Title
An example of Kleinian groups with indiscrete horoball heights

Author(s)
Akiyoshi, Hirotaka

Citation
数理解析研究所講究録 (2000), 1163: 57-66

Issue Date
2000-07

URL
http://hdl.handle.net/2433/64286

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
An example of Kleinian groups with indiscrete horoball heights

秋吉宏尚 (Hirotaka Akiyoshi) *

1 Introduction

Let M be a hyperbolic 3-manifold with a cusp, i.e., M is the quotient of the hyperbolic 3-space \mathbb{H}^3 by a torsion-free Kleinian group Γ with a parabolic element. For simplicity, we suppose that M contains precisely one cusp, i.e., all parabolic fixed points of Γ are equivalent with respect to the action of Γ. We shall identify \mathbb{H}^3 with the upper half of the Euclidean 3-space \mathbb{E}^3 so that ∞ becomes a parabolic fixed point of Γ. Let C be the maximal cusp of M. The horoball pattern, $\mathcal{H}(M)$, of M is the set of horoballs in \mathbb{H}^3 which project onto C and the centers are distinct from ∞. Let $h : \mathbb{H}^3 \rightarrow \mathbb{R}_+$ be the height function defined by using the coordinate of \mathbb{E}^3. Then the discreteness of $h(\mathcal{H}(M)) \subset \mathbb{R}_+$ is an invariant of M.

Theorem 1.1. Suppose that Γ is geometrically finite. Then $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+.

It is natural to expect that there exists a manifold M such that $h(\mathcal{H}(M))$ is indiscrete in \mathbb{R}_+. The main result in this paper is the following theorem. For any quasi-Fuchsian group of the once-punctured torus, Γ, we can define the end invariant $\lambda(\Gamma) = (\lambda^{-}(\Gamma), \lambda^{+}(\Gamma)) \in \overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$, where Δ is the diagonal of $\partial \mathbb{H}^2 \times \partial \mathbb{H}^2$. It is proved in [7] that λ is a bijective map from the closure of the quasi-Fuchsian space of the once-punctured torus to $\overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$ and that λ^{-1} is continuous.

*Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581.
e-mail: akiyoshi@math.kyushu-u.ac.jp
Theorem 1.2. Let λ_∞ be the real number which has the expansion into the continued fraction

$$\lambda_\infty = [2, 3, 4, \ldots] = \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \ddots}}}.$$

Put $\Gamma_\zeta = \lambda^{-1}(\lambda_\infty, \zeta)$ and $M_\zeta = \mathbb{H}^3/\Gamma_\zeta$ for any $\zeta \in \mathbb{H}^2$. Then $h(\mathcal{H}(M_\zeta))$ is indiscrete in \mathbb{R}_+.

2 Horoball pattern

Let M be a hyperbolic 3-manifold with a single cusp. Let $\Pi : \mathbb{H}^3 \to \mathbb{H}^3/\Gamma = M$ be the universal covering. The maximal cusp of M is defined as follows: Let v be a parabolic fixed point of Γ and Γ_v the stabilizer of v in Γ. Then Γ_v consists of the parabolic elements in Γ which stabilizes v. There exists a horoball H centered at v such that the quotient H/Γ_v is embedded in M. The set $H/\Gamma_v \subset M$ is called a cusp of M. If we gradually expand H then H/Γ_v eventually has a self-intersection in M. The maximal cusp is the subset H/Γ_v of M with this maximal size. Let $\mathcal{H}(M)$ be the set of horoballs in \mathbb{H}^3 which project onto the maximal cusp and the centers are distinct from v.

We shall identify \mathbb{H}^3 with the upper half of \mathbb{E}^3, i.e., $\mathbb{H}^3 = \{(x, y, z) \in \mathbb{E}^3 \mid z > 0\}$, so that v is identified with ∞. (Note that $\partial \mathbb{H}^3$ is identified with $\mathbb{C} \cup \{\infty\}$.) For a point $(x, y, z) \in \mathbb{H}^3$, we define $h(x, y, z) = z$.

Definition 2.1. For a set $X \subset \mathbb{H}^3$, the Euclidean height $h(X)$ of X is defined by

$$h(X) = \sup\{h(x) \mid x \in X\}.$$

We remark that the discreteness of $h(\mathcal{H}(M)) \subset M$ is independent of the choice of a parabolic fixed point v and an identification of \mathbb{H}^3 with the upper half space.

In the following, we prove a stronger version of Theorem 1.1 (Theorem 2.3).

