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In [8], Jorgensen described the combinatorial structures of the Ford domains of discrete
cyclic subgroups of Isom(H?) by his so called “method of geometric continuity”. By using
the method, he also studied the combinatorial structures of the Ford domains of quasi-
Fuchsian once-punctured torus groups (see [9]). The work is intimately related to the
constructions of the complete hyperbolic structures of surface bundles over a circle given
in [10] and [11] (cf. [18], [7]). But, unfortunately, the draft [9] has not been completed
yet. Hopefully, it would be completed in the forthcoming book of Jorgensen and Marden
[12]. For (attempts of) expositions of the results without proof, see [22], [3], [16] and [19].

This article is an announcement of our joint research which gives proofs to (parts of)
the assertions in [9] and extends them to the results for the groups on the outside of the
quasi-Fuchsian once-punctured torus space. To be explicit, we describe the Ford domains
of (the fundamental groups or the holonomy groups) of hyperbolic manifolds (possibly
with cone singularities) belonging to one of the following families (see Section 4 for the
definitions of the terminologies):

e The quasi-Fuchsian once-punctured torus groups.

e The geometrically finite boundary groups of the quasi-Fuchsian once-punctured torus
space, in particular, the groups in the Maskit embeddings of the Teichmiiller space
of once-punctured tori. (For geometrically infinite boundary groups, see the first
author’s work announced in [2], which relies on the result of Minsky [13].)

e The Koebe groups representing once-punctured tori. ‘

® Z> @ Zr-extensions of the groups in the Riley slice of Schottky space.

e The hyperbolic cone-manifolds with underlying space a 2-bridge link complement
having the upper and lower tunnels as cone axes.

e The hyperbolic 2-bridge link groups.

Roughly speaking, we have proved that, for any group in the list, there is a “chain” &
(see Definition 4.9) of triangles in the modular diagram, such that the Ford domain is
supported by the isometric hemi-spheres of the “(elliptic) generators” whose “slopes” are
vertices of X, and that its combinatorial structure is recovered from ¥ (cf. Theorems 5.4).
In particular, we give a concrete and conceptual construction of the complete hyperbolic
structures of the hyperbolic 2-bridge link complements, which leads to an affirmative
answer to a conjecture proposed in the second author’s joint work with J. Weeks [20] on the
canonical decompositions of 2-bridge link complements. Actually, this joint work started
aiming at this result. Then, why are the 2-bridge link groups related to the punctured
torus groups? This is because the 2-bridge link groups are quotients of the fundamental
group 71 (S) of a four-times punctured sphere S, and 7;(S) is “commensurable” with the
fundamental group of a once-punctured torus T (see Section 1).
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1. FRICKE SURFACES, MODULAR DIAGRAM AND 2-BRIDGE LINKS

Let T, S, O, respectively, be a once-punctured torus, a 4-times punctured sphere, and a
(2,2,2, 00)-orbifold (i.e., the orbifold with underlying space a punctured sphere and with
three cone points of cone angle 7). They have R? — Z? as the common covering space.
To be precise, let T' and T, respectively, be the groups of transformations on R?* - Z?
generated by m-rotations about points in Z” and (3Z)?. Then T = (R? — Z2%))Z%,
S = (R*= Z%)/T and O = (R? — Z?)/T. In particular, there is a Zy-covering T — O
and a Zy @ Zy-covering S — O: the pair of these coverings is called the Fricke diagram
and each of T, S, and O is called a Fricke surface (cf. [21]).

