Notes on discrete subgroups of $PU(1, 2; \mathbb{C})$ with Heisenberg translations II

Shigeyasu KAMIYA

神谷茂保 (岡山理科大学)

In a previous paper [8] we have seen that under some conditions Parker's theorem yields the discreteness condition of Basmajian and Miner for groups with a Heisenberg translation. We show that we can obtain the same result as in [8] without the assumption on r.

1. First we recall some definitions and notation. Let C be the field of complex numbers. Let $V = V^{1,2}(\mathbf{C})$ denote the vector space \mathbf{C}^3 , together with the unitary structure defined by the Hermitian form

$$\widetilde{\Phi}(z^*, w^*) = -(\overline{z_0^*}w_1^* + \overline{z_1^*}w_0^*) + \overline{z_2^*}w_2^*$$

for $z^*=(z_0^*,z_1^*,z_2^*), w^*=(w_0^*,w_1^*,w_2^*)$ in V. An automorphism g of V, that is a linear bijection such that $\widetilde{\Phi}(g(z^*),g(w^*))=\widetilde{\Phi}(z^*,w^*)$ for z^*,w^* in V, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1,2;\mathbf{C})$. Let $V_0=\{w^*\in V\mid \widetilde{\Phi}(w^*,w^*)=0\}$ and $V_-=\{w^*\in V\mid \widetilde{\Phi}(w^*,w^*)<0\}$. It is clear that V_0 and V_- are invariant under $U(1,2;\mathbf{C})$. We denote $U(1,2;\mathbf{C})/(center)$ by $PU(1,2;\mathbf{C})$. Set $V^*=V_-\cup V_0-\{0\}$. Let $\pi:V^*\longrightarrow \pi(V^*)$ be the projection map defined by $\pi(w_0^*,w_1^*,w_2^*)=(w_1,w_2)$, where $w_1=w_1^*/w_0^*$ and $w_2=w_2^*/w_0^*$. We write ∞ for $\pi(0,1,0)$. We may identify $\pi(V_-)$ with the Siegel domain

$$H^2 = \{ w = (w_1, w_2) \in \mathbf{C}^2 \mid Re(w_1) > \frac{1}{2} |w_2|^2 \}.$$

We can regard an element of $PU(1,2;\mathbb{C})$ as a transformation acting on H^2 and its boundary ∂H^2 (see [6]). Denote $H^2 \cup \partial H^2$ by $\overline{H^2}$. We define a new coordinate system in $\overline{H^2} - \{\infty\}$. Our convention slightly differs from Basmajian-Miner [1] and Parker [8]. The H- coordinates of a point $(w_1, w_2) \in \overline{H^2} - \{\infty\}$ are defined by $(k, t, w_2)_H \in (\mathbb{R}^+ \cup \{0\}) \times \mathbb{R} \times \mathbb{C}$ such that $k = Re(w_1) - \frac{1}{2}|w_2|^2$ and $t = Im(w_1)$. For simplicity, we write $(t_1, w')_H$ for $(0, t_1, w')_H$. The Cygan metric $\rho(p, q)$ for $p = (k_1, t_1, w')_H$ and $q = (k_2, t_2, W')_H$ is given by

$$\rho(p,q) = \left| \left\{ \frac{1}{2} |W' - w'|^2 + |k_2 - k_1| \right\} + i \left\{ t_1 - t_2 + Im(\overline{w'}W') \right\} \right|^{\frac{1}{2}}.$$

We note that the Cygan metric ρ is a generalization of the *Heisenberg metric* δ in ∂H^2 (see [7]).

Let $f = (a_{ij})_{1 \leq i,j \leq 3}$ be an element of $PU(1,2; \mathbb{C})$ with $f(\infty) \neq \infty$. We define the isometric sphere I_f of f by

$$I_f = \{ w = (w_1, w_2) \in \overline{H}^2 \mid |\tilde{\Phi}(W, Q)| = |\tilde{\Phi}(W, f^{-1}(Q))| \},$$

where Q = (0, 1, 0), $W = (1, w_1, w_2)$ in V^* (see [4]). It follows that the isometric sphere I_f is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $R_f = \sqrt{1/|a_{12}|}$, that is,

$$I_f = \left\{ z = (k, t, w')_H \in (\mathbf{R}^+ \cup \{0\}) \times \mathbf{R} \times \mathbf{C} \mid \rho(z, f^{-1}(\infty)) = \sqrt{\frac{1}{|a_{12}|}} \right\}.$$