Definition 2.2. (1) The rank of a parabolic fixed point v of Γ is the rank of an abelian group Γ_v.

(2) Suppose that the rank of v is one. We say that v is doubly cusped if there exist two open round disks in $\Omega(\Gamma)$ which are disjoint and stabilized by Γ_v, where $\Omega(\Gamma)$ denotes the domain of discontinuity of Γ.

58
(3) A parabolic fixed point of Γ is said to be bounded if (i) it is of rank 2 or (ii) it is of rank 1 and doubly cusped.

Theorem 2.3. Suppose that ∞ is a bounded parabolic fixed point of Γ. Then $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+.

We remark that Theorem 1.1 follows immediately from Theorem 2.3 and Proposition 2.4 below. (See [6, Chapter VI, Proposition A.10] for example.)

Proposition 2.4. Suppose that Γ is geometrically finite. Then any parabolic fixed point of Γ is bounded.

Proof of Theorem 2.3. Since ∞ is bounded, there exists a compact subset K of \mathbb{C} with the following property: For any $w \in \Lambda(\Gamma) - \{\infty\}$, there exists $\gamma \in \Gamma_\infty$ such that $\gamma w \in K$, where $\Lambda(\Gamma)$ denotes the limit set of Γ. Suppose that $h(\mathcal{H}(M))$ is indiscrete in \mathbb{R}_+. Note that $\gamma H \in \mathcal{H}(M)$ for any $\gamma \in \Gamma$ and $H \in \mathcal{H}(M)$ and that each element of Γ_∞ keeps the Euclidean heights of horoballs as it is a Euclidean parallel translation of the upper half space. Thus there exists a sequence of horoballs $\{H_n\} \subset \mathcal{H}(M)$ such that the sequence $\{h(H_n)\}$ converges to some point $h_\infty \in \mathbb{R}_+$, $h(H_n) \neq h_\infty$ for any $n \in \mathbb{N}$ and that the centers of H_n ($n \in \mathbb{N}$) are contained in K. By taking a subsequence, which we denote by the same symbol, we may assume that the horoballs H_n ($n \in \mathbb{N}$) are distinct from one another. Then, from the definition, they are mutually disjoint in the interior. Since $\{h(H_n)\}$ converges to $h_\infty \in \mathbb{R}_+$, there exist two positive numbers h_+ and h_- such that $h_- \leq h(H_n) \leq h_+$ for any $n \in \mathbb{N}$. Thus the Euclidean volume of each H_n ($n \in \mathbb{N}$) is bounded below by a positive number. On the other hand, each H_n is contained in the set $\{(x, y, z) \mid (x, y) \in B(K, h_+/2), z \leq h_+\}$ whose Euclidean volume is equal to $\text{Area}(B(K, h_+/2))h_+ < \infty$, where $B(K, h_+/2)$ denotes the $(h_+/2)$-neighborhood of K. This is a contradiction. \hfill \square

3 Punctured torus groups

For $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{PSL}(2, \mathbb{C})$ with $c \neq 0$, the isometric hemisphere $Ih(\gamma)$ of γ is the Euclidean hemisphere with equator $\{z \in \mathbb{C} \mid |cz + d| = 1\}$. For a Kleinian group Γ, let $\mathcal{I}(\Gamma)$ be the set of isometric hemispheres defined by

$$\mathcal{I}(\Gamma) = \{Ih(\gamma) \mid \gamma \in \Gamma, \gamma(\infty) \neq \infty\}.$$

In this section, we study the Euclidean heights of isometric hemispheres which support faces of the Ford domain of a once-punctured torus group. This can be used to prove Theorem 1.2 by the following lemma.
Lemma 3.1. For a hyperbolic 3-manifold with a single cusp $M = \mathbb{H}^3/\Gamma$, $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ if and only if $h(\mathcal{I}(\Gamma))$ is discrete in \mathbb{R}_+.

