離散的でないhoroball heightを持つ クライン群の例

An example of Kleinian groups with indiscrete horoball heights

秋吉宏尚 (Hirotaka Akiyoshi) *

1 Introduction

Let M be a hyperbolic 3-manifold with a cusp, i.e., M is the quotient of the hyperbolic 3-space \mathbb{H}^3 by a torsion-free Kleinian group Γ with a parabolic element. For simplicity, we suppose that M contains precisely one cusp, i.e., all parabolic fixed points of Γ are equivalent with respect to the action of Γ . We shall identify \mathbb{H}^3 with the upper half of the Euclidean 3-space \mathbb{E}^3 so that ∞ becomes a parabolic fixed point of Γ . Let C be the maximal cusp of M. The horoball pattern, $\mathcal{H}(M)$, of M is the set of horoballs in \mathbb{H}^3 which project onto C and the centers are distinct from ∞ . Let $h: \mathbb{H}^3 \to \mathbb{R}_+$ be the height function defined by using the coordinate of \mathbb{E}^3 . Then the discreteness of $h(\mathcal{H}(M)) \subset \mathbb{R}_+$ is an invariant of M.

Theorem 1.1. Suppose that Γ is geometrically finite. Then $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ .

It is natural to expect that there exists a manifold M such that $h(\mathcal{H}(M))$ is indiscrete in \mathbb{R}_+ . The main result in this paper is the following theorem. For any quasi-Fuchsian group of the once-punctured torus, Γ , we can define the end invariant $\lambda(\Gamma) = (\lambda^-(\Gamma), \lambda^+(\Gamma)) \in \overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$, where Δ is the diagonal of $\partial \mathbb{H}^2 \times \partial \mathbb{H}^2$. It is proved in [7] that λ is a bijective map from the closure of the quasi-Fuchsian space of the once-punctured torus to $\overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$ and that λ^{-1} is continuous.

^{*}Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581. e-mail: akiyoshi@math.kyushu-u.ac.jp

Theorem 1.2. Let λ_{∞} be the real number which has the expansion into the continued fraction

$$\lambda_{\infty} = [2, 3, 4, \dots] = \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \dots}}}.$$

Put $\Gamma_{\zeta} = \lambda^{-1}(\lambda_{\infty}, \zeta)$ and $M_{\zeta} = \mathbb{H}^3/\Gamma_{\zeta}$ for any $\zeta \in \mathbb{H}^2$. Then $h(\mathcal{H}(M_{\zeta}))$ is indiscrete in \mathbb{R}_+ .

2 Horoball pattern

Let M be a hyperbolic 3-manifold with a single cusp. Let $\Pi: \mathbb{H}^3 \to \mathbb{H}^3/\Gamma = M$ be the universal covering. The maximal cusp of M is defined as follows: Let v be a parabolic fixed point of Γ and Γ_v the stabilizer of v in Γ . Then Γ_v consists of the parabolic elements in Γ which stabilizes v. There exists a horoball H centered at v such that the quotient H/Γ_v is embedded in M. The set $H/\Gamma_v \subset M$ is called a cusp of M. If we gradually expand H then H/Γ_v eventually has a self-intersection in M. The maximal cusp is the subset H/Γ_v of M with this maximal size. Let $\mathcal{H}(M)$ be the set of horoballs in \mathbb{H}^3 which project onto the maximal cusp and the centers are distinct from v.

We shall identify \mathbb{H}^3 with the upper half of \mathbb{E}^3 , i.e., $\mathbb{H}^3 = \{(x, y, z) \in \mathbb{E}^3 \mid z > 0\}$, so that v is identified with ∞ . (Note that $\partial \mathbb{H}^3$ is identified with $\mathbb{C} \cup \{\infty\}$.) For a point $(x, y, z) \in \mathbb{H}^3$, we define h(x, y, z) = z.

