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SOME REPRESENTATIONS OF SUBGROUPS OF THE
MAPPING CLASS GROUPS OF SURFACES
AND SECONDARY INVARIANTS

%) Bl (RYOJI KASAGAWA)

1. INTRODUCTION

Let ¥, be a closed oriented surface of genus g =2 1 and M, its mapping class
group consisting of the isotopy classes of orientation preserving diffeomorphisms of
¥,. We denote the 2-sphere with 3-holes by P. For any a,b € Mg, let Ny be the
¥,-bundle over P with monodromies a™* and b~".

Meyer’s signature 2-cocycle
signg: Mg x Mg —Z

is defined by signg,(a,b): = sign(N,p), where sign(N,p) is the signature of 4-
manifold N, (see [10, 1]). Novikov additivity for the signature of manifolds shows
that sign, satisfies the cocycle condition. Meyer also defined a 2-cocycle 7, on
Sp(29,7Z) over Z, which is also called signature 2-cocycle. It is well-known that
the equality signy = (}7, holds, where (; is the standard representation of Mg to
Sp(2g,7) induced from the obvious action of M, on the first cohomology group of
g
Let ¢ be the hyperelliptic involution on ¥, depicted in Figure 1.
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FIGURE 1. The hyperelliptic involution ¢ on X.

The hyperelliptic mapping class group H, of £, is the subgroup of M, consisting
of elements which commute with the class of ¢. It is known that Mi = H, =
SL(2,Z), My = Hs and that Hy(g = 3) is a subgroup of M, of infinite index.



Meyer’s signature cocycle sign, defines a nontrivial class of the second cohomology
group of M, with coefficients in Z and its restriction to H, is also nontrivial. But
it is trivial in the cohomology group of H, with coefficients in Q. Thus there exists
a function or a 1-cochain

¢g: Hg — Q
such that signgy = d¢,, where § denotes the coboundary operator defined by 6¢,(a, b)
= ¢g(b) — ¢g(ab) + ¢4(a) for a,b € H,. It follows that ¢, is unique from the féct
that the first cohomology group of H, vanishes. This function ¢ is called Meyer
function. It is known that it is conjugacy invariant. Its values are contained in
ﬁZ and concrete values on Lickorish generators and BSCC maps are calculated
by Endo [4], Matsumoto [9] and Morifuji [11].

In the case of g = 1, under the identification M; = H; = SL(2,Z), Meyer
[10] and Atiyah [1] gave the explicit expression of the Meyer function using the
Dedekind sums (see also [7]). Thus we can compute the values of it. Moreover
Atiyah [1] put various geometric interpretations on the values of ¢, on hyperbolic
elements. Hereafter we regard SL(2,Z)(= Sp(2,Z)) as the domain of ¢;. Hence we
have 6¢; = 7. '

In this paper we study some fepresentations induced from the actions of subgroups
of the mapping class groups of a surface on the first cohomology group of m1(%,)
with coefficients in the module obtained from the nontrivial representation of 71 (X,)
to Zy = Aut(Z). As an application of them, in the case of g = 1,2 (see also [5, 6])
and 3, we define some functions on subgroups of H, using Atiyé,h-Patodi-Singer
p-invariants and state that the difference of our function from the Meyer function
is a nontrivial homomorphism on the subgroup. Moreover we state that the Meyer

function coincides with the average of our functions on a certain subgroup.

2. SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS

Let ¥, be a closed oriented surface of genus g 2 1 and * € ¥, a base point.
Let w: m1(24,*) — Zg be a nontrivial homomorphism which is also regarded as

an element of H(X;Zs). If we regard Zs as Aut(Z), then using w, we can obtain
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71(Xg, *)-module Z, which is denoted by Z,,. We consider the first cohomology group
H(m (2, *),Z,) which is isomorphic to 7291 @& Z,. Moreover it has a natural
pairing defined by the cup product, the pairing Z, ® Z, = Z and the evaluation
on the fundamental class of ¥,. It is found that this pairing induces a symplectic
form on the quotient group H*(m1(X, %), Z,)/torsion and that it is isomorphic to
the standard one on Z29~1,

Let M, be the mapping class group of ¥, with a base point and Mg, the subgroup
of it consisting of elements which preserve w. This subgroup acts on the group
H(m1 (2, %), Z,)/torsion by pullback. Since this action preserves the symplectic

form, if we take a symplectic basis for it, we have the representation

These representations are related to prym representations of Looijenga [8]. Some
properties of (%, were investigated in [5, 6].