A simple loop in a Fricke surface is said to be essential, if it does not bound a disk,
a disk with one puncture, or a disk with one cone point. Similarly, a simple arc in a
Fricke surface joining punctures is said to be essential, if it does not cut off a subsurface
homeomorphic to a surface obtained by deleting a point on the boundary of a disk, a disk
with one puncture, or a disk with one cone point. Then the isotopy classes of essential
simple loops [resp. essential simple arcs joining a given puncture to a puncture] in a
Fricke surface are in one-to-one correspondence with @ := QU{1/0}: A representative of
the isotopy class corresponding to r € Q is the projection of a line in R? (the line being
disjoint from Z2 for the loop case, and intersecting Z? for the arc case). The element
r € Q associated to a circle or an arc is called its slope. An essential loop of slope r in
T or O [resp. S] is denoted by o, [resp. @&]. Note that the projection from a (C T') to
a (C ©) is a homeomorphism, while the projection from &, (C S) to a (C O) is a 2-fold
covering. ' ‘

Consider the ideal triangle in the hyperbolic plane H? = {z € C | ¥(z) > 0} spanned
by the ideal vertices {0/1,1/1,1/0}. Then the translates of this ideal triangle by the
action of SL(2,Z) form a tessellation of H 2 This is called the modular diagram and is
denoted by D. The set of ideal vertices of D is equal to Q, and a typical ideal triangle

o of D is spanned by {%, ;Li}%, Ei— where (Zq)i zj> € SL(2,Z). For each ideal triangle

o in D, the union of the lines in R? intersecting Z? with slopes the ideal vertices of o
determines a T-invariant ideal triangulation of R? — Z? which projects to a mazimal arc
system of each of T, S, and O.

The abstract simplicial complex having the combinatorial structure of D is also denoted
by the same symbol D. Then H? is identified with |D| — |D©|, where D denotes the
0-skeleton of D and | - | denotes the underlying topological space of a simplicial complex.
The distance d(r;,T2) between two elements r; and ry of Q = DO is defined to be the
minimal number of edges in a simplicial path in D joining 7; to 7.

In the remainder of this section, we recall basic facts concerning the 2-bridge links.
First, we recall the definitions of a trivial tangle and a rational tangle. A trivial tangle
is a pair (B3,t), where B3 is a 3-ball and ¢ is a union of two arcs in B® which is parallel
to a union of two mutually disjoint arcs in 0B3. A meridian m of (B3, t) is a simple
loop on B3 — t which bounds a disk in B? separating the components of ¢. The arc 7
illustrated in Figure 1.1 (1) is called the core of (B3,t). A rational tangle is a trivial tangle
(B3, 1) endowed with a homeomorphism from 8(B3,t) to the Conway sphere (R?, Z*)/T.
Then the meridian m of a rational tangle is regarded as a loop in the Fricke surface
S = (R?* — Z*)/T and hence it has a well-defined slope. The slope of a rational tangle
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is defined to be the slope of its meridian, and a rational tangle of slope r is denoted by
(B®,t(r)).

The two bridge link S(r) of slope r is defined as the “sum” of the rational tangles of
slopes 0o and r; i.e., (S%, 5(r)) is obtained from (B3,t(c0)) and (B3, ¢(r)) by identifying
their boundaries through the identity map (see Figure 1.1 (2)). (Note that each of the
boundaries of the rational tangles are identified with the Conway sphere (R? Z%)/T,
so the term “identity map” has a well-defined meaning.) The cores of (B3,t(00)) and
(B?,(r)), respectively, are called the upper tunnel and the lower tunnel of S ().

(1 (2)

$(2/5)

Fig.1.1

The following is a reformulation of a well-known consequence (cf. [18]) of Thurston’s
uniformization theorem of Haken manifolds ([14],[15]):

Theorem 1.1. According as the distance d(oco,r) is 0, 1, 2, or > 3, the 2-bridge link
S(r) is the 2-component trivial link, the trivial knot, a torus link, or a hyperbolic link.

More generally, for any pair (ry, r5) of elements of Q, S(rq, r9) denotes the link defined
by (8%,S(r1,72)) = (B3 ¢(r1)) U (B%t(ry)). This link is homeomorphic to (S3,8(r)),
where 7 is the image of 5 by an element A € SL(2, Z) such that A(r;) = co. Hence,
S(ry,m2) is hyperbolic if and only if d(r;,ry) > 3.