Definition 2.1. For a set $X \subset \mathbb{H}^3$, the *Euclidean height* h(X) of X is defined by

$$h(X) = \sup\{h(x) \mid x \in X\}.$$

We remark that the discreteness of $h(\mathcal{H}(M)) \subset M$ is independent of the choice of a parabolic fixed point v and an identification of \mathbb{H}^3 with the upper half space.

In the following, we prove a stronger version of Theorem 1.1 (Theorem 2.3).

Definition 2.2. (1) The rank of a parabolic fixed point v of Γ is the rank of an abelian group Γ_v .

(2) Suppose that the rank of v is one. We say that v is doubly cusped if there exist two open round disks in $\Omega(\Gamma)$ which are disjoint and stabilized by Γ_v , where $\Omega(\Gamma)$ denotes the domain of discontinuity of Γ .

(3) A parabolic fixed point of Γ is said to be *bounded* if (i) it is of rank 2 or (ii) it is of rank 1 and doubly cusped.

Theorem 2.3. Suppose that ∞ is a bounded parabolic fixed point of Γ . Then $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ .

We remark that Theorem 1.1 follows immediately from Theorem 2.3 and Proposition 2.4 below. (See [6, Chapter VI, Proposition A.10] for example.)

Proposition 2.4. Suppose that Γ is geometrically finite. Then any parabolic fixed point of Γ is bounded.

Proof of Theorem 2.3. Since ∞ is bounded, there exists a compact subset K of \mathbb{C} with the following property: For any $w \in \Lambda(\Gamma) - \{\infty\}$, there exists $\gamma \in \Gamma_{\infty}$ such that $\gamma w \in K$, where $\Lambda(\Gamma)$ denotes the limit set of Γ . Suppose that $h(\mathcal{H}(M))$ is indiscrete in \mathbb{R}_+ . Note that $\gamma H \in \mathcal{H}(M)$ for any $\gamma \in \Gamma$ and $H \in \mathcal{H}(M)$ and that each element of Γ_{∞} keeps the Euclidean heights of horoballs as it is a Euclidean parallel translation of the upper half space. Thus there exists a sequence of horoballs $\{H_n\}\subset\mathcal{H}(M)$ such that the sequence $\{h(H_n)\}\$ converges to some point $h_\infty \in \mathbb{R}_+$, $h(H_n) \neq h_\infty$ for any $n \in \mathbb{N}$ and that the centers of H_n $(n \in \mathbb{N})$ are contained in K. By taking a subsequence, which we denote by the same symbol, we may assume that the horoballs H_n $(n \in \mathbb{N})$ are distinct from one another. Then, from the definition, they are mutually disjoint in the interior. Since $\{h(H_n)\}$ converges to $h_\infty \in \mathbb{R}_+$, there exist two positive numbers h_+ and h_- such that $h_- \leq h(H_n) \leq h_+$ for any $n \in \mathbb{N}$. Thus the Euclidean volume of each H_n $(n \in \mathbb{N})$ is bounded below by a positive number. On the other hand, each H_n is contained in the set $\{(x,y,z) \mid (x,y) \in B(K,h_+/2), z \leq h_+\}$ whose Euclidean volume is equal to Area $(B(K, h_{+}/2))h_{+} < \infty$, where $B(K, h_{+}/2)$ denotes the $(h_{+}/2)$ neighborhood of K. This is a contradiction.

3 Punctured torus groups

For $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PSL(2,\mathbb{C})$ with $c \neq 0$, the isometric hemisphere $Ih(\gamma)$ of γ is the Euclidean hemisphere with equator $\{z \in \mathbb{C} \mid |cz+d|=1\}$. For a Kleinian group Γ , let $\mathcal{I}(\Gamma)$ be the set of isometric hemispheres defined by

$$\mathcal{I}(\Gamma) = \{ Ih(\gamma) \mid \gamma \in \Gamma, \ \gamma(\infty) \neq \infty \}.$$

In this section, we study the Euclidean heights of isometric hemispheres which support faces of the Ford domain of a once-punctured torus group. This can be used to prove Theorem 1.2 by the following lemma.