Proof. Let H be a horoball in \mathbb{H}^3 which projects onto the maximal cusp. We can see that $h(\gamma H) = 1/(|c|^2 h(\partial H))$ for any $\gamma \in \Gamma$ with $\gamma(\infty) \neq \infty$. Thus we have

$$h(\mathcal{H}(M)) = \{1/(|c|^2 h(\partial H)) | \gamma \in \Gamma, \gamma(\infty) \neq \infty\}.$$

On the other hand, from the definition, we have

$$h(\mathcal{I}(\Gamma)) = \{1/|c| | \gamma \in \Gamma, \gamma(\infty) \neq \infty\}.$$

Thus it is obvious that $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ if and only if $h(\mathcal{I}(\Gamma))$ is discrete in \mathbb{R}_+. \qed

Let T be the once-punctured torus and $\rho_0 : \pi_1(T) \to PSL(2, \mathbb{R}) \subset PSL(2, \mathbb{C})$ its Fuchsian representation. The *quasi-Fuchsian space* QF of the once-punctured torus is the set of quasi-conformal deformations of ρ_0 quotiented by the conjugation in $PSL(2, \mathbb{C})$ and equipped with the algebraic topology. We denote the closure of QF in the representation space of $\pi_1(T)$ by \overline{QF}. In this paper, we loosely identify an element of \overline{QF} and its image in $PSL(2, \mathbb{C})$.

For any $\Gamma \in QF$, \mathbb{H}^3/Γ is homeomorphic to $T \times (-1,1)$ and hence has two ends \mathcal{E}^\pm. We can associate an end invariant $\lambda(\Gamma) = (\lambda^- (\Gamma), \lambda^+ (\Gamma))$ with Γ as follows:

1. If the end \mathcal{E}^ϵ is geometrically finite, then $\lambda^\epsilon (\Gamma)$ is the marked conformal structure of the Riemann surface at infinity.

2. If the end \mathcal{E}^ϵ is geometrically infinite, then $\lambda^\epsilon (\Gamma)$ is the ending lamination of the end.

Then each $\lambda^\pm (\Gamma)$ is defined as the point in the closure of the Teichmüller space of T, which is isomorphic to $\overline{\mathbb{H}^2}$.

Theorem 3.2 ([7]). $\lambda : \overline{QF} \to \overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$ is bijective and λ^{-1} is continuous.

To prove Theorem 1.2, it is convenient to study the representations of $\pi_1(T)$. (See [4] and [2, 3] for detail.) The once-punctured torus T has the symmetry τ depicted in Figure 1. Let \mathcal{O} be the quotient of T by $\langle \tau \rangle$, which is the orbifold $S^2(\infty, 2, 2, 2)$. Let $p : T \to T/\langle \tau \rangle = \mathcal{O}$ be the covering projection.

By the following proposition, we can study the elements of \overline{QF} by using a representation of $\pi_1^{orb}(\mathcal{O})$. In the rest of this paper, we regard QF as a set of representations of $\pi_1^{orb}(\mathcal{O})$.

Figure 1: Covering \(p : T \to \mathcal{O} \)

Proposition 3.3. For any \(\rho \in \overline{\mathcal{O}} \), there exists a unique representation \(\overline{\rho} : \pi_1^{orb}(\mathcal{O}) \to PSL(2, \mathbb{C}) \) such that \(\overline{\rho} \circ p_* = \rho \).

We can see that the fundamental group of \(\mathcal{O} \) has the following presentation:

\[
\pi_1^{orb}(\mathcal{O}) = \langle P_0, Q_0, R_0 | P_0^2 = Q_0^2 = R_0^2 = 1 \rangle,
\]
where each \(P_0, Q_0 \) and \(R_0 \) is represented by a loop which goes around a branch point. (See Figure 2.) Put \(K = R_0Q_0P_0 \). Then \(K \) is represented by a loop which goes around the puncture.

Definition 3.4 (Elliptic generators). (1) A triple \((P, Q, R) \) of elements of \(\pi_1^{orb}(\mathcal{O}) \) is called an elliptic generator triple if the following conditions are satisfied:

(i) \(\pi_1^{orb}(\mathcal{O}) = \langle P, Q, R \rangle \).

(ii) \(P^2 = Q^2 = R^2 = 1 \) and \(RQP = K \).

(2) An element \(P \) of \(\pi_1^{orb}(\mathcal{O}) \) is said to be an elliptic generator if there exist \(Q, R \in \pi_1^{orb}(\mathcal{O}) \) such that \((P, Q, R) \) is an elliptic generator triple.

Remark 3.5. For an elliptic generator triple \((P, Q, R) \), put \(A = KP \) and \(B = K^{-1}R \). Then \(p_*(\pi_1(T)) = \langle A, B \rangle \) and \(ABA^{-1}B^{-1} = K^2 \).
Figure 2: Generators of $\pi_1^{orb}(O)$

Let $D^{(0)}$ be the isotopy classes of essential simple closed curves in T. Then $D^{(0)}$ can be identified with $\mathbb{Q} \cup \{\infty\} \subset \mathbb{R} \cup \{\infty\} = \partial \mathbb{H}^2$. Let σ_0 be the geodesic triangle in $\overline{\mathbb{H}^2}$ spanned by $\infty, 0, 1$, which we denote by $\langle \infty, 0, 1 \rangle$.

