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Abstract

Cournot’s economics was deeply rooted in French mathematics in the nineteenth century.. The main stream
was Laplace-Lagrange’s physico-mathematics. But in examining what drove Cournot to economics, we must
not dismiss another stream of French mathematics in the nineteenth century, that is the tradition of social
mathematics. ’

It was probability theory which supported social mathematics as a principal tool of analysis. However it is
remarkable that the mathematical machinery which Cournot used in economics was not probability theory but,
exclusively, mathematical analysis while he succeeded the tradition of social mathematics. The transformation of
mathematical methodology of economics due to Cournot was made possible by his peculiar grasp of the law of

large numbers.

Cournot understood the twofold meanings of it; one is the regularity as mass phenomena in the probabilistic
sense, and the other is the regularity resulting from smoothing by aggregation. Thanks to the first law of large
numbers, Cournot was able to get out of the world of probability. Moreover the second law' of large numbers
enabled him to find a way of applying mathematical analysis to economics. In ‘this 'way, Cournot succeeded in

paving the way to mathematical economics on the tradition of Laplace-Lagrange’s analytic mechanics.

1 Introduction

In this paper, we would like to shed a new light on Cournot’s economics from the viewpoint of
mathematical methodology takmcr account of the historical background of French mathematics
in the nineteenth century. Cournot published a pathbreakmg work Recherches sur les Principes
Mathématiques de la Théorie des Richesses in 1838, the content of which has exerted a profound
influence on modern economists. In addition to his numerous contributions to economic theory,
a special attention must be paid to his methodological novelties: (1) systematic applications of
mathematical analysis to economics (2) philosophy which justified this applications.

Namely, in the history of economic theory, he was the ﬁfst to apply mathematical analysis
(classical analysis) to economics in a non-trivial way. Certainly, there were some authors prior to
Cournot, who made use of arit_hmetical illustrations of economic problems. However we can find
no such economist as Cournot, who established genuinely mathematical theorems in economic

theory in the sense that they could not.be obtained without mathematics?®.

'To be sure, the attempts to apply mathematics to economics can be traced back to the dates considerably
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Cournot’s economics reflected the tradition of French economics in the nineteenth century on
the one hand 2, and was deeply rooted in French mathematics in this period on the other. His
economics might be regarded as a landmark of the cross of these two intellectual backgrounds.

Of course, the main stream of French mathematics in the nineteenth century was Laplace-
Lagrange’s physico-mathematics. Cournot also started his career as a mathematician with an
industrious study of mathematics in the spirit of Laplace-Lagrange. However Cournot did not
restrict his research activity to this discipline, and stepped out into the field of economics.
In examining what drove the young able mathematician to economics, we must not dismiss
another stream of French mathematics in the nineteenth century, that is the tradition of social
mathematics (mathématique social). |

It was Condorcet who founded this discipline of mathematics in the Revolutionary period
in Francé. He attempted to organize a systematic study of social phenomena by following the
standards of natural sciences. Moreover, Condorcet made use of probability theory as the main
tool in analyzing social phenomena.

We have to keep in mind that Cournot succeeded Condorcet’s tradition of social mathematics
as well as Laplace-Lagrange’s tradition.

In France, economics was under the hegemony of J. B. Say’s school®, which distrusted and
disliked the mathematization in economics. It is therefore hardly surprising that Cournot’s work
was usually neglected and sometimes even attacked. Moreover, most of French mathematicians
did not pay any attention to it at best, and showed hostility to it at worst. These negative

reactions from both economists and mathematicians seemed to add some tragic tint to the

earlier than Cournot’s Recherches. The authors during the period prior to 1838 applied mathematical analysis to
- empirical case-by-case problems and dealt with specific functional relations. Among others, we must mention such
names as Daniel Bernoulli and Georg von Buquoy. For these early attempts, see Robertson (1949), Theocharis

(1961, 1993) and Baumol & Goldfeld (1968).

2Cournot was a classmate of August Walras at Ecole Normale. Although this episode indicates that Cournot
seemed to be familiar with economic theories based on utility, or rarété, it did not serve as a departure point of
Cournot’s economics. Cournot exceptionally refereed to Canard’s work. However his evaluation of Canard was

“... Les Principes de I’Economie Politique, by Canard,

rather negative as illustrated by the following quotation:
a small work published in the year X [of the French Republic, A.D. 1801], and crowned by the Institut. These
pretended principles are so radically at fault, and the application of them is so erroneous, that the approval of
a distinguished body of men was unable to preserve the work from oblivion. It is easy to see why essays of this
nature should not incline such economists as Say and Ricardo to algebra.” See Cournot (1838, p. 2)

*Jean Baptiste Say (1767-1832) published in 1803 his Traité d’Economie Politique, which made him the prin-
cipal apostle of Adam Smith in Europe. He rejected all attempts to apply mathematics in economics for the

reason that this discipline necessarily involved human free-will. His views weighed upon French economists as an

impediment to any attempt to mathematize economics.
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seemingly quiet life of Cournot.