In this section we study the restrictions of them to subgroups of the hyperelliptic
mapping class group of genus g = 3. '

The hyperélliptic mapping class group H, of ¥4 is naturally isomorphic to the
group of isotopy classes of orientation preserving diffeomorphisms which commute
with ¢ under isotopy which also commutes with ¢ [3]. This description of H, shows
that it acts the set of the fixed points of ¢. Thus we have the representation o: H, —
Sag+2, where Gyyi9 denotes the symmetric group of degree 2g + 2 which is the
number of the fixed points of ¢. Let HJ be the kernel of the representation of o. Let
j: Mg, — M, be the natural homomorphism, then we have the short exact sequence
1 — mi(Zg, %) = Mg, 5 My — 1. Put Hg = j7(H,) and HZ, = j7'(HZ). The

following lemma, is known.

Lemma 1. For any a € Hy, the induced homomorphism a* on HY(2,;Zy) is the

identity.

By this lemma, we have HJ C My and HJ, C M3, for any w # 0 € H'(E,;Zs).

We denote the class of ¢ in H7 by the same letter ¢.



Lemma 2. For any lift ¢ of « € Hy to Hj

o+» the image of T by (g, commutes with
those of all elements of H,.

The fundamental group m1(X,,*) of ¥, is presented by < o, 5 (1 £ 7 < g) |

le[ai7 B;] =1 >, where the generators are depicted in Figure 2.

(0 Qo ),

FIGURE 2. The generators of m (X, *)

Let of, Bf (1 =i < g) be the dual basis for H'(Xy;Z,) to the one for Hy(E;Zs)

which is given by the homology classes of «;, ;.

Lemma 3. For any nonzero class w € HY(X4;Zs), there ezists a € Hg such that

a*w = aj, for some k.

Direct computations show that the representation matrix of C;,’: (7) with respect to
a symplectic basis for H(11(2,, %), Z,)/torsion is given by £(Iak-1) ® (—Iag—k))),
where Iy—1) and Iy—r) are the identity matrices of rank 2(k — 1) and 2(g — k)
respectively. And H'(m(X,, %), Z,)/torsion decomposes to the direct sum of two

symplectic submodules over Z. This result and Lemma 2 imply the following lemma.

Lemma 4. For any nonzero w € H'(X;Z,), the representation matriz of ()
with respect to some symplectic basis is £(Iog—1) ® (—Iag—k)) for some k. More-
over H'(m1(Z,, %), Z,,)/torsion is decomposed to the direct sum of two symplectic

submodules over Z on which (,(7) is + the identity.

If we take a fixed point e of ¢ as a base point * of ¥,, we can consider the group

H; as a subgroup of HE,.

Corollary 5. The representation (g, induces two representations of H to Sp(2(k—

1),Z) and Sp(2(g — k).Z), where k is the integer in Lemma 3.
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3. SOME FUNCTIONS ON SUBGROUPS OF Hg. OF LOW GENUS.

In this section we consider the case of g = 1,2 and 3.
Let H' be the set H(E,;Zs) \ {0} for g = 1,2 and the set {w € HY (g Zs) \
{0}] k =2 in Lemma 4} for g = 3.

Lemma 6. The number tH' of the elements of H' is 3, 15 and 35 for g =1,2 and

3 respectively.

