<table>
<thead>
<tr>
<th>Title</th>
<th>SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS OF SURFACES AND SECONDARY INVARIANTS (Hyperbolic Spaces and Related Topics II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kasagawa, Ryoji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2000, 1163: 78-84</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64284</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS OF SURFACES AND SECONDARY INVARIANTS

Ryoji Kasagawa

1. INTRODUCTION

Let Σ_g be a closed oriented surface of genus $g \geq 1$ and \mathcal{M}_g its mapping class group consisting of the isotopy classes of orientation preserving diffeomorphisms of Σ_g. We denote the 2-sphere with 3-holes by P. For any $a, b \in \mathcal{M}_g$, let $N_{a,b}$ be the Σ_g-bundle over P with monodromies a^{-1} and b^{-1}.

Meyer's signature 2-cocycle

$$sign_g : \mathcal{M}_g \times \mathcal{M}_g \rightarrow \mathbb{Z}$$

is defined by $sign_g(a, b) = sign(N_{a,b})$, where $sign(N_{a,b})$ is the signature of 4-manifold $N_{a,b}$ (see [10, 1]). Novikov additivity for the signature of manifolds shows that $sign_g$ satisfies the cocycle condition. Meyer also defined a 2-cocycle τ_g on $Sp(2g, \mathbb{Z})$ over \mathbb{Z}, which is also called signature 2-cocycle. It is well-known that the equality $sign_g = \zeta_g^* \tau_g$ holds, where ζ_g is the standard representation of \mathcal{M}_g to $Sp(2g, \mathbb{Z})$ induced from the obvious action of \mathcal{M}_g on the first cohomology group of Σ_g.

Let ι be the hyperelliptic involution on Σ_g depicted in Figure 1.

![Figure 1. The hyperelliptic involution ι on Σ_g.](image)

The hyperelliptic mapping class group \mathcal{H}_g of Σ_g is the subgroup of \mathcal{M}_g consisting of elements which commute with the class of ι. It is known that $\mathcal{M}_1 = \mathcal{H}_1 = SL(2, \mathbb{Z})$, $\mathcal{M}_2 = \mathcal{H}_2$ and that $\mathcal{H}_g(g \geq 3)$ is a subgroup of \mathcal{M}_g of infinite index.
Meyer's signature cocycle sign_g defines a nontrivial class of the second cohomology group of \mathcal{M}_g with coefficients in \mathbb{Z} and its restriction to \mathcal{H}_g is also nontrivial. But it is trivial in the cohomology group of \mathcal{H}_g with coefficients in \mathbb{Q}. Thus there exists a function or a 1-cochain

$$\phi_g: \mathcal{H}_g \to \mathbb{Q}$$

such that $\text{sign}_g = \delta \phi_g$, where δ denotes the coboundary operator defined by $\delta \phi_g(a, b) = \phi_g(b) - \phi_g(ab) + \phi_g(a)$ for $a, b \in \mathcal{H}_g$. It follows that ϕ_g is unique from the fact that the first cohomology group of \mathcal{H}_g vanishes. This function ϕ_g is called Meyer function. It is known that it is conjugacy invariant. Its values are contained in $\frac{1}{2g+1}\mathbb{Z}$ and concrete values on Lickorish generators and BSCC maps are calculated by Endo [4], Matsumoto [9] and Morifuji [11].

In the case of $g = 1$, under the identification $\mathcal{M}_1 \cong \mathcal{H}_1 \cong SL(2, \mathbb{Z})$, Meyer [10] and Atiyah [1] gave the explicit expression of the Meyer function using the Dedekind sums (see also [7]). Thus we can compute the values of it. Moreover Atiyah [1] put various geometric interpretations on the values of ϕ_1 on hyperbolic elements. Hereafter we regard $SL(2, \mathbb{Z})(=Sp(2, \mathbb{Z}))$ as the domain of ϕ_1. Hence we have $\delta \phi_1 = \tau_1$.

In this paper we study some representations induced from the actions of subgroups of the mapping class groups of a surface on the first cohomology group of $\pi_1(\Sigma_g)$ with coefficients in the module obtained from the nontrivial representation of $\pi_1(\Sigma_g)$ to $\mathbb{Z}_2 = \text{Aut}(\mathbb{Z})$. As an application of them, in the case of $g = 1, 2$ (see also [5, 6]) and 3, we define some functions on subgroups of \mathcal{H}_g using Atiyah-Patodi-Singer ρ-invariants and state that the difference of our function from the Meyer function is a nontrivial homomorphism on the subgroup. Moreover we state that the Meyer function coincides with the average of our functions on a certain subgroup.

2. SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS

Let Σ_g be a closed oriented surface of genus $g \geq 1$ and $* \in \Sigma_g$ a base point. Let $\omega: \pi_1(\Sigma_g, *) \to \mathbb{Z}_2$ be a nontrivial homomorphism which is also regarded as an element of $H^1(\Sigma_g; \mathbb{Z}_2)$. If we regard \mathbb{Z}_2 as $\text{Aut}(\mathbb{Z})$, then using ω, we can obtain
$\pi_1(\Sigma_g,*$)-module \mathbb{Z}, which is denoted by \mathbb{Z}_ω. We consider the first cohomology group $H^1(\pi_1(\Sigma_g,*), \mathbb{Z}_\omega)$ which is isomorphic to $\mathbb{Z}^{2(g-1)} \oplus \mathbb{Z}_2$. Moreover it has a natural pairing defined by the cup product, the pairing $\mathbb{Z}_\omega \otimes \mathbb{Z}_\omega \cong \mathbb{Z}$ and the evaluation on the fundamental class of Σ_g. It is found that this pairing induces a symplectic form on the quotient group $H^1(\pi_1(\Sigma_g,*), \mathbb{Z}_\omega)/\text{torsion}$ and that it is isomorphic to the standard one on $\mathbb{Z}^{2(g-1)}$.

Let \mathcal{M}_{g*} be the mapping class group of Σ_g with a base point and \mathcal{M}_{g*}^ω the subgroup of it consisting of elements which preserve ω. This subgroup acts on the group $H^1(\pi_1(\Sigma_g,*), \mathbb{Z}_\omega)/\text{torsion}$ by pullback. Since this action preserves the symplectic form, if we take a symplectic basis for it, we have the representation

$$\zeta_{g*}^\omega : \mathcal{M}_{g*}^\omega \to \text{Sp}(2(g-1), \mathbb{Z}).$$

These representations are related to prym representations of Looijenga [8]. Some properties of ζ_{g*}^ω were investigated in [5, 6].

In this section we study the restrictions of them to subgroups of the hyperelliptic mapping class group of genus $g \geq 3$.

The hyperelliptic mapping class group \mathcal{H}_g of Σ_g is naturally isomorphic to the group of isotopy classes of orientation preserving diffeomorphisms which commute with ι under isotopy which also commutes with ι [3]. This description of \mathcal{H}_g shows that it acts the set of the fixed points of ι. Thus we have the representation $\sigma : \mathcal{H}_g \to \mathfrak{S}_{2g+2}$, where \mathfrak{S}_{2g+2} denotes the symmetric group of degree $2g + 2$ which is the number of the fixed points of ι. Let \mathcal{H}_g^σ be the kernel of the representation of σ. Let $j : \mathcal{M}_{g*} \to \mathcal{M}_g$ be the natural homomorphism, then we have the short exact sequence $1 \to \pi_1(\Sigma_g,* \to \mathcal{M}_{g*} \xrightarrow{j} \mathcal{M}_g \to 1$. Put $\mathcal{H}_{g*} = j^{-1}(\mathcal{H}_g)$ and $\mathcal{H}_{g*}^\sigma = j^{-1}(\mathcal{H}_g^\sigma)$. The following lemma is known.

Lemma 1. For any $a \in \mathcal{H}_g^\sigma$, the induced homomorphism a^* on $H^1(\Sigma_g; \mathbb{Z}_2)$ is the identity.

By this lemma, we have $\mathcal{H}_g^\sigma \subset \mathcal{M}_g^\omega$ and $\mathcal{H}_{g*}^\sigma \subset \mathcal{M}_{g*}^\omega$, for any $\omega \neq 0 \in H^1(\Sigma_g; \mathbb{Z}_2)$. We denote the class of ι in \mathcal{H}_g^σ by the same letter ι.

Lemma 2. For any lift \(\tilde{i} \) of \(i \in \mathcal{H}^*_g \) to \(\mathcal{H}^*_g \), the image of \(\tilde{i} \) by \(\zeta^\omega \) commutes with those of all elements of \(\mathcal{H}^*_g \).

The fundamental group \(\pi_1(\Sigma_g, \ast) \) of \(\Sigma_g \) is presented by \(\langle \alpha_i, \beta_i \mid 1 \leq i \leq g \rangle \) where the generators are depicted in Figure 2.

![Figure 2. The generators of \(\pi_1(\Sigma_g, \ast) \).](image)

Let \(\alpha^*_i, \beta^*_i \) be the dual basis for \(H^1(\Sigma_g; \mathbb{Z}_2) \) to the one for \(H_1(\Sigma_g; \mathbb{Z}_2) \) which is given by the homology classes of \(\alpha_i, \beta_i \).

Lemma 3. For any nonzero class \(\omega \in H^1(\Sigma_g; \mathbb{Z}_2) \), there exists \(a \in \mathcal{H}_g \) such that \(a^* \omega = \alpha^*_k \) for some \(k \).

