goooboooobgon
1163 0 2000 0 57-66

REFRHY T 72 VY horoball height % ##0
7 74 YERDBHI

An example of Kleinian groups with indiscrete
horoball heights

K& 7 (Hirotaka Akiyoshi) *

1 Introduction

Let M be a hyperbolic 3-manifold with a cusp, i.e., M is the quotient of the
hyperbolic 3-space H® by a torsion-free Kleinian group I' with a parabolic
element. For simplicity, we suppose that M contains precisely one cusp, i.e.,
all parabolic fixed points of I" are equivalent with respect to the action of
I'. We shall identify H* with the upper half of the Euclidean 3-space E? so
that oo becomes a parabolic fixed point of I'. Let C be the mazimal cusp of
M. The horoball pattern, H(M), of M is the set of horoballs in H*® which
project onto C' and the centers are distinct from co. Let h : H® — R, be the
height function defined by using the coordinate of E®. Then the discreteness
of h(H(M)) C Ry is an invariant of M.

Theorem 1.1. Suppose that T' is geometrically finite. Then h(H(M)) is
discrete in R.

It is natural to expect that there exists a manifold M such that h(H(M))
is indiscrete in Ry. The main result in this paper is the following theorem.
For any quasi-Fuchsian group of the once-punctured torus, I', we can define
the end invariant A(I') = (A~('), A\*(I")) € H2 x H2? — A, where A is the
diagonal of OH* x OH?. It is proved in [7] that X is a bijective map from the
closure of the quasi-Fuchsian space of the once-punctured torus to H2x H2— A
and that A~! is continuous.
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Theorem 1.2. Let Mo be the real number which has the expansion into the
continued fraction
1

-
2+——1—3+m

Mo =[2,3,4,...] =

Put T = A (Moo, ¢) and M = H3/T¢ for any ¢ € H?. Then h(H(M)) is
indiscrete in Ry

2 Horoball pattern

Let M be a hyperbolic 3-manifold with a single cusp. Let I : H® — H*/T =
M be the universal covering. The mazimal cusp of M is defined as follows:
Let v be a parabolic fixed point of I and T, the stabilizer of v in I Then
T, consists of the parabolic elements in I" which stabilizes v. There exists
a horoball H centered at v such that the quot'ient H/T, is embedded in M.
The set H/T, C M is called a cusp of M. If we gradually expand H then
H/T, eventually has a self-intersection in M. The maximal cusp is the subset
H/T, of M with this maximal size. Let H(M) be the set of horoballs in H®
which project onto the maximal cusp and the centers are distinct from v.

We shall identify H® with the upper half of E3, ie., H® = {(z,y,2) €
E?|z > 0}, so that v is identified with co. (Note that OH? is identified with
C U {oo}.) For a point (z,vy, z) € H?, we define h(z,y, z) = z.

Definition 2.1. Foraset X C H?, the Euclidean height h(X) of X is defined
by

h(X) = sup{h(z) |z € X}.

We remark that the discreteness of h{H(M)) C M is independent of the
choice of a parabolic fixed point v and an identification of H?® with the upper
half space.

In the following, we prove a stronger version of Theorem 1.1 (Theorem
2.3).

Definition 2.2. (1) The rank of a parabolic fixed point v of I' is the rank
of an abelian group I',. :

(2) Suppose that the rank of v is one. We say that v is doubly cusped if there
exist two open round disks in ©(I") which are disjoint and stabilized by
I',, where (I") denotes the domain of discontinuity of I'.
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(3) A parabolic fixed point of I is said to be bounded if (i) it is of rank 2 or
(ii) it is of rank 1 and doubly cusped.

Theorem 2.3. Suppose that oo is a bounded parabolic fized point of I'. Then
h(H(M)) is discrete in R.

We remark that Theorem 1.1 follows immediately from Theorem 2.3 and
Proposition 2.4 below. (See [6, Chapter VI, Proposition A.10] for example.)

Proposition 2.4. Suppose that I' is geometrically finite. Then any parabolic
fized point of I' s bounded.

Proof of Theorem 2.3. Since oo is bounded, there exists a compact subset
K of C with the following property: For any w € A(I") — {oo}, there exists
v € ' such that yw € K, where A(") denotes the limit set of I'. Suppose
that h(H(M)) is indiscrete in R,. Note that yH € H(M) for any v € T
and H € H(M) and that each element of 'y, keeps the Euclidean heights of
horoballs as it is a Euclidean parallel translation of the upper half space. Thus
there exists a sequence of horoballs {H,} C H(M) such that the sequence
{h(H,)} converges to some point ho, € Ry, h(H,) # he for any n € N and
that the centers of H,, (n € N) are contained in K. By taking a subsequence,
which we denote by the same symbol, we may assume that the horoballs
H, (n € N) are distinct from one another. Then, from the definition, they
are mutually disjoint in the interior. Since {h(H,)} converges to he € Ry,
there exist two positive numbers A, and h_ such that h- < h(H,) < hy
for any n € N. Thus the Euclidean volume of each H,, (n € N) is bounded
below by a positive number. On the other hand, each H, is contained in
the set {(z,y,2)|(z,y) € B(K,hy/2), z < hy} whose Euclidean volume is
equal to Area(B(K,hy/2))hy < 0o, where B(K, h,/2) denotes the (hy/2)-
neighborhood of K. This is a contradiction. g