We begin by summarizing the essence of criticisms against the mathematization of economics
by French mathematicians in section 2. In section 3, we examine Cournot’s position in the
history of mathematics. We then explore the program of éocial mathematics in section 4. Some
outstanding concrete results obtained in Condorcet’s program are discussed in the Appendix.

We proceed, in section 5, to the central issue of Cournot’s methodology. Here we give a posi-
tive credit to Cournot’s methodology that justifies the application of mathematical analysis to
economics. It is the law of large numbers which played a key role in this context. Being based
upon his peculiar twofold understanding of this law, Cournot could get out of the probability
world and find out the way to introduce mathematical analysis to economics. Regrettably we
have to confess that there are very few materials which directly support our interpretation of
Cournot’s methodology. In this sense, our proposition should be regarded merely as a hypothet-
ical one, by means of which we are trying to rationalize Cournot’s approach. Even though our
way of interpretation might be hypothetical, we expect it to shed a new light on the important
unsettled questions in the history of economics: (1) how did Cournot get out of the world of
probability, which had been the traditional and characteristic field of social mathematics? (2)
how did Cournot succeed in introducing classical analysis to economics?

Walras inherited the mathematical method in economics from Cournot in his Elément d’Economic
Politique Pure published in 1874 and 1877. However we can not overlook a gap between the
methodological attitudes of Cournot and Walras. We try to give an interpretation of this gap
in favor of Walras’ side. In section 6, we comment on the preceding arguments in the recent
literature by contrast ours. Finally, the summary of this paper is provided in the concluding

remarks.

2 Criticisms against Mathematical Economics

Cournot-Walras’ mathematical economics was suffered from heavy attacks from French math-

ematicians, among whom Bertrand 4 and Painlevé ® seemed to be the representative figures in

*Joseph Louis Frangois Bertrand (1822-1900), French mathematician, was a graduate and professor of
mathematics at the Ecole Polytechnique. He was remembered for his theories of probability and thermodynamics.

And he was a member of the College de France from 1862 to 1900.
*Paul Painlevé (1863-1933), French mathematician and politician, was remembered for his work in tranfor-

mations and especially in differential equations and in theory of functions; one type of function became known
as Painlevé’s transcendants. He took special interest in the science of aviation. He was the first Frenchman to

fly with Wilbur Wright in 1908. And Painlevé created the first course in aeronautical mechanics at the Ecole
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the anti-mathematical economics camp. Although Bertrand’s criticisms were fragmentary (see
de Bornier (1992, appendix)), Painlevé (1909) did not hesitate to exhibit a more exhaustive
criticism in the introduction to the French edition of Jevons’ Theory of Political Economy.

Anyway they shared the skeptical views as to the possibility of applying the Laplace-Lagrange
mathematical program to economics. Their criticisms against mathematization of economics
may be summarized as follows.

(1) Bertrand and Painlevé do not admit economics as one of the exact sciences like astronomy
and physics because it necessarily involves human free-will. What economics can tackle with
should be restricted only to the mass phenomena, which are endowed with some regularity
thr‘ough the cancellation of individual irregularities.

(2) Consequently, the only mathematical tool for economists is probability theory.

(3) Even in this restricted area of economics, the only well-defined measurable magnitudes
should be admitted as scientific concepts. However, very regrettably, some concepts like utility
devoid of this qualification are used in economics.

Bertrand, in his review article on Cournot’s Recherches and Walras’ Théorie Mathématique
“de la Richesse Social (1883), expressed all his hostility towards mathematical economics. He
neither admitted economics as an exact science like physics nor took trouble to understand the
content of economics. His accusation was being based upon his conviction that mathematical
method was not applicable to any inexact science like economics.

Bertrand also rejected Walras’ paper in 1871, as a referee of Revue des deuz Mondeson charges
of a non-scientific character of it (see Letter from Bertrand to Walras dated 20 January 1876
in Jaffé (1965, Letter No. 345)). Furthermore, Bertrand, in his review article on I'echner’s
psychology (1899), criticized Fechner’s program as a whole on the same grounds.