Definition 3.6 (Modular diagram). The modular diagram \mathcal{D} is the simplicial complex defined by the triangulation $\{\gamma \sigma_0 | \gamma \in SL(2, \mathbb{Z})\}$ of $\mathbb{H}^2 \cup D^{(0)}$.

By the definition, the element $KP \in \pi_1(T)$ is represented by an essential simple closed curve C in T for any elliptic generator P. We denote the isotopy class of C by $s(P)$, and call it the slope of P.

Lemma 3.7. (1) For elliptic generators P and P', $s(P) = s(P')$ if and only if $P' = K^nPK^{-n}$ for some $n \in \mathbb{Z}$.

(2) For any elliptic generator triple (P, Q, R), the three points $s(P)$, $s(Q)$ and $s(R)$ span a triangle in \mathcal{D}.

(3) For any triangle σ in \mathcal{D}, there exists an elliptic generator triple (P, Q, R) such that $\sigma = \langle s(P), s(Q), s(R) \rangle$.
Let \(\rho : \pi_1(T) \to PSL(2, \mathbb{C}) \) be a representation in \(\overline{QF} \). Then \(\rho \) lifts to a representation \(\hat{\rho} : \pi_1(T) \to SL(2, \mathbb{C}) \). We define the Markoff map \(\phi : D^{(0)} \to \mathbb{C} \) by \(\phi(s(P)) = \text{tr} \hat{\rho}(KP) \).

Lemma 3.8. (1) For any triangle \(\langle s_0, s_1, s_2 \rangle \) in \(D \),
\[
\phi(s_0)^2 + \phi(s_1)^2 + \phi(s_2)^2 = \phi(s_0)\phi(s_1)\phi(s_2).
\]

(2) For any different triangles \(\langle s_0, s_1, s_2 \rangle \) and \(\langle s_0, s_1, s'_2 \rangle \) in \(D \),
\[
\phi(s_2) + \phi(s'_2) = \phi(s_0)\phi(s_1).
\]

Remark 3.9. (1) By Lemma 3.8(2), a Markoff map is determined from the values at the vertices of a single triangle in \(D \).

(2) We can see that any Markoff map induces a unique representation of \(\pi_{1}^{orb}(\mathcal{O}) \) to \(PSL(2, \mathbb{C}) \).

In [5], Jorgensen studies the Ford domains of quasi-Fuchsian groups of the once-punctured torus. We can apply the argument to the boundary groups of quasi-Fuchsian space of once-punctured torus. (See [1] for an outline.) We can use several results obtained by this study. For the rest of this paper, we suppose that \(\rho(K) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) for any \(\rho \in \overline{QF} \).

Lemma 3.10. Let \(\rho \in \overline{QF} \). For any elliptic generator \(P \) with \(\rho(P)(\infty) \neq \infty \), \(h(Ih(\rho(P))) \) is equal to \(1/|\phi(s(P))| \), where \(\phi \) is a Markoff map which induces \(\rho \).

Definition 3.11. Let \(\lambda_\infty \) be the real number which has the expansion into the continued fraction \(\lambda_\infty = [2, 3, \ldots] \). For \(\zeta \in \mathbb{H}^2 \), let \(\Gamma_\zeta = \lambda^{-1}(\lambda_\infty, \zeta) \) and \(\phi_\zeta \) be a Markoff map which induces \(\rho_\zeta \in \overline{QF} \) with \(\text{Im} \rho_\zeta = \Gamma_\zeta \). (See Figure 3\(^1\).)

Let \(s_n \) be the rational number which has the expansion into the continued fraction \(s_n = [2, 3, \ldots, n] \). Since any parabolic element in \(\Gamma_\zeta \) is the image of an element which is conjugate in \(\pi_{1}^{orb}(\mathcal{O}) \) into the cyclic group \(\langle K \rangle \), the following lemma holds.

Lemma 3.12. No \(\phi_\zeta(s_n) \ (n \in \mathbb{N}) \) is equal to \(\pm 2 \).

As a corollary to the characterization of the Ford domains of once-punctured torus groups, we have the following lemma (cf. [5, Lemma 5]).

\(^1\)This figure is drawn by using OPTI [8].
Lemma 3.13. There exists a subsequence of \(\{s_n\} \), which we denote by the same symbol, such that the sequence \(\{\phi_\zeta(s_n)\} \) converges to one of \(\pm 2 \).