Lemma 3.1. For a hyperbolic 3-manifold with a single cusp $M = \mathbb{H}^3/\Gamma$, $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ if and only if $h(\mathcal{I}(\Gamma))$ is discrete in \mathbb{R}_+ .

Proof. Let H be a horoball in \mathbb{H}^3 which projects onto the maximal cusp. We can see that $h(\gamma H) = 1/(|c|^2 h(\partial H))$ for any $\gamma \in \Gamma$ with $\gamma(\infty) \neq \infty$. Thus we have

$$h(\mathcal{H}(M)) = \{1/(|c|^2 h(\partial H)) \mid \gamma \in \Gamma, \ \gamma(\infty) \neq \infty\}.$$

On the other hand, from the definition, we have

$$h(\mathcal{I}(\Gamma)) = \{1/|c| \mid \gamma \in \Gamma, \ \gamma(\infty) \neq \infty\}.$$

Thus it is obvious that $h(\mathcal{H}(M))$ is discrete in \mathbb{R}_+ if and only if $h(\mathcal{I}(\Gamma))$ is discrete in \mathbb{R}_+ .

Let T be the once-punctured torus and ρ_0 : $\pi_1(T) \to PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$ its Fuchsian representation. The quasi-Fuchsian space QF of the once-punctured torus is the set of quasi-conformal deformations of ρ_0 quotiented by the conjugation in $PSL(2,\mathbb{C})$ and equipped with the algebraic topology. We denote the closure of QF in the representation space of $\pi_1(T)$ by \overline{QF} . In this paper, we loosely identify an element of \overline{QF} and its image in $PSL(2,\mathbb{C})$.

For any $\Gamma \in QF$, \mathbb{H}^3/Γ is homeomorphic to $T \times (-1,1)$ and hence has two ends \mathcal{E}^{\pm} . We can associate an end invariant $\lambda(\Gamma) = (\lambda^{-}(\Gamma), \lambda^{+}(\Gamma))$ with Γ as follows:

- (1) If the end \mathcal{E}^{ϵ} is geometrically finite, then $\lambda^{\epsilon}(\Gamma)$ is the marked conformal structure of the Riemann surface at infinity.
- (2) If the end \mathcal{E}^{ϵ} is geometrically infinite, then $\lambda^{\epsilon}(\Gamma)$ is the ending lamination of the end.

Then each $\lambda^{\pm}(\Gamma)$ is defined as the point in the closure of the Teichmüller space of T, which is isomorphic to $\overline{\mathbb{H}^2}$.

Theorem 3.2 ([7]). $\lambda : \overline{QF} \to \overline{\mathbb{H}^2} \times \overline{\mathbb{H}^2} - \Delta$ is bijective and λ^{-1} is continuous.

To prove Theorem 1.2, it is convenient to study the representations of $\pi_1(T)$. (See [4] and [2, 3] for detail.) The once-punctured torus T has the symmetry τ depicted in Figure 1. Let \mathcal{O} be the quotient of T by $\langle \tau \rangle$, which is the orbifold $S^2(\infty, 2, 2, 2)$. Let $p: T \to T/\langle \tau \rangle = \mathcal{O}$ be the covering projection.

By the following proposition, we can study the elements of \overline{QF} by using a representation of $\pi_1^{orb}(\mathcal{O})$. In the rest of this paper, we regard QF as a set of representations of $\pi_1^{orb}(\mathcal{O})$.

Figure 1: Covering $p: T \to \mathcal{O}$

Proposition 3.3. For any $\rho \in \overline{QF}$, there exists a unique representation $\widetilde{\rho}: \pi_1^{orb}(\mathcal{O}) \to PSL(2,\mathbb{C})$ such that $\widetilde{\rho} \circ p_* = \rho$.