2. A WAY FROM PUNCTURED TORUS GROUPS TO 2-BRIDGE LINK GROUPS

In this section, we explain our strategy for the construction of the complete hyperbolic
structures of the 2-bridge link complements. Let M be the space obtained from the link
exterior cl(S® — N(S(r))) by deleting open regular neighborhoods of the upper and lower
tunnels. Then M is homeomorphic to S X [0, 1], and the link complement is recovered
from M by attaching 2-handles along the loops &y on S x 0 and &, on S x 1 (see Figure
2.1). We will give “geometric realization” of this procedure as follows. We start from
a very simple Fuchsian representation of 71(S), deform the representation in the quasi-
Fuchsian space, and obtain as the limit the “double cusp group” in which Qoo and &,
correspond to accidental parabolic transformations. The quotient of the hyperbolic space
by the image of each representation in the above procedure is homeomorphic to int(M).
Each representation in the above procedure extends to a representation of m1(O), and
Jorgensen’s analysis of punctured torus groups [9] describes how the Ford domain of the
image of the representation of m;(O) changes during the procedure.
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Next, we get out of the closure of the quasi-Fuchsian space, and consider deformations
of the representation such that d., and &, become elliptic transformations. Though the
representations are not discrete anymore except for special cases, each of them can be
regarded as the holonomy representation of the hyperbolic cone-manifold S(r;26:,203),
illustrated in Figure 2.1, for some #; and 6, with 0 < 6; < 7 (¢ = 1,2). Note that the
Zy ® Z,-symmetry of S extends to those of (S2,S(r)) and S(r;26:,26,). We denote
the quotient orbifold (S% — S(r))/(Z2 ® Z,) by O(r) and the quotient cone-manifold
S(r;20,,205)/(Z2 & Z5) by O(r;61,62) (see Figure 2.2). Then we can construct a fun-
damental domain of the cone-manifold O(r; 0, 6,), whose combinatorial structure is es-
sentially equal to that of the Ford domain of the Z, & Zs-extension of the double cusp
group. Furthermore, we can see the combinatorial structure of the fundamental domain
of O(r; 61,6,) does not change as long as 0 < 6; < 7 (i = 1,2). When 6, or §, becomes
7, the fundamental domain changes drastically. However, it is possible to describe the
drastic change, and we can understand the combinatorial structure of the Ford domain of
O(r;27,2m) = O(r). Moreover the (extended) Ford domain of S* — S(r) is equal to that
of O(r), and it is dual to the topological ideal triangulation given by [20]. This proves
that the topological triangulation is isotopic to the canonical decomposition.

S(T; 201 N 292) 292 6’2

26, |

HIEIHEZ DN

K(r,261,26,) O(r,61,62)

Fig.2.1 Fig.2.2

When the link S(r) is a torus link, i.e., when d(oo, ) = 2, the holonomy representation
of O(r;6,,0,) degenerates into a real representation when (6,6;) becomes (m,7); the
image of the limit representation is isomorphic to the orbifold fundamental group of the
(2-dimensional) base orbifold of the Seifert fibered structure of the link complement. In
particular, we have the following result.

Theorem 2.1. The topological cone-manifold S(r;20;,26,) is a hyperbolic cone-manifold
if and only if one of the following conditions holds:

(1) d(co,r) > 3.

(2) d(co,r) =2 and (641,02) # (7w, 7).

(8) d(oo,r) = 1.

Remark 2.2. (1) By the argument of Parkkonen [17], we can see that the holonomy
representation of the cone-manifold S(r;26;,26,) is discrete if and only if §; = 27 /n; for
some integer n; (i = 1, 2).



71

(2) In (3) of the above theorem, the cone-manifold structure projects to that of O(r; 26;, 262)
if and only if (0y, 62) # (m, ).

