SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS OF SURFACES AND SECONDARY INVARIANTS

笠川 良司 (RYOJI KASAGAWA)

1. Introduction

Let Σ_g be a closed oriented surface of genus $g \geq 1$ and \mathcal{M}_g its mapping class group consisting of the isotopy classes of orientation preserving diffeomorphisms of Σ_g . We denote the 2-sphere with 3-holes by P. For any $a, b \in \mathcal{M}_g$, let $N_{a,b}$ be the Σ_g -bundle over P with monodromies a^{-1} and b^{-1} .

Meyer's signature 2-cocycle

$$sign_q \colon \mathcal{M}_q \times \mathcal{M}_q \to \mathbb{Z}$$

is defined by $sign_g(a,b)$: $= sign(N_{a,b})$, where $sign(N_{a,b})$ is the signature of 4-manifold $N_{a,b}$ (see [10, 1]). Novikov additivity for the signature of manifolds shows that $sign_g$ satisfies the cocycle condition. Meyer also defined a 2-cocycle τ_g on $Sp(2g,\mathbb{Z})$ over \mathbb{Z} , which is also called signature 2-cocycle. It is well-known that the equality $sign_g = \zeta_g^* \tau_g$ holds, where ζ_g is the standard representation of \mathcal{M}_g to $Sp(2g,\mathbb{Z})$ induced from the obvious action of \mathcal{M}_g on the first cohomology group of Σ_g .

Let ι be the hyperelliptic involution on Σ_g depicted in Figure 1.

FIGURE 1. The hyperelliptic involution ι on Σ_g .

The hyperelliptic mapping class group \mathcal{H}_g of Σ_g is the subgroup of \mathcal{M}_g consisting of elements which commute with the class of ι . It is known that $\mathcal{M}_1 = \mathcal{H}_1 = SL(2,\mathbb{Z})$, $\mathcal{M}_2 = \mathcal{H}_2$ and that $\mathcal{H}_g(g \geq 3)$ is a subgroup of \mathcal{M}_g of infinite index.

Meyer's signature cocycle $sign_g$ defines a nontrivial class of the second cohomology group of \mathcal{M}_g with coefficients in \mathbb{Z} and its restriction to \mathcal{H}_g is also nontrivial. But it is trivial in the cohomology group of \mathcal{H}_g with coefficients in \mathbb{Q} . Thus there exists a function or a 1-cochain

$$\phi_g \colon \mathcal{H}_g \to \mathbb{Q}$$

such that $sign_g = \delta \phi_g$, where δ denotes the coboundary operator defined by $\delta \phi_g(a,b)$ $= \phi_g(b) - \phi_g(ab) + \phi_g(a)$ for $a,b \in \mathcal{H}_g$. It follows that ϕ_g is unique from the fact that the first cohomology group of \mathcal{H}_g vanishes. This function ϕ_g is called Meyer function. It is known that it is conjugacy invariant. Its values are contained in $\frac{1}{2g+1}\mathbb{Z}$ and concrete values on Lickorish generators and BSCC maps are calculated by Endo [4], Matsumoto [9] and Morifuji [11].

In the case of g=1, under the identification $\mathcal{M}_1 \cong \mathcal{H}_1 \cong SL(2,\mathbb{Z})$, Meyer [10] and Atiyah [1] gave the explicit expression of the Meyer function using the Dedekind sums (see also [7]). Thus we can compute the values of it. Moreover Atiyah [1] put various geometric interpretations on the values of ϕ_1 on hyperbolic elements. Hereafter we regard $SL(2,\mathbb{Z})(=Sp(2,\mathbb{Z}))$ as the domain of ϕ_1 . Hence we have $\delta\phi_1=\tau_1$.