We can see that the fundamental group of \mathcal{O} has the following presentation:

$$\pi_1^{orb}(\mathcal{O}) = \langle P_0, Q_0, R_0 | P_0^2 = Q_0^2 = R_0^2 = 1 \rangle,$$

where each P_0 , Q_0 and R_0 is represented by a loop which goes around a branch point. (See Figure 2.) Put $K = R_0 Q_0 P_0$. Then K is represented by a loop which goes around the puncture.

Definition 3.4 (Elliptic generators). (1) A triple (P, Q, R) of elements of $\pi_1^{orb}(\mathcal{O})$ is called an *elliptic generator triple* if the following conditions are satisfied:

- (i) $\pi_1^{orb}(\mathcal{O}) = \langle P, Q, R \rangle$.
- (ii) $P^2 = Q^2 = R^2 = 1$ and RQP = K.
- (2) An element P of $\pi_1^{orb}(\mathcal{O})$ is said to be an *elliptic generator* if there exist $Q, R \in \pi_1^{orb}(\mathcal{O})$ such that (P, Q, R) is an elliptic generator triple.

Remark 3.5. For an elliptic generator triple (P, Q, R), put A = KP and $B = K^{-1}R$. Then $p_*(\pi_1(T)) = \langle A, B \rangle$ and $ABA^{-1}B^{-1} = K^2$.

Figure 2: Generators of $\pi_1^{orb}(\mathcal{O})$

Let $\mathcal{D}^{(0)}$ be the isotopy classes of essential simple closed curves in T. Then $\mathcal{D}^{(0)}$ can be identified with $\mathbb{Q} \cup \{\infty\} \subset \mathbb{R} \cup \{\infty\} = \partial \mathbb{H}^2$. Let σ_0 be the geodesic triangle in $\overline{\mathbb{H}^2}$ spanned by ∞ , 0, 1, which we denote by $\langle \infty, 0, 1 \rangle$.

Definition 3.6 (Modular diagram). The modular diagram \mathcal{D} is the simplicial complex defined by the triangulation $\{\gamma\sigma_0 \mid \gamma \in SL(2,\mathbb{Z})\}$ of $\mathbb{H}^2 \cup \mathcal{D}^{(0)}$.

By the definition, the element $KP \in p_*(\pi_1(T))$ is represented by an essential simple closed curve C in T for any elliptic generator P. We denote the isotopy class of C by s(P), and call it the *slope* of P.

Lemma 3.7. (1) For elliptic generators P and P', s(P) = s(P') if and only if $P' = K^n P K^{-n}$ for some $n \in \mathbb{Z}$.

- (2) For any elliptic generator triple (P, Q, R), the three points s(P), s(Q) and s(R) span a triangle in \mathcal{D} .
- (3) For any triangle σ in \mathcal{D} , there exists an elliptic generator triple (P, Q, R) such that $\sigma = \langle s(P), s(Q), s(R) \rangle$.

Let $\rho: \pi_1(T) \to PSL(2,\mathbb{C})$ be a representation in \overline{QF} . Then ρ lifts to a representation $\widehat{\rho}: \pi_1(T) \to SL(2,\mathbb{C})$. We define the Markoff map $\phi: \mathcal{D}^{(0)} \to \mathbb{C}$ by $\phi(s(P)) = \operatorname{tr} \widehat{\rho}(KP)$.

Lemma 3.8. (1) For any triangle $\langle s_0, s_1, s_2 \rangle$ in \mathcal{D} ,

$$\phi(s_0)^2 + \phi(s_1)^2 + \phi(s_2)^2 = \phi(s_0)\phi(s_1)\phi(s_2).$$

(2) For any different triangles $\langle s_0, s_1, s_2 \rangle$ and $\langle s_0, s_1, s_2' \rangle$ in \mathcal{D} ,

$$\phi(s_2) + \phi(s_2') = \phi(s_0)\phi(s_1).$$

- **Remark 3.9.** (1) By Lemma 3.8(2), a Markoff map is determined from the values at the vertices of a single triangle in \mathcal{D} .
- (2) We can see that any Markoff map induces a unique representation of $\pi_1^{orb}(\mathcal{O})$ to $PSL(2,\mathbb{C})$.

