Jørgensen groups of parabolic type

Hiroki Sato

佐藤 宏樹*

Department of Mathematics, Faculty of Science Shizuoka University

ABSTRACT. This paper is a report without proofs on Jørgensen groups obtained recently. In this paper we consider Jørgensen groups of parabolic type. In particular, we consider four kinds of one-parameter families of Jørgensen groups. Here a Jørgensen group is a Kleinian group whose Jørgensen number is one.

0. Introduction.

It is an important problem to decide whether or not a non-elementary subgroup of the Möbius transformation group, which is denoted by Möb, is discrete. In 1976 Jørgensen [3] gave a necessary condition for a non-elementary Möbius transformation group $G = \langle A, B \rangle$ to be discrete: If $\langle A, B \rangle$ is a non-elementary discrete group, then

$$J(A,B):=|{\rm tr}^2(A)-4|+|{\rm tr}(ABA^{-1}B^{-1})-2|\geq 1.$$

The lower bound 1 is best possible.

^{*}Partly supported by the Grants-in-Aid for Scientific and Co-operative Research, the Ministry of Education, Science, Sports and Culture, Japan

¹⁹⁹¹ Mathematics Subject Classification. Primary 32G15; Secondary 20M10, 30F40.

Let $\langle A, B \rangle$ be a marked two-generator subgroup of Möb. We call

$$J(A,B) := |\operatorname{tr}^2(A) - 4| + |\operatorname{tr}(ABA^{-1}B^{-1}) - 2|$$

With respect to Jørgensen numbers it gives rise to the following problems:

- (1) Problem 1 is to find all Jørgensen groups.
- (2) Problem 2 is to find the infimum of Jørgensen numbers for some subspaces of the Kleinian space, for example for the Teichmüller space and for the Schottky space.

For Problem 2, Gilman [1] and Sato [7] gave the best lower bound of Jørgensen numbers for purely hyperbolic two-generator groups, and Sato [8], [9] gave the best lower bound of Jørgensen numbers for the classical Schottky space RS_2 of real type of genus two. Namely,

$$\inf\{J(G) \mid G \in R\mathbf{S}_2\} = 4.$$

The family of groups, $P = \{G_{\sigma} = \langle A, B_{1/\sigma,\sigma} \rangle \mid G_{\sigma} \text{ is a discrete group, } \sigma \in \mathbb{C} \setminus \{0\}\}$ contains the Riley slice RS (see Keen and Series [5] for the definition of the Riley slice). If $\langle A, B_{1/\sigma,\sigma} \rangle$ is a group in P, then $J(A, B_{1/\sigma,\sigma}) = |\sigma|^2$. It is easily seen that $\inf\{J(G) \mid G \in P\} = 1$, since $J(A, B_{1/\sigma,\sigma}) = 1$ for $\sigma = 1$, that is, in this case the group is the classical modular group. Furthermore we easily see that

$$1 \le \inf\{J(G) \mid G \in RS\} \le 2.$$

As far as the author knows, the value of $\inf\{J(G) \mid G \in RS\}$.

For Problem 1, Jørgensen-Kiikka [3], Jørgensen-Lascurain-Pignataro [4], Sato [10] and Sato-Yamada [12] studied extreme discrete groups, that is, Jørgensen groups.

In particular Jørgensen-Kiikka [3] obtained the following theorem: Let $\langle A, B \rangle$ be a non-elementary discrete group with J(A, B) = 1, that is, a Jørgensen group. Then A is elliptic of order at least seven or A is parabolic.

In this paper we only consider the case where A is parabolic, that is, Jørgensen groups of parabolic type. Namely, we consider two-generator groups $G_{\mu,\sigma} = \langle A, B_{\mu,\sigma} \rangle$ generated by

$$A = \left(egin{array}{ccc} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{and} \quad B_{oldsymbol{\mu}, oldsymbol{\sigma}} = B_{ioldsymbol{k}, oldsymbol{\sigma}} = \left(egin{array}{ccc} ik\sigma & -k^2\sigma - 1/\sigma \ \sigma & ik\sigma \end{array}
ight),$$

where $k \in \mathbf{R}$ and $\sigma \in \mathbf{C} \setminus \{0\}$.

