality, we can show that o

18udud; Ol Ly 12
zj T,zj
, s—1/2
< ol o 10uliz, iz 10605 Pl O
we need to estimate ||0®(u)||2 (<. ) in order to complete the contraction mapping prin-
J° Tz,

J

ciple.

||3‘1’(U)“ng(L;§>A )
13]'
< HU(')(?UOHL;.(L% )+ IG()OF ||z (1= )- (10)
T,:l:j J T,zj

Hence, it is important to control the L2, (L%]’ )-norm of maximal functions for U(t)0ug and
G(t)OF, where we call ||U(-)¢(z)| e and ||G(-)F(z)||r~ the maximal functions for U)o
and G(t)F, respectively. In the proof of Theorem 1.1 and 1.2, the estimates of maximal
functions play an important role to determine the regularity of uy.

Remark 1.1. When the nonlinear term is quadratic, we need to estimate the weighted
L} (LZ)-norm of maximal functions, i.e., {z) U ()¢l 12 (r=-. ) and || (:c)TG(-)qung(LooA )
J J T,z T,z

for 7 > 1/2.
Remark 1.2. We are not allowed to estimate ||8;0; 12| L2 ) In (9) so that
Ty

—1/2 -1
10605 *ullpgs 22y < CT 1060 *ulligg 1712
T,z Tp



for some r > 2, since we want to use (7) in Lemma 1.4. This is the reason we need to

impose the smallness on u,.

We shall introduce the statements about the estimates of maximal functions in the

forthcoming section.

2 Estimates of Maximal Functions

In this section, we introduce some inequalities concerned with the maximal functions and
the outline of the proofs. There has been several kinds of estimates for maximal functions
(see [14], [15] and [18]). Our main result is

Theorem 2.1 Letn/2 <o and 0 < T < 1. Then, for ¢ € H**(R™), we have
I C)llzz, ey < Cllglloo- (11)
\T
In addition, let n/2 < o' < 0 and 1/2 <7 < 1. Then, we have

”(ny( )¢”L2 (L ) < C”¢”U’J + CT1/2“¢“0+7, (12)

As a corollary of Theorem 2.1, we obtain

Corollary 2.2 Under the same conditions as in Theorem 2.1, we have

IGOFllig s < ClIF e, (13)
V2

T o+1—1/2
1@ COFllig umy < CIFllgyenoy+CTV® sup 107 Fllyy 4o . (1)
T; 1<k<n Tz

"To prove Theorem 2.1, we need several lemmas.

Lemma 2.3 Let 0 > n/2. Then, we have
T
D) [ U = )F(s)dsluz, w. ) < CIF g, a1 . (15)
VT J VT
Therefore, it follows that

Y7 [ U-s)F(s)dsllzz < CIIF s, ey (16)



Proof of Lemma 2.8. Note that the integral kernel of (D)~2°U(t — s) is
K(t—s,0—y) = 2m)™ [(6)™ exp (~i(t - 5)6" + iz~ y) - §) de.
Since 20 > n, there exists no singularity at t = s and we have
|K(t—s,z—y)| < Cl{z—y)™.

Hence, by Young’s inequality, we obtain (15).
We next prove (16). By (15), it is easy to show that

D) [ U(-a)Ps)asl,

_ I /0 (R, (D) /0 Ut = s)F(s)ds)dt

< ClIFIs 2y
J T,a:j
This completes the proof of Lemma 2.3. O

To prove Theorem 2.1 (12), we use the smoothing properties of U(t) and G(t). One
can see the one space dimensional version of the smoothing properties in [1]. The n space

dimensional version is

Lemma 2.4 Let 2 < p < co. Then, we have

!|a;/2—1/pU(,)¢‘|ng(LiA) < CTl/p||¢||Lg, (17)
&
197 GO Fllgy iz y < CTPIIFly . (18)

J J

proof of Lemma 2.4. The results follow from Stein’s interpolation theorem and LP-

boundedness of the Hilbert transform. O
Now we start to show the outline of the proof for Theorem 2.1.

Proof of Theorem 2.1. We first prove (11) by the duality argument. Applying Lemma
2.3 (16), we have |

| " (F(s), (D)~U(s)$)ds
= <(D)“’ /OT U(—s)F(s)ds, cb)

_ T
(DY [ U(=3)F(s)dslluz gllz2
CI1Pllzz, w3 Il
sTj

AN

IN



Hence, we obtain (11). We next prove (12). Since
(z)"U(t)p = U(t)(z) ¢ +iG(t)[(z)7, —AJU ("),
it follows from (11) that

1@ VOl e,

A

r 1 '+1
Cll¢llors +Csup [ II(w) 07 *'U(s)dllzzs
< Cllgllos +CTs0p(z) 0 0F Ul

< Cllgllo + CTsup 9 U llig, a2 (19)
VT g

where 1/2 = 1/p+ (1 — 7 — ¢€) for some ¢ > 0. Applying Lemma 2.4 (17) to the second
term in RHS of (19), we obtain Theorem 2.1. O
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