In this paper we study some representations induced from the actions of subgroups of the mapping class groups of a surface on the first cohomology group of $\pi_1(\Sigma_g)$ with coefficients in the module obtained from the nontrivial representation of $\pi_1(\Sigma_g)$ to $\mathbb{Z}_2 = Aut(\mathbb{Z})$. As an application of them, in the case of g = 1, 2 (see also [5, 6]) and 3, we define some functions on subgroups of \mathcal{H}_g using Atiyah-Patodi-Singer ρ -invariants and state that the difference of our function from the Meyer function is a nontrivial homomorphism on the subgroup. Moreover we state that the Meyer function coincides with the average of our functions on a certain subgroup.

2. Some representations of subgroups of the mapping class groups

Let Σ_g be a closed oriented surface of genus $g \geq 1$ and $* \in \Sigma_g$ a base point. Let $\omega \colon \pi_1(\Sigma_g, *) \to \mathbb{Z}_2$ be a nontrivial homomorphism which is also regarded as an element of $H^1(\Sigma_g; \mathbb{Z}_2)$. If we regard \mathbb{Z}_2 as $Aut(\mathbb{Z})$, then using ω , we can obtain $\pi_1(\Sigma_g, *)$ -module \mathbb{Z} , which is denoted by \mathbb{Z}_{ω} . We consider the first cohomology group $H^1(\pi_1(\Sigma_g, *), \mathbb{Z}_{\omega})$ which is isomorphic to $\mathbb{Z}^{2(g-1)} \oplus \mathbb{Z}_2$. Moreover it has a natural pairing defined by the cup product, the pairing $\mathbb{Z}_{\omega} \otimes \mathbb{Z}_{\omega} \cong \mathbb{Z}$ and the evaluation on the fundamental class of Σ_g . It is found that this pairing induces a symplectic form on the quotient group $H^1(\pi_1(\Sigma_g, *), \mathbb{Z}_{\omega})/torsion$ and that it is isomorphic to the standard one on $\mathbb{Z}^{2(g-1)}$.

Let \mathcal{M}_{g*} be the mapping class group of Σ_g with a base point and $\mathcal{M}_{g*}^{\omega}$ the subgroup of it consisting of elements which preserve ω . This subgroup acts on the group $H^1(\pi_1(\Sigma_g,*),\mathbb{Z}_{\omega})/torsion$ by pullback. Since this action preserves the symplectic form, if we take a symplectic basis for it, we have the representation

$$\zeta_{g*}^{\omega} \colon \mathcal{M}_{g*}^{\omega} \to Sp(2(g-1), \mathbb{Z}).$$

These representations are related to prym representations of Looijenga [8]. Some properties of ζ_{q*}^{ω} were investigated in [5, 6].

In this section we study the restrictions of them to subgroups of the hyperelliptic mapping class group of genus $g \ge 3$.

The hyperelliptic mapping class group \mathcal{H}_g of Σ_g is naturally isomorphic to the group of isotopy classes of orientation preserving diffeomorphisms which commute with ι under isotopy which also commutes with ι [3]. This description of \mathcal{H}_g shows that it acts the set of the fixed points of ι . Thus we have the representation $\sigma \colon \mathcal{H}_g \to \mathfrak{S}_{2g+2}$, where \mathfrak{S}_{2g+2} denotes the symmetric group of degree 2g+2 which is the number of the fixed points of ι . Let \mathcal{H}_g^{σ} be the kernel of the representation of σ . Let $j \colon \mathcal{M}_{g*} \to \mathcal{M}_g$ be the natural homomorphism, then we have the short exact sequence $1 \to \pi_1(\Sigma_g, *) \to \mathcal{M}_{g*} \xrightarrow{j} \mathcal{M}_g \to 1$. Put $\mathcal{H}_{g*} = j^{-1}(\mathcal{H}_g)$ and $\mathcal{H}_{g*}^{\sigma} = j^{-1}(\mathcal{H}_g^{\sigma})$. The following lemma is known.

Lemma 1. For any $a \in \mathcal{H}_g^{\sigma}$, the induced homomorphism a^* on $H^1(\Sigma_g; \mathbb{Z}_2)$ is the identity.