This paper contains six theorems. Theorems 2, 5 and 6 are new.In §1 we will state some definitions. In §2 theorems will be stated. The proofs of the theorems will appear elsewhere.

§1. Definitions

In this section we will state some definitions, for example a Jørgensen group. Let Möb denote the set of all Möbius transformations. In this paper we use a Kleinian group in the same meaning as a discrete group. A Kleinian group G is of the first kind if the limit set $\Lambda(G)$ of G is ll of the extended complex plane $\hat{\mathbf{C}}$ and it is of the second kind otherwise. A subgroup G of Möb is non-elementary grup if $\sharp \Lambda(G) \geq 3$.

In 1976 Jørgensen obtained the following important theorem called Jørgensen's inequality, which gives a necessary condition for a non-elementary Möbius transformtion group $G = \langle A, B \rangle$ to be discrete.

Theorem A (Jørgensen [2]). Suppose that the Möbius transformations A and B generate a non-elementary discrete group. Then

$$J(A,B) := |\operatorname{tr}^{2}(A) - 4| + |\operatorname{tr}(ABA^{-1}B^{-1}) - 2| \ge 1.$$

The lower bound 1 is best possible.

DEFINITION 1.1. Let A and B be Möbius transformations. The $J \not argensen$ number J(A,B) is

$$J(A,B) := |\operatorname{tr}^2(A) - 4| + |\operatorname{tr}(ABA^{-1}B^{-1}) - 2|.$$

DEFINITION 1.2. Let G be a non-elementary two-generator subgroup of Möb. The *Jørgensen number* J(G) for G is defined as follows:

$$J(G) := \inf\{J(A, B) \mid A \text{ and } B \text{ generate } G\}.$$

DEFINITION 1.3. A non-elementary two-generator subgroup G of Möb is a Jørgensen group if G is a discrete group with J(G) = 1.

§2. Theorems.

In this section we will theorems without proofs. Jørgensen-Kiikka [3] obtained the following theorem for Jørgensen groups.

Theorem B (Jørgensen-Kiikka [3]). Let $\langle A, B \rangle$ be a non-elementary discrete group with J(A, B) = 1, that is, a Jørgensen group. Then A is elliptic of order at least seven or A is parabolic.

In this paper we only consider the case where A is parabolic, that is, Jørgensen groups of parabolic type. Namely, we consider two-generator groups $G_{\mu,\sigma} = \langle A, B_{\mu,\sigma} \rangle$ generated by

$$A = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{and} \quad B_{\mu,\sigma} = B_{ik,\sigma} = \left(egin{array}{cc} ik\sigma & -k^2\sigma - 1/\sigma \ \sigma & ik\sigma \end{array}
ight),$$

where $k \in \mathbf{R}$ and $\sigma \in \mathbf{C} \setminus \{0\}$.

Let C_1 and C_2 be the following cylinders:

$$C_1 = \{(\sigma, ik) \mid |\sigma| = 1, \ k \in \mathbf{R}\},\$$

$$C_2 = \{(\sigma, ik) \mid |\sigma| = 2, \ k \in \mathbf{R}\}.$$

THEOREM 1 (Sato [10])

- (i) For each point inside the cylinder C_1 , the corresponding group $G_{ik,\sigma}$ is not a Kleinian group.
- (ii) Let (σ, ik) be a point outside of the cylinder C_2 . If $|k| \geq 1$, then $G_{ik,\sigma}$ is a boundary group of the Schottky space of genus two.
 - (iii) Every Jørgensen group of type $G_{ik,\sigma}$ lies on the cylinder C_1 .

By Theorem 1 we consider two-generator groups $G_{\mu,\sigma} = \langle A, B_{\mu,\sigma} \rangle$ with $\mu = ik$ $(k \in \mathbf{R})$ and $\sigma = -ie^{i\theta}$ $(0 \le \theta < 2\pi)$. For simplicity we set $B_{ik,\theta} := B_{ik,\sigma}$ and $G_{ik,\theta} = \langle A, B_{ik,\sigma} \rangle$ for $\sigma = -ie^{i\theta}$.