Direct computations show that the representation matrix of \(\zeta^\omega_{g*}(\tilde{i}) \) with respect to a symplectic basis for \(H^1(\pi_1(\Sigma_g, \ast), \mathbb{Z}_\omega)/\text{torsion} \) is given by \(\pm(I_{2(k-1)} \oplus (-I_{2(g-k)}) \oplus (-I_{2(\mathit{g-k})})) \), where \(I_{2(k-1)} \) and \(I_{2(g-k)} \) are the identity matrices of rank \(2(k-1) \) and \(2(g-k) \) respectively. And \(H^1(\pi_1(\Sigma_g, \ast), \mathbb{Z}_\omega)/\text{torsion} \) decomposes to the direct sum of two symplectic submodules over \(\mathbb{Z} \). This result and Lemma 2 imply the following lemma.

Lemma 4. For any nonzero \(\omega \in H^1(\Sigma_g; \mathbb{Z}_2) \), the representation matrix of \(\zeta^\omega_{g*}(\tilde{i}) \) with respect to some symplectic basis is \(\pm(I_{2(k-1)} \oplus (-I_{2(g-k)}) \oplus (-I_{2(\mathit{g-k})})) \) for some \(k \). Moreover \(H^1(\pi_1(\Sigma_g, \ast), \mathbb{Z}_\omega)/\text{torsion} \) decomposes to the direct sum of two symplectic submodules over \(\mathbb{Z} \) on which \(\zeta^\omega_{g*}(\tilde{i}) \) is \(\pm \) the identity.

If we take a fixed point \(e \) of \(i \) as a base point \(\ast \) of \(\Sigma_g \), we can consider the group \(\mathcal{H}^*_g \) as a subgroup of \(\mathcal{H}^*_g \).

Corollary 5. The representation \(\zeta^\omega_{g*} \) induces two representations of \(\mathcal{H}^*_g \) to \(Sp(2(k-1), \mathbb{Z}) \) and \(Sp(2(g-k), \mathbb{Z}) \), where \(k \) is the integer in Lemma 3.
3. SOME FUNCTIONS ON SUBGROUPS OF \mathcal{H}_{g*} OF LOW GENUS.

In this section we consider the case of $g = 1, 2$ and 3.

Let H' be the set $H^1(\Sigma_g; \mathbb{Z}_2) \setminus \{0\}$ for $g = 1, 2$ and the set $\{\omega \in H^1(\Sigma_g; \mathbb{Z}_2) \setminus \{0\} | k = 2 \text{ in Lemma } 4 \}$ for $g = 3$.

Lemma 6. The number $\sharp H'$ of the elements of H' is 3, 15 and 35 for $g = 1, 2$ and 3 respectively.

For each $\omega \in H'$, let Δ^ω_{g*} denote $\mathcal{H}_{g*} \cap \mathcal{M}_{g*}^\omega$ for $g = 1, 2$ and \mathcal{H}_{g*}^ω for $g = 3$. For any $\omega \in H'$, the image of Δ^ω_{g*} by ζ^ω_{g*} is contained in $\{id\}, SL(2, \mathbb{Z})$ and $SL(2, \mathbb{Z}) \times SL(2, \mathbb{Z})$ for $g = 1, 2$ and 3 respectively under an appropriate choice of a symplectic basis for the representation space. In the case of $g = 3$, let ζ^ω_{g*+} and ζ^ω_{g*-} be the composition of ζ^ω_{g*} with the projection from $SL(2, \mathbb{Z})$ to the first and second factor $SL(2, \mathbb{Z})$ respectively.

For each $\omega \in H'$, the function

$$\Phi^\omega_{g*}: \Delta^\omega_{g*} \rightarrow \frac{1}{3} \mathbb{Z}$$

is defined by $0, (\zeta^\omega_{g*})^*\phi_1$ and $(\zeta^\omega_{g*+})^*\phi_1 + (\zeta^\omega_{g*-})^*\phi_1$ for $g = 1, 2$ and 3 respectively. It is easy to see that these functions are well defined.

Lemma 7. The equality $\delta \Phi^\omega_{g*} = (\zeta^\omega_{g*})^*\tau_{g-1}$ holds on Δ^ω_{g*} for each $\omega \in H'$.

4. THE MAIN THEOREM

In this section we define some functions on subgroups of the mapping class groups and state the main theorem.