3. FUNDAMENTAL GROUPS OF FRICKE SURFACES

Since T and S are finite regular coverings of the orbifold O, the fundamental groups
of T and S are regarded as normal subgroups of the orbifold fundamental group of O of
finite index. These groups have the following group presentations:

(1) m(T) = (Ao, Bo),
(2) 71'1(8) = (Ko, Kl, K2, Kg | K0K1K2K3 = l),
(3) m(0) = (P, Qo,Ro | F{ = Qf = Rj =1),

Here the generators satisfy the following conditions: Put K = (PyQoRy)™}, then K is
represented by the puncture of O and satisfies the relation K? = [Ag, By], Ao = KP =
RoQo, B= KWIR() = P()QQ, KO = K, K1 = KP, K2 = KQ, K3 = KR, where XY denotes
Y XY~!. (Warning: Note that this convention may be different from the usual one and
that (XY)% #£ XYZ = (X?)Y) Throughout this paper, we reserve the symbol K to denote
the element of m(O) defined in the above.

Definition 3.1. (1) An ordered pair (A, B) of elements in 7,(7T) is a generator pair of
m1(T) if they generate m(T') and satisfies [A, B] = K2. In this case, A and B, respectively
are called the left and right generators, and (A, AB, B) is called a generator triple. The
slope of an essential loop in T realizing A [resp. B is called the slope of A [resp. B] and
is denoted by s(A) [resp. s(B)]. ‘

(2) An ordered triple (P, @, R) of elements of 7 (O) is called an elliptic generator triple
if they generate 7 (Q) and satisfies P2 = Q? = R? = 1 and (PQR)™! = K. A member of
an elliptic generator triple is called an elliptic generator. £G denotes the set of all elliptic
generators.

Proposition 3.2. (1) For any elliptic generator triple (P, Q, R), the following holds:
(1.1) The triple of any three consecutive elements in the following bi-infinite sequence
18 also an elliptic generator triple.

aPK_I)QK‘17RK‘i,P)QaR)PKvQKaRKa"'

(1.2) (P, R, Q%) is also an elliptic generator triple.

(2) Conversely, any elliptic generator triple is obtained from (P,Q, R) by successively
applying the operations in (1). ,

(3) If (P,Q,R) is an elliptic generator triple of m1(0O), then (KP,KQ, K™'R) is a
generator triple of m(T). Conversely, every generator triple of m1(T) is so obtained.

For each elliptic generator P of m,(O), KP and K~!P, respectively, are left and right
generators of m1(T") by Proposition 3.2. Further, we see s(KP) = s(K~'1P). We define
the slope s(P) of P by s(P) := s(KP) = s(K~'P). Throughout this paper, we assume
that the slopes of Ay and By in the group presentation (1) are 0/1 and 1/0, respectively
and that the slopes of Py, Qo and Ry in the group presentation (3) are 0/1, 1/1 and 1/0,
respectively.

Proposition 3.3. (1) For two elliptic generators P and P’, s(P) = s(P’) if and only if
P' = PKX" for some integer n.
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(2) For any elliptic generator triple (P,Q, R), the oriented triangle (s(P), s(Q),s(R))
of D is a coherent with the triangle (0/1,1/1,1/0).

(3) The slopes of two elliptic generator triples span the same triangle of D if and only
if they are related by the operation (1.1) of Proposition 3.2. ‘

(4) For any elliptic generator triple (P,Q, R), we have s(QF) = s(Q"), and this slope
is the image of s(Q) by the reflection in the edge (s(P), s(R)).

(5) Let (A, AB, B) be a generator triple of mi(T). Then (AB™', A, B) is also a genera-
tor triple, and both (s(A),s(AB), s(B)) and (s(AB™'), s(A),s(B)) are coherent with the
triangle (0/1,1/1,1/0). In particular, s(AB™) is the image of s(AB) by the reflection in
the edge (s(A),s(B)).

Convention 3.4. When we mention to a triangle (so, s1, s2) of D, we always assume that
the orientation of the triangle by this order of the vertices is coherent with the orientation
of (0/1,1/1,1/0).