LEMMA 2.1. Let $B_{ik,\theta}$ $(0 \le \theta \le \pi/2)$ be as in the above, and let $\bar{B}_{ik,\theta}$ be the complex conjugate of $B_{ik,\theta}$. Then $B_{ik,\pi-\theta} = -\bar{B}_{ik,\theta}^{-1}$.

We easily see the following by Lemma 2.1.

COROLLARY 2.2. Let A and $B_{ik,\theta}$ be as in Lemma 3.1. Then $G_{ik,\theta} = \langle A, B_{ik,\theta} \rangle$ is discrete if and only if $G_{ik,\pi-\theta} = \langle A, B_{ik,\pi-\theta} \rangle$ is discrete for $0 \le \theta \le \pi/2$.

LEMMA 2.3. Let $B_{ik,\theta}$ and $G_{ik,\theta}$ be as in Lemma 3.1. Then $B_{ik,\pi+\theta} = B_{ik,\theta}$ and $G_{ik,\pi+\theta} = G_{ik,\theta}$.

LEMMA 2.4. A group $G_{ik,\theta}$ is a Kleinian group and so a Jørgensen group if and only if $G_{-ik,\theta}$ is a Kleinian group and so a Jørgensen group.

This lemma follows from $B_{-ik,\theta} = B_{ik,\theta}^{-1}$. By Corollary 3.2, Lemmas 3.3 and 3.4, it suffices to consider the case of $(0 \le \theta \le \pi/2)$ and $k \ge 0$.

THEOREM 2 (Sato [11]). Let $G_{ik,\theta} = \langle A, B_{ik,\theta} \rangle$ be the group generated by A and $B_{ik,\theta}$.

- (i) If $0 < \theta < \pi/6$ or $\pi/3 < \theta < \pi/2$, then $G_{ik,\theta} = \langle A, B_{ik,\theta} \rangle$ is not a Kleinian group for every $k \in \mathbf{R}$.
- (ii) If |k| < 1/2, then $G_{ik,\theta} = \langle A, B_{ik,\theta} \rangle$ is not a Kleinian group for every θ (0 $\leq \theta < 2\pi$).

THEOREM 3 (Sato-Yamada [12]). Let

$$A=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{and} \quad B_k:=B_{ik,1}=\left(egin{array}{cc} ik & -(1+k^2) \ 1 & ik \end{array}
ight)$$

and let $G_k = \langle A, B_k \rangle$ be the group generated by A and B_k $(k \in \mathbf{R})$. Then the following hold.

- (i) In the case of |k| > 1, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a single Riemann surface with signature (0; 2, 2, 3, 3) for each k, where $\Omega(G_k)$ denotes the region of discontinuity for G_k .
- (ii) In the case of |k| = 1, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a single Riemann surface with signature $(0; 3, 3, \infty)$.
- (iii) In the case of $\sqrt{3}/2 < |k| < 1$, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a single Riemann surface with signature (0;3,3,q) for k with $k^2 = \{1 + \cos(\pi/q)\}/2, q = 4,5,6,\cdots$
- (iv) In the case of $1/2 \le |k| \le \sqrt{3}/2$, G_k is a Kleinian group of the first kind and a Jørgensen group for $|k| = \sqrt{3}/2$, $\sqrt{2}/2$ or 1/2. The volumes $V(G_{ik,1})$ of 3-orbifolds for $G_{ik,1}$ are as follows, where $L(\theta)$ is the Lobachevskii function:

$$L(\theta) = -\int_0^{\theta} \log|2\sin u| du.$$

(1)
$$V(G_{i\sqrt{3}/2,1}) = 5L(\pi/3)$$
.

- (2) $V(G_{i\sqrt{2}/2,1}) = 2\{2L(\pi/4) L(5\pi/12) L(\pi/12)\}.$
- (3) $V(G_{i/2,1}) = 7L(\pi/3)/2 L(\varphi_0 + \pi/6) + L(\varphi_0 \pi/6),$ where $\varphi_0 = \sin^{-1}(1/2\sqrt{3}).$
 - (v) In the case of 0 < |k| < 1/2, G_k is not a Kleinian group for every k.
- (vi) In the case of k = 0, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a union of two Riemann surfaces with signature $(0; 2, 3, \infty)$.