Bertrand’s Calcul des Probabilités should be regarded as an extended version of his lectures
given at the College de France. In the preface of this book, he denounced J. S. Mill’s view

that the application of probability theory to judicial decisions was the scandal of mathematics®

Supérieure d’Aéronautique. Painlevé was a member of the French chamber of Deputies, becoming Minister of
Public Instituion in 1915, Minister of War in 1917, Prime Minister in 1917 and 1925. He taught first at the Faculty
of Science at Lille in 1887-92, and then at the Ecole Normale Supérieure of Paris, where he became professor in
1903.

°It. means Lhe misapplication of the calculus of probabilities into the problems without taking into fuller
consideration the special circumstances of the case. Mill says that “some mathematicians have set out from the
proposition that the judgement of anyv one judge or jurymen is, at least in some small degree, more likely to be
right than wrong. and have concluded that the chance of a number of persons concurring in a wrong verdict is

diminished the more tiumber is increased; so that if the judges are only made sufficiently numerous, the correctness
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(see Bertrand (1899 p. XLIII)). Here it deserves a special notice that Bertrand admitted the
possibility of applying probability theory to social phenomena, although he did never admit the
application of mathematical analysis to them.

In Painlevé’s Qiew, astronomy was the only candidate for the exact science that could pre-
dict the phenomena in the futuré precisely, for instance the positions of celestial bodies and its
movements. Laplace’s Traité de Mécanique Céleste (1799) and Lagrange’s Mécanique Analy-
tique (1788) were considered to be the exemplary works in this really exact science. Physics and
chemistry did not reach the same standard as that of astronomy. Painlevé categorized them as
typical samples of quantitative-statistical sciences, the reseaich objects of which were solely mass
phenomena which showed certain regularity resulting from the cancellation of individual irregu-
larity. How about economics? He claimed that if we were able to compréhend the psychological
situations of all economic agents, economics could compare with astronomy. Actﬁally, however,
this supposition was never realized. Painlevé, therefore, brutally rejected the attempt of mathe-
matical economics. Since the research field of economics as a quantitaﬁive-statistical science was
restricted to the regularities in mass phenomena, the only mathematical tool for>economics was
probability theory. This criticism was sha.red by almost all the French mathematicians against
mathematical economics” 8. |
But, as we shall see below, Cournot had a methodology which could be beyond these kinds of

criticisims.

of the judgement may be reduced alinost to certainly.” However, he insists that “the cause of error, whether arising
from the intricacy of the case or from some common prejudice or mental infirmity, if it acted upon one judge,
would be extremely likely to affect all the others in the same manner, or at least a majority, and thus render a
wrong instead of a right decision more probable, the more the number was increased.” John Steuart Mill, System

of Logic. p. 354 . .

"Furthermore even in this restricted realm of economics, the only well-defined measurable magnitudes were
admitted as scientific concepts. Painlevé also criticized economic theory from this viewpoint. He could not admit
a non-measurable magnitude like utility. It is well-known that Walras gave a perfect answer to this kind.of
criticism in his correspondence with Poincaré (see Jaffé (1977) and Walras (1909)).

8Jules Henri Poincaré (1854-1912). French mathematician and theoretical astronomer, made substantial
contributions to several branches of mathematics. In his writing on probability, he anticipated the concept of
ergodicity that is basic to statistical mechanics. In celestial mechanics, Poincaré made important contributions
to the theory of orbits, particulary the classical three-body problem. In his solution, he developed powerful new
mathematical techniques, including the theories of asymptotic expansions and integral invariants. Always deeply
interested in the philosophy of science, he wrote La Science et I’Hypothése (1903), La Valeur de la Science (19053)

and Scicnce et Méthode (1908), all of which reached a wide public.
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3 Cournot’s Position in the History of Mathematics

In this section, we give a brief sketch of Cournot’s life, focusing on his academic activity. His
scientific works can be classified into three categories; mathematics, economics and philosophy.
Although they are closely interdependent, philosophical works will be laid aside here and we
will be exhaustively concerned with the relationship between mathematics and economics in
Cournot’s research activity. For a more éxtensive account of Cournot’s life, the reader is refereed
to the excellent papers by Fisher (1898, 1938), Moore (1905) and Nichol (1938).

Cournot was born at Gray (Haute-Sa6ne) in 1801. His early studies took place at Besangon. In
1821, he was admitted to the Ecole Normale Supérieure in Paris. However it was soon abolished
for political reasons. So he had to transfer to Sorbonne in 1822, from which he was graduated
in 1823. He spent the happiest life as a student of mathematics during this period at Sorbonne.