3 Punctured torus groups

For 'y _ et € PSL(2,C) with ¢ # 0, the isometric hemisphere Th(7y) of
c d

«v is the Euclidean hemisphere with equator {z € C||cz + d| = 1}. For a
Kleinian group T, let Z(T") be the set of isometric hemispheres defined by

I(T) = {Ih(v) |y € T, 7(00) # oo}

In this section, we study the Euclidean heights of isometric hemispheres
which support faces of the Ford domain of a once-punctured torus group.
This can be used to prove Theorem 1.2 by the following lemma.
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Lemma 3.1. For a hyperbolic 8-manifold with a single cusp M = H3/T,
h(H(M)) 1s discrete in Ry if and only if h(Z(T")) is discrete in. Ry.

Proof. Let H be a horoball in H? which projects onto the maximal cusp. We
can see that h(yH) = 1/(|c|*h(0H)) for any v € T with y(c0) # oo. Thus
we have

h(H(M)) = {1/(Ic|*h(8H)) |y € T, v(c0) # o0}
On the other hand, from the definition, we have
MI(T)) = {1/lc| |y € T, v(00) # oo}.

Thus it is obvious that h(H(M)) is discrete in Ry if and only if A(Z(T')) is
discrete in R,. O

Let T be the once-punctured torus and po": 7 (T) — PSL(2,R) C
PSL(2,C) its Fuchsian representation. The quasi-Fuchsian space QF of
the once-punctured torus is the set of quasi-conformal deformations of pg
quotiented by the conjugation in PSL(2,C) and equipped with the algebraic
topology. We denote the closure of QF in the representation space of m1(T)
by QF. In this paper, we loosely identify an element of QF and its image in
PSL(2,C).

For any I' € QF, H3/T" is homeomorphic to T x (—1,1) and hence has
two ends £*. We can assoc1ate an end invariant A\(I") = ( (), AT (I")) with
I’ as follows:

(1) If the end &°¢ is geometrically finite, then \¢(T") is the marked conformal
structure of the Riemann surface at infinity.

(2) If the end &¢ is geometrically infinite, then A¢(T') is the ending lamination
of the end.

Then each X*(T) is defined as the point in the closure of the Teichmiiller
space of T, which is isomorphic to H=.

Theorem 3.2 ([7]). A: QF — HZ2 x H2 — A is bijective and A™' is contin-
uUOUS. '

To prove Theorem 1.2; it is convenient to study the representations of
71(T). (See [4] and [2, 3] for detail.) The once-punctured torus T has the
symmetry 7 depicted in Figure 1. Let O be the quotient of T' by (r), which
is the orbifold $%(c0,2,2,2). Let p : T — T/{r) = O be the covering
projection.

By the following proposmon we can study the elements of QF by using
a representation of 7{™°(©). In the rest of this paper, we regard QF as a set
of representations of 7¢"(0).
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Figure 1: Coveringp: T — O

Proposition 3.3. For any p € QF, there exists a unique representation
p:m(O) — PSL(2,C) such that o p, = p.

We can see that the fundamental group of O has the following presenta-
tion:

77(0) = (P, Qo, Ro | P2 = Q2 = R2 = 1),

where each Fy, Qo and Ry is represented by a loop which goes around a
branch point. (See Figure 2.) Put K = RoQoFs. Then K is represented by
a loop which goes around the puncture.

Definition 3.4 (Elliptic generators). (1) A triple (P, @, R) of elements
of m¢"®(0) is called an elliptic generator triple if the following conditions
are satisfied:

(i) 7¢(0) = (P,Q, R).
(ii) PP=Q*=R?=1and RQP =K.

(2) An element P of 7¢"°(Q) is said to be an elliptic generator if there exist
Q, R € 7¢"°(O) such that (P,Q, R) is an elliptic generator triple.

Remark 3.5. For an elliptic generator triple (P,Q, R), put A = KP and
B = K~'R. Then p.(m(T)) = (A, B) and ABA'B~! = K?2.
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Figure 2: Generators of 7¢"°(0)

Let D© be the isotopy classes of essential simple closed curves in T.
Then D can be identified with QU {00} C RU {oo} = JH?. Let ao be the
geodesic triangle in H?2 spanned by 00,0, 1, which we denote by (00,0, 1).

Definition 3.6 (Modular diagram). The modular diagram D is the sim- -

plicial complex defined by the triangulation {yoo |y € SL(2,Z)} of H2UD®.

By the definition, the element KP € p.(m(T)) is represented by an
essential simple closed curve C in T for any elliptic generator P. We denote
the isotopy class of C' by s(P), and call it the slope of P.

Lemma 3.7. (1) For elliptic generators P and P, s(P) = s(P') if and only
if PP=K"PK™ for somen € Z.

(2) For any elliptic generator triple (P,Q, R), the three points s(P), s(Q)
and s(R) span a triangle in D.