2. We shall give a modified version of the stable basin theorem of Basmajian and Miner in [1]. Let

$$B_r = \{ z \in \partial H^2 \mid \delta(z, 0) < r \},\$$

and let $\overline{B}_s^c = \partial H^2 - \overline{B}_s$. Given r and s with r < s, the pair of open sets (B_r, \overline{B}_s^c) is said to be *stable* with respect to a set S of elements in $PU(1,2; \mathbb{C})$ if for any element $g \in S$,

$$g(0) \in B_r \quad g(\infty) \in \overline{B}_s^c$$

A loxodromic element f has a unique complex dilation factor $\lambda(f)$ such that $|\lambda(f)| > 1$. Let $S(r,\varepsilon)$ denote the family of loxodromic elements f with fixed points in B_r and $\overline{B}_{1/r}^c$, and satisfying $|\lambda(f)-1| < \varepsilon$. For positive real numbers r and r' with $r < 1/\sqrt{3}$ and r' < 1, we define $\varepsilon(r,r')$ by

$$\varepsilon(r, r') = \sup\{|\lambda(f) - 1|\},\tag{2.1}$$

where $|\lambda(f) - 1|$ satisfies the inequality

$$|\lambda(f) - 1| < \sqrt{2 + \left(\frac{1 - (3 + |\lambda(f) - 1|)r^2}{1 - 2r^2}\right)^2 \left(\frac{1 - 3r^2}{1 - r^2}\right)^2 \left(\frac{r'}{r}\right)^2} - \sqrt{2}.$$
 (2.2)

A triple of non-negative numbers (r, r', ε) is said to be a basin point provided that $r < 1/\sqrt{3}$, r' < 1 and $\varepsilon < \varepsilon(r, r')$. In particular, if $r' \le r$, we call (r, r', ε) a stable basin point. Call the set of all such points the stable basin region. For simplicity, we abbreviate (r, r, ε) to (r, ε)

Theorem 2.1 ([8; Theorem 3.1]). Given positive real numbers r and r' with $r < 1/\sqrt{3}$ and r' < 1, the pair of open sets $(B_{r'}, \overline{B}_{1/r'}^c)$ is stable with respect to the family $S(r, \varepsilon(r, r'))$, where $\varepsilon(r, r')$ is given by (2.1).

3. We begin with introducing Parker's theorem on the discreteness of subgroups of $PU(1,2; \mathbb{C})$.

Theorem 3.1 ([9; Theorem 2.1]). Let g be a Heisenberg translation with the form

$$g = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \overline{a} \\ a & 0 & 1 \end{pmatrix},$$

where $Re(s) = \frac{1}{2}|a|^2$. Let f be any element of $PU(1,2;\mathbb{C})$ with isometric sphere of radius R_f . If

$$R_f^2 > \delta(gf^{-1}(\infty),f^{-1}(\infty))\delta(gf(\infty),f(\infty)) + 2|a|^2,$$

then the group < f, g > generated by f and g is not discrete.

Remark 3.2. Suppose that g is a vertical Heisenberg translation. As a=0, this theorem is equivalent to results in [5] and [6].

In Theorem 4.5 of [8] we have shown that if r < 0.484, then Theorem 3.1 leads to the discreteness condition of Basmajian and Miner for groups with a Heisenberg translation. By using a more precise estimate on the Heisenberg distance between fixed points of f in terms of R_f and $\lambda(f)$, we have the following same result without the assumption on r.

Theorem 3. 3. Fix a stable basin point (r, ε) . Let g be the same element as in Theorem 3.1. Let f be a loxodromic element with fixed point 0 and q, and satisfying $|\lambda(f)-1|<\varepsilon$. If $\delta(0,q)>\frac{\delta(0,g(0))}{r^2}(1+r^2+\sqrt{1+r^2})$, then the group < f,g> generated by f and g is not discrete.

References

- 1. A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131, 85-136 (1998).
- 2. A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
- 3. L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
- 4. W. M. Goldman, Complex hyperbolic geometry, Oxford University Press, 1999.
- 5. S. Kamiya, Notes on non-discrete subgroups of $\tilde{U}(1, n; F)$, Hiroshima Math. J. 13, 501-506, (1983).
- 6. S. Kamiya, Notes on elements of U(1, n; C), Hiroshima Math. J. 21, 23-45, (1991).

- 7. S. Kamiya, Parabolic elements of U(1, n; C), Rev. Romaine Math. Pures et Appl. 40, 55-64, (1995).
- 8. S. Kamiya, On discrete subgroups of $PU(1,2;\mathbb{C})$ with Heisenberg translations, to appear in J. London Math. Soc.
- 9. J. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225, 485-505 (1997).

Okayama University of Science 1-1 Ridai-cho, Okayama 700-0005 JAPAN e-mail:kamiya@mech.ous.ac.jp