Let ω be a nonzero class in $H^1(\Sigma_g; \mathbb{Z}_2)$. For any $a \in \mathcal{M}^\omega_{g*}$, put $M_a := \Sigma_g \times [0, 1]/(x, 0) \sim (a(x), 1)$. Then M_a is a Σ_g-bundle over $S^1 = [0, 1]/0 \sim 1$ with the identification i of Σ_g with the fiber at $0 \in S^1$ and with the section $s: S^1 \rightarrow M_a$ defined by the base point $* \in \Sigma_g$. It is easily checked that there is a unique homomorphism $\omega_a: \pi_1(M_a, s(0)) \rightarrow \mathbb{Z}_2 = \{\pm 1\} \subset U(1)$ satisfying the equalities $i^*\omega_a = \omega$ and $s^*\omega_a = 1$. We define the function $\rho_\omega: \mathcal{M}^\omega_{g*} \rightarrow \mathbb{Q}$ by $\rho_\omega(a) := \rho_{\omega_a}(M_a)$ for each $a \in \mathcal{M}^\omega_{g*}$. Here $\rho_{\omega_a}(M_a)$ is the Atiyah-Patodi-Singer ρ-invariant for (M_a, ω_a).

In general, the Atiyah-Patodi-Singer ρ-invariant is a diffeomorphism invariant for a pair of a closed oriented manifold of odd dimension and a unitary representation of the fundamental group of it to $U(n)$. If a metric on the manifold is given, then the invariant is defined by the difference of the η-invariant of the signature operator on the manifold and n times that of signature operator with coefficients in the flat bundle obtained from the unitary representation. Thus ρ-invarinats take their values in \mathbb{R}. If a unitary representation factors through a finite group, then the value of the ρ-invariant belongs to \mathbb{Q}.

For each $\omega \in H'$, we define a rational valued function μ_{g*}^ω on Δ_{g*}^ω by

$$\mu_{g*}^\omega : \rho_{\omega} + \Phi_{g*}^\omega.$$

These functions have the following properties.

Lemma 8. For any $a \in \Delta_{g*}^\omega$ and $f \in \mathcal{H}_{g*}$, the following hold.

1. $\mu_{g*}^\omega(1) = 0$,
2. $\mu_{g*}^\omega(a^{-1}) = -\mu_{g*}^\omega(a)$,
3. $\mu_{g*}^\omega(f^{-1})^*\omega(faf^{-1}) = \mu_{g*}^\omega(a)$,
4. $\text{sign}_g = \delta \mu_{g*}^\omega$ on Δ_{g*}^ω.

The main property in this lemma is 4. In order to prove it, we need the following theorem proved by Atiyah, Patodi and Singer.

Theorem 9 (Atiyah-Patodi-Singer [2]). Let M be a closed oriented manifold of odd dimension and $\alpha: \pi_1(M) \to U(n)$ a unitary representation. If M is the boundary of a compact oriented manifold N with α extending to a unitary representation of $\pi_1(N)$ then $\rho_\alpha(M) = n \text{sign}(N) - \text{sign}_\alpha(N)$.

We consider the Σ_g-bundle $N_{a,b}$ over P, where $a, b \in M_{g*}^\omega$. There is a unique homomorphism $\omega_{a,b}: \pi_1(N_{a,b}) \to \mathbb{Z}_2 \subset U(1)$ satisfying the same condition as ω_a.

We apply Atiyah-Patodi-Singer's theorem to the pair $(N_{a,b}, \omega_{a,b})$ and use the Leray-Serre spectral sequence of the fibration $N_{a,b} \to P$. Then we have the property 4 in Lemma 8. Using Lemma 8, it is easy to see that the function μ_{g*}^ω descends to a function μ_{g}^ω on $\Delta_{g}^\omega := j(\Delta_{g*}^\omega)$ for any $\omega \in H'$.
Theorem 10. The difference $\phi_g - \mu_g^\omega$ is a nontrivial homomorphism from Δ_g^ω to \mathbb{Q} for any $\omega \in H'$ and the equality $\phi_g = \frac{1}{|H|} \sum_{\omega \in H} \mu_g^\omega$ holds on \mathcal{H}_g^σ for $g = 1, 2$ and 3.

Since the Meyer function ϕ_g has the same properties as those in Lemma 8, the former part of this theorem follows from Lemma 8 and nontrivial examples which can be given explicitly. The latter follows from Lemma 8 and $H^1(\mathcal{H}_g^\sigma, \mathbb{Q})^{\mathfrak{S}_{2g+2}} = \{0\}$ which is obtained from the fact of $H^1(\mathcal{H}_g, \mathbb{Q}) = \{0\}$ using the Hochschild-Leray-Serre spectral sequence of the short exact sequence $1 \to \mathcal{H}_g^\sigma \to \mathcal{H}_g \to \mathfrak{S}_{2g+2} \to 1$.

REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, OH-OHAYAMA, MEGURO-ku, TOKYO, 152-8551, JAPAN

E-mail address: kasagawa@math.titech.ac.jp