By Propositions 3.2 and 3.3, we see that for each triangle o = (so, s1, s2) of D, there is
a bi-infinite sequence { P}, .z of elliptic generators satisfying the following conditions:
1. For each n € Z, we have s(P,) = sj, where [n] denotes the integer in {0, 1, 2} such
that [n] =n (mod 3).
2. The triple of any three consecutive elements P,_1, P,, P,41 is an elliptic generator
triple.
3. PE" = P am.

Further, such a sequence is unique modulo sifts of suffix by multiples of 3.

Definition 3.5. (1) The above sequence {F,}, 7 is called the sequence of elliptic gen-
erators associated with o, and it is denoted by £G (o).

(2) More generally, for a subcomplex X of D, £G(3) denotes the set of elliptic generators,
{Pe&G|s(P)ex®}.

4. MARKED REPRESENTATIONS

First, we introduce the family of PSL(2, C)-representations of the fundamental groups
of the Fricke surfaces which are studied in this paper.

Definition 4.1. (Type-preserving representation) (1) A PSL(2, C)-representation of 71(O)
is type-preserving if it is not reducible (i.e., it does not have a common fixed point in the
closure of hyperbolic space) and sends K to a parabolic transformation.

(2) X denotes the space of the type-preserving PSL(2, C)-representations of m(QO)
modulo conjugacy.

The following lemma can be proved by using the arguments in [6, Proof of Proposition
1.1].

Lemma 4.2. (1) Let p be a type-preserving PSL(2, C)-representation of m1(O). Then the
restriction of p to mi(T) lifts to an SL(2, C)-representation j such that tr(p(K?)) = —2.

(2) Conversely, every PSL(2,C)-representation of m(T) obtained from an SL(2,C)-
representation p of w1 (T) [resp. w1(S)] such that tr(p(K?)) = —2, extends to a type-
preserving PSL(2, C)-representation of m1(O).

Definition 4.3. (1) An SL(2, C)-representation j of m; (T') is type-preservingif tr(p(K?)) =
—2.
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(2) X denotes the space of the type-preserving SL(2, C)-representations of w1 (7) mod-
ulo conjugacy with the albegraic topology.

Definition 4.4. (Markoff map) For a type-preserving SL(2, C)-representation j € X,
let ¢ be the map from D¥ = Q to C define by ¢(r) = tr(3(a,)), where a, is an element
of m(T") represented by a simple loop of slope . We call it the Markoff map associated
with p.

Then it is known by [5] and [9] that j is recovered from the Markoff map ¢. Throughout
this paper, we employ the following convention:

Convention 4.5. (1) When we choose a representative p of an element of X, we always

assume
11
p(K) = l:O 1} .

(2) We do not distinguish between an element of X and its representative: they are
denoted by the same symbol as long as there is no fear of confusion.

(3) When we mention to p, the symbols j and ¢, respectively, denote a lift of p and the
Markoff map associated with p.

We now give the definitions of the Maskit embeddings, Koebe groups and the Riley
slice of Schottky space, which appeared in the introduction.

Definition 4.6. (Maskit slice) We call p a Maskit representation of slope s and sign e if
it satisfies the following conditions.

1. p(as) is a parabolic transformation or equivalently ¢(s) = +2.
2. The connected components of Q(p) are of two kinds:

e A simply connected Im(p)-invariant component €y for which the orbit space
Q/Im(p) is homeomorphic to the orbifold O or equivalently Qo/p(m(T)) is
homeomorphic to T.

o Non-invariant component €2;, i > 1, that are conjugate to one another un-
der Im(p) and for which each orbit space €;/ Stablm(p)(Qi) is conformally the

(2, 00, 00)-orbifold, i.e., the hyperbolic orbifold with underlying space a twice-
punctured sphere with a cone point of cone angle 7. The latter condition is
equivalent to the condition that €2;/Stab,(, (r))(£%;) is homeomorphic to a trice-
_ punctured sphere.
3. The region {z € C | €3(z) > M} for sufficiently large positive real number M is
contained in the component €.