By this lemma, we have $\mathcal{H}_g^{\sigma} \subset \mathcal{M}_g^{\omega}$ and $\mathcal{H}_{g*}^{\sigma} \subset \mathcal{M}_{g*}^{\omega}$ for any $\omega \neq 0 \in H^1(\Sigma_g; \mathbb{Z}_2)$. We denote the class of ι in \mathcal{H}_g^{σ} by the same letter ι . **Lemma 2.** For any lift $\tilde{\iota}$ of $\iota \in \mathcal{H}_g^{\sigma}$ to $\mathcal{H}_{g*}^{\sigma}$, the image of $\tilde{\iota}$ by ζ_{g*}^{ω} commutes with those of all elements of $\mathcal{H}_{g*}^{\sigma}$.

The fundamental group $\pi_1(\Sigma_g, *)$ of Σ_g is presented by $\langle \alpha_i, \beta_i \ (1 \leq i \leq g) | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$, where the generators are depicted in Figure 2.

FIGURE 2. The generators of $\pi_1(\Sigma_g, *)$.

Let α_i^*, β_i^* $(1 \leq i \leq g)$ be the dual basis for $H^1(\Sigma_g; \mathbb{Z}_2)$ to the one for $H_1(\Sigma_g; \mathbb{Z}_2)$ which is given by the homology classes of α_i, β_i .

Lemma 3. For any nonzero class $\omega \in H^1(\Sigma_g; \mathbb{Z}_2)$, there exists $a \in \mathcal{H}_g$ such that $a^*\omega = \alpha_k^*$ for some k.

Direct computations show that the representation matrix of $\zeta_{g*}^{\alpha_k^*}(\tilde{\iota})$ with respect to a symplectic basis for $H^1(\pi_1(\Sigma_g,*),\mathbb{Z}_{\omega})/torsion$ is given by $\pm (I_{2(k-1)} \oplus (-I_{2(g-k)}))$, where $I_{2(k-1)}$ and $I_{2(g-k)}$ are the identity matrices of rank 2(k-1) and 2(g-k) respectively. And $H^1(\pi_1(\Sigma_g,*),\mathbb{Z}_{\omega})/torsion$ decomposes to the direct sum of two symplectic submodules over \mathbb{Z} . This result and Lemma 2 imply the following lemma.

Lemma 4. For any nonzero $\omega \in H^1(\Sigma_g; \mathbb{Z}_2)$, the representation matrix of $\zeta_{g*}^{\omega}(\tilde{\iota})$ with respect to some symplectic basis is $\pm (I_{2(k-1)} \oplus (-I_{2(g-k)}))$ for some k. Moreover $H^1(\pi_1(\Sigma_g, *), \mathbb{Z}_{\omega})/t$ or since ℓ decomposed to the direct sum of two symplectic submodules over \mathbb{Z} on which $\zeta_{g*}^{\omega}(\tilde{\iota})$ is ℓ the identity.

If we take a fixed point e of ι as a base point * of Σ_g , we can consider the group \mathcal{H}_g^{σ} as a subgroup of $\mathcal{H}_{g*}^{\sigma}$.

Corollary 5. The representation ζ_{ge}^{ω} induces two representations of \mathcal{H}_{g}^{σ} to $Sp(2(k-1),\mathbb{Z})$ and $Sp(2(g-k).\mathbb{Z})$, where k is the integer in Lemma 3.

3. Some functions on subgroups of \mathcal{H}_{g*} of low genus.

In this section we consider the case of g = 1, 2 and 3.

Let H' be the set $H^1(\Sigma_g; \mathbb{Z}_2) \setminus \{0\}$ for g = 1, 2 and the set $\{\omega \in H^1(\Sigma_g; \mathbb{Z}_2) \setminus \{0\} | k = 2 \text{ in Lemma 4} \}$ for g = 3.

Lemma 6. The number $\sharp H'$ of the elements of H' is 3, 15 and 35 for g=1,2 and 3 respectively.