REMARK. The group $G_{i/2,1}$ is conjugate to the Picard group in Möb and the group $G_{0,1}$ is the classical modular group.

THEOREM 4 (Sato [10]). Let

$$A = \left(egin{array}{c} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{and} \quad B_{ heta} := B_{\sqrt{3}i/2, -ie^{i heta}} = \left(egin{array}{cc} \sqrt{3}e^{i heta}/2 & i(3e^{i heta}/4 - e^{-i heta}) \ -ie^{i heta} & \sqrt{3}e^{i heta}/2 \end{array}
ight)$$

and let $G_{\theta} = \langle A, B_{\theta} \rangle$ be the group generated by A and B_{θ} (0 $\leq \theta \leq \pi/2$). Then the following hold.

- (i) In the case of $\theta = \pi/6$, $G_{\pi/6}$ has the following properties:
 - (1) $G_{\pi/6}$ is a Kleinian group of the first kind.
 - (2) $G_{\pi/6}$ is a Jørgensen group.
 - (3) $V(G_{\pi/6}) = 6L(\pi/3)$, where $L(\theta)$ is the Lobachevskii function: $L(\theta) = -\int_0^\theta \log|2\sin u| du.$
- (ii) In the case of $\theta = \pi/2$, $G_{\pi/2}$ has the following properties:
 - (1) $G_{\pi/2}$ is a Kleinian group of the first kind. (2) $G_{\pi/2}$ is a Jørgensen group.
 - (3) $V(G_{\pi/2}) = 2(L(\pi/6) + L(\pi/3)).$
- (iii) In the case of $\theta = 0$, G_0 has the following properties:
 - (1) G_0 is a Kleinian group of the second kind.
 - (2) G_0 is a Jørgensen group.

- (3) $\Omega(G_0)/G_0$ is a Riemann surface with signature $(0; 2, 3, \infty)$.
- (iv) If $0 < \theta < \pi/6$ or $\pi/3 < \theta < \pi/2$, then G_{θ} is not a Kleinian group.

REMARKS. (1) enskip $G_{\pi/6}$ is congugate with the figure -eight knot group.

(2) Maskit [6] shows that the essentially same group as G_0 is discrete, that is, he shows that a group conjugate to G_{π} is discrete. Our proof is different from his.

THEOREM 5 (Sato [11]). Let

$$A = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{ and } \quad B_{m{ heta}} = \left(egin{array}{cc} 0 & -ie^{-im{ heta}} \ -ie^{im{ heta}} & 0 \end{array}
ight)$$

and let $G_{\theta} = \langle A, B_{\theta} \rangle$ be the group generated by A and B_{θ} (0 $\leq \theta \leq \pi/2$). Then the following hold.

- (i) In the case of $\theta = 0, G_0$ has the following properties:
 - (1) G_0 is a Kleinian group of the second kind.
 - (2) $G_{\pi/2}$ is a Jørgensen group.
 - (3) $\Omega(G_0)/G_0$ is a single Riemann surface with signature $(0; 2, 3, \infty)$.
- (ii) In the case of $\theta=\pi/2$, $G_{\pi/2}$ has the following properties:
 - (1) $G_{\pi/2}$ is a Kleinian group of the second kind.
 - (2) G_0 is a Jørgensen group.
 - (3) $\Omega(G_{\pi/2})/G_{\pi/2}$ is a union of two Riemann surfaces with signature $(0; 2, 3, \infty)$.
- (iii) If $0 < \theta < \pi/6, \pi/6 < \theta < \pi/4, \pi/4 < \theta < \pi/3$ or $\pi/3 < \theta < \pi/2$, then G_{θ} is not a Kleinian group and so not a Jørgensen group.

THEOREM 6 (Sato [11]). Let

$$A = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \quad ext{and} \quad B_k := B_{ik,-i} = \left(egin{array}{cc} k & i(k^2-1) \ -i & k \end{array}
ight)$$

and let $G_k = \langle A, B_k \rangle$ be the group generated by A and B_k $(k \in \mathbf{R})$. Then the following hold.