The subspace of X consisting of the conjugacy classes of the Maskit representations of
slope s and sign ¢ is called the Maskit slice (or the Maskit embedding of the Teichmuller
space of punctured tori) of slope s and of sign € and is denoted by M(s,€).

Definition 4.7. (Koebe slice) We call p a Koebe representation of order n (> 3), slope s
and sign € if it satisfies the following conditions.

1. p(as) is an elliptic transformation with rotation angle 27/n or equivalently ¢(s) =
+2cos(m/n).
2. The connected components of Q(p) are of two kinds:
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e A simply connected Im(p)-invariant component o for which the orbit space
Qo/Im(p) is homeomorphic to the orbifold O or equivalently Qo/ p(m(T)) is
homeomorphic to T'.

e Non-invariant component €, i > 1, that are conjugate to one another un-
der Im(p) and for which each orbit space €/ Stablm(p)(Qi) is conformally the
(2, n, 0o)-orbifold, i.e., the hyperbolic orbifold with underlying space a once-
punctured sphere with a cone point of cone angle 27 /n and a cone point of cone
angle . The latter condition is equivalent to the condition that Q;/Stab,(, (1)) ()
is homeomorphic to the (n,n, co)-orbifold.

3. The region {z € C | ¢3(z) > M} for sufficiently large positive real number M is
contained in the component .

The subspace of X consisting of the conjugacy classes of the Koebe representations of
slope s and of sign ¢ is called the Koebe slice of order n (> 3), slope s and sign ¢, and it
is denoted by K(n, s, €).

Definition 4.8. (Riley slice) We call p a Riley representation of slope s if it satisfies the
following conditions.

1. p(e) is an elliptic transformation with rotation angle  or equivalently ¢(s) = 0.
2. Q(p) is connected and the orbit space Q(p)/Im(p) is homeomorphic to the orbifold
O or equivalently Q(p)/p(71(S)) is homeomorphic to S.

The subspace of X consisting of the conjugacy classes of the Riley representations of slope
s is called the Riley slice (of Schottky space) of slope s, and it is denoted by R(s). Each
R(s) is equivalent to R introduced at the beginning of this section.

Next, we introduce some concepts and notations which are needed later.

Definition 4.9. (Chain) (1) A chain is a non-empty ordered set & = {01,002, -+ ,0m},
such that oy, 03, - - - , 0, are triangles of D intersecting an oriented open geodesic segment
of H? in this order. The number m is called the length of the chain.

(2) When a chain ¥ = {01,09,--+ , 0} is given, the symbol ¢~ [resp. o] denotes o1
[resp. o): we call it the (—)-terminal triangle [resp. (+)-terminal triangle] of ¥. If the
length m is greater than 1, then the symbols s~ [resp. s*] denotes the vertex of o0~ [resp.
o*] which is not a vertex of o [resp. om_1]: we call it the (—)-terminal vertez [resp.
(+)-terminal vertex] of 3.

Remark 4.10. If ¥ has length 1, then we regard 0~ = 0 = o;; however, s¢ (e = £) are
undefined. If ¥ has length 0, then o¢ (¢ = £) are undefined.

Definition 4.11. A marked representation of m; (O) (a marked representation, in brief)
is a pair (p; ) of a type-preserving representation p of m(Q) and a chain ¥. ¥ is called
the marking of (p; ). When ¥ consists of a single triangle o [resp. a single edge 7] (p;X)
is denoted by (p; o) [resp. (p;7)] and is called a singly marked representation [resp. thin
marked representation).

5. FORD DOMAINS
In this section, we recall the definition of the Ford domain and give a rough exposition

of the main theorem. Let A = [z Z] be an element of PSL(2,C). Then it acts on the
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Riemann sphere C by A(z) = (az+b)/(cz + d). Suppose A(co) # oo, then the isometric
circle I{A) of A is defined by

I(A)={zeC||A(2) =1} ={2€C | |cz+d| = 1}.