For each w € H', let A%, denote Mg N Mg, for g = 1,2 and Hj, for g =

@ is contained in {id}, SL(2,Z) and

3. For any w € H’, the image of Ay, by (g,

SL(2,7) x SL(2,Z) for g = 1,2 and 3 respectively under an appropriate choice of a
symplectic basis for the representation space. In the case of g = 3, let ;’j and (g~
be the compositiorf of ¢¢, with the projection from SL(2,Z) to the first and second
factor SL(2,Z) respectively.
For each w € H’, the function
e, AY, — %Z
is defined by 0, (¢5.)*¢1 and ((57)*¢1 + (G )*¢n for g = 1,2 and 3 respectively. It

is easy to see that these functions are well defined.
Lemma 7. The equality 6®%, = ((;.) Tg—1 holds on AY, for eachw € H "

4. THE MAIN THEOREM

In this section we define some functions on subgroups of the mapping class groups
and state the main theorem.

Let w be a nonzero class in H'(X,;Z,). For any a € My,, put M, := Xy X
[0,1]/(z,0) ~ (a(z),1). Then M, is a Eg-bundle over St = [0,1]/0 ~ 1 with
the identification 7 of ¥, with the fiber at 0 € S* and with the section s: St —
M, defined by the base point x of £4. It is easily checked that there is a unique
homomorphism w,: m1(M,,s(0)) — Zg = {£1} C U(1) satisfying the equalities
*w, = w and s*w, = 1. We define the function p,: M4, — Qby pu(a): = Pua (My)
for each a € M,. Here p, (M,) is the Atiyah-Patodi-Singer p-invariant for (Mj, wa).



In general, the Atiyah-Patodi-Singer p-invariant is a diffeomorphism invariant for
a pair of a closed oriented mapifold of odd dimension and a unitary representation
of the fundamental group of it to U(n). If a metric on the manifold is given, then
the invariant is defined by the diﬁ"erence of the n-invariant of the signature operator
on the manifold and n times that of signature operator with coefﬁciehts in the flat
bundle obtained from the unitary representation. Thus p-invarinats take their values
in R. If a unitary representation factors through a finite group, then the Value of
the p-invariant belongs to Q. |

For each w € H', we define a rational valued function Mgy on AY, by

These functions have the following properties.

Lemma 8. For any a € A}, and f € H,., the following hold.
L g, (1) =0,
2. ”;)*(a~l) = —u;)* (a‘))
-1 L _ w
3. uih "U(fafh) = pi(a),

4. signg = by, on Ag,.

The main property in this lemma is 4. In order to prove it, we need the following

theorem proved by Atiyah, Patodi and Singer.

Theorem 9 (Atiyah-Patodi-Singer [2]). Let M be a closed oriented manifold of odd
dimension and a: m(M) — U(n) a unitary representation. If M is the boundary

of a compact oriented manifold N with o extending to a unitary representation of
m(N) then pa(M) =n sign(N) — signa(N).

We consider the ¥ -bundle N,; over P, where a,b € Mg,. There is a unique
homomorphism wgp: m1(Nyp) — Zg C U(1) satisfying the same condition as w,.
We apply Atiyah-Patodi-Singer’s theorem to the pair (N, p,wqp) and use the Leray-
Serre spectral sequence of the fibration N, — P. Then we have the property 4
in Lemma 8. Using Lemma 8, it is easy to see that the function Mg, descends to a

function p on Ay := j(Ay,) for any w € H'.
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Theorem 10. The difference ¢, — i is a nontrivial homomorphism from Ay to Q

for any w € H' and the equality ¢4 = E‘plﬁ Y wer Mo holds on Hy for g=1,2 and 3.

Since the Meyer function ¢, has the same properties as those in Lemma 8, the
former part of this theorem follows from Lemma 8 and nontrivial examples which
can be given explicitly. The latter follows from Lemma 8 and H'(HJ, Q)%+ = {0}
which is obtained from the fact of H'(H,, Q) = {0} using the Hochschild-Leray-

Serre spectral sequence of the short exact sequence 1 — H7 — Hy — Gg540 — 1.
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