In [5], Jorgensen studies the Ford domains of quasi-Fuchsian groups of the once-punctured torus. We can apply the argument to the boundary groups of quasi-Fuchsian space of once-punctured torus. (See [1] for an outline.) We can use several results obtained by this study. For the rest of this paper, we suppose that $\rho(K) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ for any $\rho \in \overline{QF}$.

Lemma 3.10. Let $\rho \in \overline{QF}$. For any elliptic generator P with $\rho(P)(\infty) \neq \infty$, $h(Ih(\rho(P)))$ is equal to $1/|\phi(s(P))|$, where ϕ is a Markoff map which induces ρ .

Definition 3.11. Let λ_{∞} be the real number which has the expansion into the continued fraction $\lambda_{\infty} = [2, 3, ...]$. For $\zeta \in \mathbb{H}^2$, let $\Gamma_{\zeta} = \lambda^{-1}(\lambda_{\infty}, \zeta)$ and ϕ_{ζ} be a Markoff map which induces $\rho_{\zeta} \in \overline{QF}$ with Im $\rho_{\zeta} = \Gamma_{\zeta}$. (See Figure 3¹.)

Let s_n be the rational number which has the expansion into the continued fraction $s_n = [2, 3, ..., n]$. Since any parabolic element in Γ_{ζ} is the image of an element which is conjugate in $\pi_1^{orb}(\mathcal{O})$ into the cyclic group $\langle K \rangle$, the following lemma holds.

Lemma 3.12. No $\phi_{\zeta}(s_n)$ $(n \in N)$ is equal to ± 2 .

As a corollary to the characterization of the Ford domains of once-punctured torus groups, we have the following lemma (cf. [5, Lemma 5]).

¹This figure is drawn by using OPTi [8].

Figure 3: Ford domain of Γ_{ζ} for some $\zeta \in \mathbb{H}^2$

Lemma 3.13. There exists a subsequence of $\{s_n\}$, which we denote by the same symbol, such that the sequence $\{\phi_{\zeta}(s_n)\}$ converges to one of ± 2 .

Proof of Theorem 1.2. Let s'_n and s''_n $(n \in \mathbb{N})$ be the points in $\mathcal{D}^{(0)}$ depicted in Figure 4. Let x_n (resp. y_n , z_n and w_n) be the value of ϕ_{ζ} at s_n (resp. s_{n-1} , s'_n and s''_n). Then, by Lemma 3.13, there exists a subsequence of $\{s_n\}$, which we denote by the same symbol, such that each $\{x_n\}$ and $\{y_n\}$ converges to one of ± 2 . We may suppose that both $\{x_n\}$ and $\{y_n\}$ converge to 2, if necessary, by changing ϕ_{ζ} to another Markoff map which induces ρ_{ζ} . Then, by Lemma 3.8,

$$x_n^2 + y_n^2 + z_n^2 = x_n y_n z_n, (3.1)$$

$$y_n + w_n = x_n z_n. (3.2)$$

Figure 4: Slopes s_n , s'_n and s''_n

By (3.1), we have

$$z_n = \frac{x_n y_n \pm \sqrt{x_n^2 y_n^2 - 4(x_n^2 + y_n^2)}}{2}.$$
 (3.3)

Thus, by taking a subsequence, $\{z_n\}$ converges to $2(1 + \epsilon \sqrt{-1})$ ($\epsilon \in \{\pm 1\}$). Then, by (3.2), $\{w_n\}$ converges to $2(1 + 2\epsilon \sqrt{-1})$.