For each $\omega \in H'$, let Δ_{g*}^{ω} denote $\mathcal{H}_{g*} \cap \mathcal{M}_{g*}^{\omega}$ for g = 1, 2 and $\mathcal{H}_{g*}^{\sigma}$ for g = 3. For any $\omega \in H'$, the image of Δ_{g*}^{ω} by ζ_{g*}^{ω} is contained in $\{id\}$, $SL(2,\mathbb{Z})$ and $SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$ for g = 1, 2 and 3 respectively under an appropriate choice of a symplectic basis for the representation space. In the case of g = 3, let $\zeta_{g*}^{\omega+}$ and $\zeta_{g*}^{\omega-}$ be the composition of ζ_{g*}^{ω} with the projection from $SL(2,\mathbb{Z})$ to the first and second factor $SL(2,\mathbb{Z})$ respectively.

For each $\omega \in H'$, the function

$$\Phi_{g*}^{\omega} \colon \Delta_{g*}^{\omega} \to \frac{1}{3} \mathbb{Z}$$

is defined by $0, (\zeta_{2*}^{\omega})^*\phi_1$ and $(\zeta_{3*}^{\omega^+})^*\phi_1 + (\zeta_{3*}^{\omega^-})^*\phi_1$ for g = 1, 2 and 3 respectively. It is easy to see that these functions are well defined.

Lemma 7. The equality $\delta \Phi_{g*}^{\omega} = (\zeta_{g*}^{\omega})^* \tau_{g-1}$ holds on Δ_{g*}^{ω} for each $\omega \in H'$.

4. The main theorem

In this section we define some functions on subgroups of the mapping class groups and state the main theorem.

Let ω be a nonzero class in $H^1(\Sigma_g; \mathbb{Z}_2)$. For any $a \in \mathcal{M}_{g*}^{\omega}$, put $M_a := \Sigma_g \times [0,1]/(x,0) \sim (a(x),1)$. Then M_a is a Σ_g -bundle over $S^1 = [0,1]/0 \sim 1$ with the identification i of Σ_g with the fiber at $0 \in S^1$ and with the section $s \colon S^1 \to M_a$ defined by the base point * of Σ_g . It is easily checked that there is a unique homomorphism $\omega_a \colon \pi_1(M_a, s(0)) \to \mathbb{Z}_2 = \{\pm 1\} \subset U(1)$ satisfying the equalities $i^*\omega_a = \omega$ and $s^*\omega_a = 1$. We define the function $\rho_\omega \colon \mathcal{M}_{g*}^\omega \to \mathbb{Q}$ by $\rho_\omega(a) \colon = \rho_{\omega_a}(M_a)$ for each $a \in \mathcal{M}_{g*}^\omega$. Here $\rho_{\omega_a}(M_a)$ is the Atiyah-Patodi-Singer ρ -invariant for (M_a, ω_a) .

In general, the Atiyah-Patodi-Singer ρ -invariant is a diffeomorphism invariant for a pair of a closed oriented manifold of odd dimension and a unitary representation of the fundamental group of it to U(n). If a metric on the manifold is given, then the invariant is defined by the difference of the η -invariant of the signature operator on the manifold and n times that of signature operator with coefficients in the flat bundle obtained from the unitary representation. Thus ρ -invariants take their values in \mathbb{R} . If a unitary representation factors through a finite group, then the value of the ρ -invariant belongs to \mathbb{Q} .

For each $\omega \in H'$, we define a rational valued function μ_{g*}^{ω} on Δ_{g*}^{ω} by

$$\mu_{g*}^{\omega} \colon = \rho_{\omega} + \Phi_{g*}^{\omega}.$$

These functions have the following properties.

Lemma 8. For any $a \in \Delta_{g*}^{\omega}$ and $f \in \mathcal{H}_{g*}$, the following hold.

- 1. $\mu_{q*}^{\omega}(1) = 0$,
- 2. $\mu_{q*}^{\omega}(a^{-1}) = -\mu_{q*}^{\omega}(a)$,
- 3. $\mu_{g*}^{(f^{-1})^*\omega}(faf^{-1}) = \mu_{g*}^{\omega}(a),$
- 4. $sign_g = \delta \mu_{g*}^{\omega}$ on Δ_{g*}^{ω} .