(3) For any triangle o in D, there exists an elliptic generator triple (P, Q, R)
such that o = (s(P), s(Q), s(R)).
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Let p : m(T) — PSL(2,C) be a representation in QF. Then p lifts
to a representation p : m(T) — SL(2,C). We define the Markoff map
¢: DO — C by ¢(s(P)) = tr p(K P).

Lemma 3.8. (1) For any triangle (s, 1, s2) in D,
$(50)* + (51)° + B(52)* = B(50)¢(s51)(s2).
(2) For any different triangles (so, s1, s2) and (so, s1,85) in D,

¢(s2) + B(s5) = P(s0)p(s1).

Remark 3.9. (1) By Lemma 3.8(2), a Markoff map is determined from the
values at the vertices of a single triangle in D.

(2) We can see that any Markoff map induces a unique representation of
7 (O) to PSL(2,C). ' :

In [5], Jorgensen studies the Ford domains of quasi-Fuchsian groups of the
once-punctured torus. We can apply the argument to the boundary groups
of quasi-Fuchsian space of once-punctured torus. (See [1] for an outline.) We
can use several results obtained by this study. For the rest of this paper, we
suppose that p(K) = {(1) i] for any p € QF.

Lemma 3.10. Let p € QF. For any elliptic generator P with p(P)(c0) #
oo, h(Ih(p(P))) is equal to 1/|¢(s(P))|, where ¢ is a Markoff map which
induces p.

Definition 3.11. Let Ay be the real number which has the expansion into
the continued fraction Ae = [2,3,...]. For { € H?, let It = A™! (A, () and
¢¢ be a Markoff map which induces p; € QF with Im p; = I'c. (See Figure
3L)

Let s,, be the rational number which has the expansion into the continued
fraction s,, = [2,3,...,n]. Since any parabolic element in T is the image
of an element which is conjugate in 7¢™(0O) into the cyclic group (K), the
following lemma holds.

Lemma 3.12. No ¢¢(s,,) (n € N) is equal to £2.

As a corollary to the characterization of the Ford domains of once-punctured

torus groups, we have the following lemma (cf. [5, Lemma 5]).

This figure is drawn by using OPTi [8].
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Figure 3: Ford domain of I'; for some ¢ € H?

Lemma 3.13. There exists a subsequence of {s,}, which we denote by the
same symbol, such that the sequence {¢¢(sn)} converges to one of £2.

Proof of Theorem 1.2. Let s, and s” (n € N) be the points in D© depicted
in Figure 4. Let x,, (resp. yn, 2z, and w,) be the value of ¢, at s, (resp.
Sn—1, 8, and s). Then, by Lemma 3.13, there exists a subsequence of {s,},
which we denote by the same symbol, such that each {z,} and {y»} converges
to one of £2. We may suppose that both {x,} and {y,} converge to 2, if
necessary, by changing ¢, to another Markoff map which induces p¢. Then,
by Lemma 3.8,

2 2 2 . o -
Ty, + Yp + 2 = Tnlnn, (3.1)

Yn + Wp = TnZn. (32)



Sngl = 1[2,3,...,n+1]
Sy = 2,3,...,n]

Sp-1=1[2,3,...,n — 1]

Figure 4: Slopes s, s/, and s/,

By (3.1), we have

"nni 2 2_4,2+?
zn — ‘L. y ‘\/'L.’I'Ly’; ('B'I‘L ylb) . (3‘3)

Thus, by taking a subsequence, {z,} converges to 2(1 + ey/=1) (¢ € {£1}).
Then, by (3.2), {wn} converges to 2(1 + 2¢/—1).

Suppose that h(Z(I'¢)) is discrete in R,. Then, by Lemma 3.10, each
{lzul[n € N}, {lynl|n € N}, {|2a| |7 € N} and {|w,||n € N} is a finite set.
Hence both [z,| and |y,.| are equal to 2, |2, is equal to |2(1 4+ ev/=1)| = 2v/2
and |w,| is equal to [2(1 + 2ev/=1)| = 2v/5 for sufficiently large n. Put
Ty = 2e"V71 = 2e2VT and 2, = 2v/2e¥Y~T for such n. Since both
{za} and {y»} converge to 2 and {z,} converges to 2(1 + ex/=1), both {6..}
and {p,} converge to 0 and {t,} converges to er/2. By (3.2), we have
l-’r'n,zn.— y-n,’ = lwnl Thus

‘4\/:2'6(07'44/)")\/_—1 __ 2€lpn\/“—1| —_— 2\/5,

and hence @, — 0, — 1, = er /4. Then, by (3.3),

2/ 2P O €T/ OV=T _ 9 (0n+pn)V/=T <1 + 6'\/1 —~ (e=20nV-T 4 6'2*”"‘/:—1)) ,

and hence
eVl = 2ey/Z1e™ VT (1 - 2e/<T)e VT, (3.4)

Note that the absolute value of the left hand side of (3.4) is equal to 1. Put
f(0) = |2v/=Te V=T 4 (1 — 2v/=1)e2V=1|, Then %(0) is not equal to 0.
Therefore 0,, is equal to 0 for sufficiently large n. This contradicts Lemma
3.12. O
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