Suppose that $h(\mathcal{I}(\Gamma_{\zeta}))$ is discrete in \mathbb{R}_+ . Then, by Lemma 3.10, each $\{|x_n| \mid n \in \mathbb{N}\}, \{|y_n| \mid n \in \mathbb{N}\}, \{|z_n| \mid n \in \mathbb{N}\}$ and $\{|w_n| \mid n \in \mathbb{N}\}$ is a finite set. Hence both $|x_n|$ and $|y_n|$ are equal to $2, |z_n|$ is equal to $|2(1+\epsilon\sqrt{-1})|=2\sqrt{2}$ and $|w_n|$ is equal to $|2(1+2\epsilon\sqrt{-1})|=2\sqrt{5}$ for sufficiently large n. Put $x_n=2e^{\theta_n\sqrt{-1}}, \ y_n=2e^{\varphi_n\sqrt{-1}}$ and $z_n=2\sqrt{2}e^{\psi_n\sqrt{-1}}$ for such n. Since both $\{x_n\}$ and $\{y_n\}$ converge to 2 and $\{z_n\}$ converges to $2(1+\epsilon\sqrt{-1})$, both $\{\theta_n\}$ and $\{\varphi_n\}$ converge to 0 and $\{\psi_n\}$ converges to $\epsilon\pi/2$. By (3.2), we have $|x_nz_n-y_n|=|w_n|$ Thus

$$|4\sqrt{2}e^{(\theta_n+\psi_n)\sqrt{-1}}-2e^{\varphi_n\sqrt{-1}}|=2\sqrt{5},$$

and hence $\varphi_n - \theta_n - \psi_n = \epsilon \pi/4$. Then, by (3.3),

$$2\sqrt{2}e^{(\varphi_n - \theta_n - \epsilon\pi/4)\sqrt{-1}} = 2e^{(\theta_n + \varphi_n)\sqrt{-1}} \left(1 + \epsilon\sqrt{1 - (e^{-2\theta_n\sqrt{-1}} + e^{-2\varphi_n\sqrt{-1}})} \right),$$

and hence

$$e^{-2\varphi_n\sqrt{-1}} = 2\epsilon\sqrt{-1}e^{-4\theta_n\sqrt{-1}} + (1 - 2\epsilon\sqrt{-1})e^{-2\theta_n\sqrt{-1}}.$$
 (3.4)

Note that the absolute value of the left hand side of (3.4) is equal to 1. Put $f(\theta) = |2\sqrt{-1}e^{-4\theta\sqrt{-1}} + (1-2\sqrt{-1})e^{-2\theta\sqrt{-1}}|$. Then $\frac{df}{d\theta}(0)$ is not equal to 0. Therefore θ_n is equal to 0 for sufficiently large n. This contradicts Lemma 3.12.

References

- [1] H. Akiyoshi, On the Ford domains of once-punctured torus groups, Hyperbolic Spaces and Related Topics (Kyoto, 1998), surikaiseki kenkyusho kokyuroku 1104, 109–121, (1999).
- [2] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, *Punctured torus groups and two-parabolic groups*, Analysis and geometry of hyperbolic spaces (Kyoto 1997), surikaiseki kenkyusho kokyuroku 1065, 61–73, (1998).
- [3] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, A way from punctured torus groups to two-bridge knot groups, Geometry and Topology, Proceeding of Workshop in Pure Mathematics, Vol 19, ed. J. Kim and S. Hong, Pure Mathematics Research Association, The Korean Academic Council, 145–173, (2000).
- [4] B. H. Bowditch, Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77 (1998), 697–736.
- [5] T. Jorgensen, On pairs of once-punctured tori, unfinished manuscript.
- [6] B. Maskit, Kleinian groups, Springer, (1988).
- [7] Y. N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626.
- [8] M. Wada, *OPTi*, a software for Macintosh, http://vivaldi.ics.nara-wu.ac.jp/wada/OPTi/.