The main property in this lemma is 4. In order to prove it, we need the following theorem proved by Atiyah, Patodi and Singer.

Theorem 9 (Atiyah-Patodi-Singer [2]). Let M be a closed oriented manifold of odd dimension and $\alpha \colon \pi_1(M) \to U(n)$ a unitary representation. If M is the boundary of a compact oriented manifold N with α extending to a unitary representation of $\pi_1(N)$ then $\rho_{\alpha}(M) = n \ sign(N) - sign_{\alpha}(N)$.

We consider the Σ_g -bundle $N_{a,b}$ over P, where $a,b \in \mathcal{M}_{g*}^{\omega}$. There is a unique homomorphism $\omega_{a,b} \colon \pi_1(N_{a,b}) \to \mathbb{Z}_2 \subset U(1)$ satisfying the same condition as ω_a . We apply Atiyah-Patodi-Singer's theorem to the pair $(N_{a,b},\omega_{a,b})$ and use the Leray-Serre spectral sequence of the fibration $N_{a,b} \to P$. Then we have the property 4 in Lemma 8. Using Lemma 8, it is easy to see that the function μ_{g*}^{ω} descends to a function μ_g^{ω} on $\Delta_g^{\omega} := j(\Delta_{g*}^{\omega})$ for any $\omega \in H'$.

Theorem 10. The difference $\phi_g - \mu_g^{\omega}$ is a nontrivial homomorphism from Δ_g^{ω} to \mathbb{Q} for any $\omega \in H'$ and the equality $\phi_g = \frac{1}{\sharp H'} \sum_{\omega \in H'} \mu_g^{\omega}$ holds on \mathcal{H}_g^{σ} for g = 1, 2 and 3.

Since the Meyer function ϕ_g has the same properties as those in Lemma 8, the former part of this theorem follows from Lemma 8 and nontrivial examples which can be given explicitly. The latter follows from Lemma 8 and $H^1(\mathcal{H}_g^{\sigma}, \mathbb{Q})^{\mathfrak{S}_{2g+2}} = \{0\}$ which is obtained from the fact of $H^1(\mathcal{H}_g, \mathbb{Q}) = \{0\}$ using the Hochschild-Leray-Serre spectral sequence of the short exact sequence $1 \to \mathcal{H}_g^{\sigma} \to \mathcal{H}_g \to \mathfrak{S}_{2g+2} \to 1$.

REFERENCES

- [1] M. F. Atiyah, The logarithm of the Dedekind η -function, Math. Ann. 278(1987), 335-380.
- [2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Camb. Phil. Soc. 78(1975), 405-432.
- [3] J. Birman and H. Hilden, On the mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66(1971), 81-115.
- [4] H. Endo, Meyer's signature cocycle and hyperelliptic fibrations, Math. Ann. 316(2000), 237-257.
- [5] R. Kasagawa, On a function on the mapping class group of a surface of genus 2, to appear in Topology Appl.
- [6] R. Kasagawa, ρ -invariants, signature cocycles and the mapping class group of a surface, preprint.
- [7] R. Kirby and P. Melvin, Dedekind sums, μ -invariants and the signature cocycle, Math. Ann. 299(1994), 231-267.
- [8] E. Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64(1997), 69-83.
- [9] Y. Matsumoto, Lefshetz fibrations of genus two; -a topological approach-, in Proceedings of the 37th Taniguchi symposium on topology and Teichmüller spaces, ed. by Sadayoshi Kojima et al. 1996, World Scientific Publishing Co. pp123-148.
- [10] W. Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201(1973), 239-264.
- [11] T. Morifuji, On Meyer's function of hyperelliptic mapping class groups, preprint, 1998.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO, 152-8551, JAPAN

E-mail address: kasagawa@math.titech.ac.jp