Proof of Theorem 1.2. Let \(s'_n \) and \(s''_n \) (\(n \in \mathbb{N} \)) be the points in \(D^{(0)} \) depicted in Figure 4. Let \(x_n \) (resp. \(y_n, z_n \) and \(w_n \)) be the value of \(\phi_\zeta \) at \(s_n \) (resp. \(s_{n-1}, s'_n \) and \(s''_n \)). Then, by Lemma 3.13, there exists a subsequence of \(\{s_n\} \), which we denote by the same symbol, such that each \(\{x_n\} \) and \(\{y_n\} \) converges to one of \(\pm 2 \). We may suppose that both \(\{x_n\} \) and \(\{y_n\} \) converge to 2, if necessary, by changing \(\phi_\zeta \) to another Markoff map which induces \(\rho_\zeta \). Then, by Lemma 3.8,

\[
x_n^2 + y_n^2 + z_n^2 = x_n y_n z_n, \tag{3.1}
\]
\[
y_n + w_n = x_n z_n. \tag{3.2}
\]
Figure 4: Slopes s_n, s'_n and s''_n

By (3.1), we have

$$z_n = \frac{x_n y_n \pm \sqrt{x_n^2 y_n^2 - 4(x_n^2 + y_n^2)}}{2}.$$ \hspace{1cm} (3.3)

Thus, by taking a subsequence, $\{z_n\}$ converges to $2(1 + \epsilon\sqrt{-1})$ ($\epsilon \in \{\pm 1\}$). Then, by (3.2), $\{w_n\}$ converges to $2(1 + 2\epsilon\sqrt{-1})$.

Suppose that $h(I(\Gamma_\zeta))$ is discrete in \mathbb{R}_+. Then, by Lemma 3.10, each $\{|x_n||n \in \mathbb{N}\}$, $\{|y_n||n \in \mathbb{N}\}$, $\{|z_n||n \in \mathbb{N}\}$ and $\{|w_n||n \in \mathbb{N}\}$ is a finite set. Hence both $|x_n|$ and $|y_n|$ are equal to 2, $|z_n|$ is equal to $|2(1 + \epsilon\sqrt{-1})| = 2\sqrt{2}$ and $|w_n|$ is equal to $|2(1 + 2\epsilon\sqrt{-1})| = 2\sqrt{5}$ for sufficiently large n. Put $x_n = 2e^{\theta_n \sqrt{-1}}$, $y_n = 2e^{\varphi_n \sqrt{-1}}$ and $z_n = 2\sqrt{2}e^{\psi_n \sqrt{-1}}$ for such n. Since both $\{x_n\}$ and $\{y_n\}$ converge to 2 and $\{z_n\}$ converges to $2(1 + \epsilon\sqrt{-1})$, both $\{\theta_n\}$ and $\{\varphi_n\}$ converge to 0 and $\{\psi_n\}$ converges to $\epsilon\pi/2$. By (3.2), we have $|x_n z_n - y_n| = |w_n|$. Thus

$$|4\sqrt{2}e^{(\theta_n + \varphi_n)\sqrt{-1}} - 2e^{\varphi_n \sqrt{-1}}| = 2\sqrt{5},$$

and hence $\varphi_n - \theta_n - \psi_n = \epsilon\pi/4$. Then, by (3.3),

$$2\sqrt{2}e^{(\varphi_n - \theta_n - \epsilon\pi/4)\sqrt{-1}} = 2e^{(\theta_n + \varphi_n)\sqrt{-1}} \left(1 + \epsilon \sqrt{1 - (e^{-2\theta_n \sqrt{-1}} + e^{-2\varphi_n \sqrt{-1}})} \right),$$

and hence

$$e^{2\varphi_n \sqrt{-1}} = 2\epsilon \sqrt{-1} e^{-4\theta_n \sqrt{-1}} + (1 - 2\epsilon \sqrt{-1}) e^{-2\varphi_n \sqrt{-1}}. \hspace{1cm} (3.4)$$

Note that the absolute value of the left hand side of (3.4) is equal to 1. Put $f(\theta) = |2\sqrt{-1}e^{-4\theta \sqrt{-1}} + (1 - 2\sqrt{-1})e^{-2\varphi \sqrt{-1}}|$. Then $f'(0)$ is not equal to 0. Therefore θ_n is equal to 0 for sufficiently large n. This contradicts Lemma 3.12. \qed
References