I(A) is the circle in C whose center is —d/c = A~!(00) = pole(A) and has radius 1/|c|.
The isometric hemisphere Ih(A) is the hyper-plane of H?® bounded by I(A). We use the
following notation:

c(A) = the center of I{A),

D(A) = the disk in C bounded by I(A),

E(A) = cl(C — D(4)),

Dh(A) = the closed half-space in H* bounded by Ih(A) whose closure contains

c(A).

Eh(A) = cl(H? — Dh(A)).
The symbols Th(A), Dh(A) and Eh(A), respectively, denote the closure of Ih(A), Dh(A)
and Fh(A) in the closure H® = H3UC of the hyperbolic space H?>.

Definition 5.1. (Extended Ford domain I) Let p be an element of X, such that Im(p) is
discrete. The extended Ford domain of p, denoted by Ph(p), is defined to be the common
exterior of the isometric hemi-spheres of the elements of Im(p) which do not fix co, that
is,

Ph(p) = [ J{ER(p(X)) | X € m1(O) ~ Stab,(c0)},
where Stab,(00) = {X € m(0) | p(X)(00) # co}.

Note that the intersection of Ph(p) with a vertical fundamental polyhedron of the
discrete subgroup Stab,(co) is a fundamental polyhedron of Im(p). Here, a vertical poly-
hedron is a polyhedron of the form F x Ry C Cx Ry = H 3 for some polygon F in
C.

Even if p is not discrete, we can define an analogue of the Ford domain provided that
p is the holonomy representation of a hyperbolic cone-manifold. (This means that the
there is a “morphism” f from the topological orbifold O into a hyperbolic cone-manifold
(M, X), such that f, : m;(O — {the three cone points}) — (M — X) is an epimorphism
and that ho f = poj, where h : m (M —X) — PSL(2, C) is the holonomy representation
and j is the natural homomorphism 7; (O — {the three cone points}) — 71(0).)

Definition 5.2. (Extended Ford domain II) Let p be an element of X. An extended Ford
domain Ph(p) of p means a (p(K))-invariant polyhedron in H* bounded by the isometric
hemispheres of a family of elements of Im(p), such that the intersection of which with a
vertical polyhedron is a fundamental polyhedron of the hyperbolic cone-manifold.

To describe the Ford domains, we introduce the following notations.

Definition 5.3. Let (p; &) be a marked representation, such that ¢=*(0)NZ(® = . Then
Eh(p;¥) denotes the region in H?* and C defined by the following formula:

Eh(p; %) := [ {Eh(p(P)) | P € £G(2)}
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The definition of Eh(p;X) is generalized as follows. Let (p; X)) be a marked represen-
tation, such that ¢=2(0) N (Z©® — {s~,s*}) = 0. Let P be an elliptic generator of slope
s¢. Then p(P) is the m-rotation about a vertical geodesic. The isometric circle I{p(P))
is defined to be the p(K )-invariant line in C passing through the (unique) fixed point of
p(P) in C. The isometric hemisphere Ih(p(P)) is defined to be the vertical hyper-plane
of H? above I(p(P)). Eh(p(P)) is defined to be the closed half-space of H 3 bounded by
Ih(p(P)) which lies on the —(¢)-side of ITh(p(P)) with respect to the imaginal coordinate.
Then Eh(p; ¥) is defined by the formula in Definition 5.3.

The following theorem gives a rough exposition of the main result of our joint work:

Theorem 5.4. For any representation p belonging to one of the families listed in the
introduction, there is a chain ¥, such that Ph(p) = Eh(p; ). Furthermore, the combina-
torial structure of Ph(p) is determined by X.

See Figure 5.1 for a typical example of the Ford domain of a quasi-Fuchsian repre-
sentation, where the second figure illustrates the “geometric dual” to the Ford domain.
This figure is created by the program Opti (23], made by the third author. We strongly
recommend the readers to play with the program Opti [23], made by the third author: it
is the best way to understand the contents of this article. For the explicit meaning of the
“dual” and the full statement of the result, please see [4].
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