- (i) In the case of |k| > 1, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is two Riemann surfaces with signatures (0; 2, 2, 2, 3) and $(0; 2, 3, \infty)$ for each k, where $\Omega(G_k)$ denotes the region of discontinuity for G_k .
- (ii) In the case of |k| = 1, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is two Riemann surfaces with signature $(0; 2, 3, \infty)$.
- (iii) In the case of $\sqrt{3}/2 < |k| < 1$, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is two Riemann surfaces with signatures (0; 2, 3, q) and $(0; 2, 3, \infty)$ for k with $k^2 = \{1 + \cos(\pi/q)\}/2, q = 4, 5, 6, \cdots$.
- (iv) In the case of $1/2 \le |k| \le \sqrt{3}/2$, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a Riemann surface with signature $(0; 2, 3, \infty)$ for $|k| = \sqrt{3}/2$.
- (v) In the case of 0 < |k| < 1/2, G_k is not a Kleinian group and not a Jørgensen group for every k.
- (vi) In the case of k = 0, G_k is a Kleinian group of the second kind, a Jørgensen group and $\Omega(G_k)/G_k$ is a Riemann surface with signature $(0; 2, 3, \infty)$.

CORRECTION The part (from lines 23 through 31 on page 2 in the Introduction in the previous paper [10]) contains mistake, which gives no effect the paper. It should be changed as follows.

The family of groups, $P = \{G_{\sigma} = \langle A, B_{1/\sigma,\sigma} \rangle \mid G_{\sigma} \text{ is a discrete group, } \sigma \in \mathbb{C} \setminus \{0\}\}$ contains the Riley slice RS (see Keen and Series [14] for the definition of the Riley slice). If $\langle A, B_{1/\sigma,\sigma} \rangle$ is a group in P, then $J(A, B_{1/\sigma,\sigma}) = |\sigma|^2$. As far as the author knows, it is unknown whether or not $J(A, B_{1/\sigma,\sigma})$ achieves the infimum over the whole group P. It is easily seen that $\inf\{J(G) \mid G \in P\} = 1$, since

 $J(A, B_{1/\sigma,\sigma}) = 1$ for $\sigma = 1$, that is, in this case the group is the classical modular group. Furthermore we easily see that

$$1 \le \inf\{J(G) \mid G \in RS\} \le 2.$$

References

- J. Gilman, A geometric approach to Jørgensen's inequality, Adv. in Math. 85 (1991), 193-197.
- [2] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976) 739-749.
- [3] T. Jørgensen and M. Kiikka, Some extreme discrete groups, Ann. Acad. Sci. Fenn. 1 (1975), 245-248.
- [4] T. Jørgensen, A. Lascurain and T. Pignataro, Translation extentions of the classical modular group, Complex Variable 19 (1992), 205-209.
- [5] L. Keen and C. Series, The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994), 72-90.
- [6] B. Maskit, Some special 2-generator Kleinian groups, Proc. Amer. Math. Soc. 106 (1989), 175-186.
- [7] H. Sato, Jørgensen's inequality for purely hyperbolic groups, Rep. Fac. Sci. Shizuoka Univ. **26** (1992), 1-9.
- [8] H. Sato, Jørgensen's inequality for classical Schottky groups of real type, J. Math. Soc. Japan 50 (1998), 945-968.

- [9] H. Sato, Jørgensen's inequality for classical Schottky groups of real type, II, in submitted.
- [10] H. Sato, One-parameter families of extreme groups for Jørgensen's inequality, Contemporary Math. (The Second Ahlfors - Bers Colloquium) edited by I. Kra and B. Maskit, to appear.
- [11] H. Sato, One-parameter families of extreme groups for Jørgensen's inequality, II, in preparation.
- [12] H. Sato and R. Yamada, Some extreme Kleinian groups for Jørgensen's inequality, Rep. Fac. Sci. Shizuoka Univ. 27 (1993), 1-8.

Department of Mathematics

Faculty of Science

Shizuoka University

Ohya Shizuoka 422-8529

JAPAN

e-mail:smhsato@ipc.shizuoka.ac.jp