Among his teachers were some of the most outstanding figures of his time, including Lagrange

1 11

9 Laplace 1° and Fourier. Cournot had read Laplace’s Frposition du Systéme du Monde
(1796). And Cournot kept a close friendship with Dirichlet 12 who was to become the successor
to Gauss '3 at Gottingen. In 1829, Cournot received a doctorate in science. His scientific works

involving his thesis on mechanics and astronomy attracted much attention of Poisson 14 He was

® Joseph Louis Lagrange (1736-1813), Italian-French mathematician, made great contributions to number
theory and analysis. He also developed mechanics, using the calculus of 4-dimensional space. He published
papers on the three-body problem, which concerns the evolution of three particles mutually attracted according

to Newton's law of gravity, differential equations, prime number theory, probability and mechanics.
YPjerre Simon Laplace (1749-1827), French mathematician, astronomer and physicist, was best known for

his investigations into the stability of the solar system. His publication of the Mécanique Céleste was regarded
as marking the cumulation of the Newtonian view of gravitation. Laplace was Minister of the Interior under

Napoleon, a great admirer of men of science. He was professor at the Ecole Normale and Ecole Polytechnique.
" Jean-Baptiste Joseph Fourier (1768-1830) exerted strong influence on mathematical physics through his

Théorie Analytique de la Chaleur (1822). He showed how the conduction of heat in solid bodies may be analyzed
in terms of infinite. mathematical series, which is today called Fourier series. Fourier extended this concept into
the so-called Fourier integral. In 1798, Fourier accompanied Napoleon on his expedition to Egypt. He was engaged

in extensive research on Egyptian antiquities until 1801.
"2Gustav Peter Lejeune Dirichlet (1805-1859), French mathematician, made valuable contributions to

number theory, analysis and mechanics. In number theory he proved the existence of an infinite number of primes
in any arithmetic series a +b.2a +b,3a+b,...,na+b, in which a and b are not divisible by one another. Dirichlet
developed the general theory of units in algebraic number theory. In mechanics he investigated the equilibrium

of systems and potential theory, which led him to the Dirichlet problem.
B Carl Friedrich Gauss (1777-1855), German mathematician, made substantial contributions to several

branches of mathematics and revolutionized the mathematical techniques of his time. Among his many achiceve-
ments were the discovery of the method of least squares, the discovery of non-Euclidean geometry, the first proof

of the fundamental theorem of algebra, and the development of the basic theorems of number theory.
"Siiméon-Denis Poisson (1781-1840), French mathematician, was known for his work on definite integrals,
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professor at the Ecole Polytechnique and later at the University of Paris. And Poisson arranged
Cournot’s appointment to the chair of mathematical analysis at Lyons in 1834, but he taught
there for only one year. After that, he became involved more and more in the works of university
administration.

Cournot’s mathematical works appeared between 1840 and 1850. The most prominent works
among them are Traité Elémentaire de la Théorie des Fonctions et du Calcul ]nﬁnit‘esimal (1841)
and Erposition de la Théorie des Chances et des Probabilités (1843).

The letter from Poisson to Cournot indicated that the content of Ezposition had already been
completed in outline as ealry as January 1836 (see Ezposition, pp. vi-vii). Moreover he translated
Sir J. F. W. Herschel’s Astronomy and H. Kater and D. Lardner’s Eléments de Méchanique in
1834. ‘

The story of Cournot’s academic activity thus outlined seemed to suggest the peculiar position
of Cournot in the history of mathematics; in fact Cournot stood at the very crossroad of two
branches of mathematics, probability theory and mathematical analysis.

[t was probability theory which supported Condorcet’s social mathemétics as a principal tool
of analysis, and even Bertrand and Painlevé might approve the proba,bilistic theorizations of
social phenomena. However it is remarkable that the mathematical machinery which Courhot
used in economics was not probability theory but, exclusively, mathematical analysis whi]e‘ he
succeeded the tradition of social mathematics. What was the grounds of his decisién to adbpt
analysis and leave off‘probability? |

In this regard, Ménard (1987, p. 530) insfsts that Cournot was inspired by nineteenth-century
physics, which he considered to be the exemplary science. Even if we cah admit-his argument, we
must not dismiss that some probabilistic elements still remain in Cournot’s Recherches; Cournot
clearly stated that an individual demand function depended upon a variety of needs, fortunes.
and caprices. So if he had attempted to deal with it directly, Cournot would have depended
upon probabilistic theory. Thus it still remains to inquire the questions how Cournot could get
out of the probability world and find a way of introducing mathematical analysis to economics.
This is an important unsettled questions in the history of economics. We examine this point in

detail in the subsequent sections.

clectromaguetic theory and probability. Poisson’s Traité de Mécanique (1811-3), which was concerned with the
application of mathematics to electricity, magnetism and mechanics, was the standard work in mechanics for
many vears. Poisson also contributed to celestial mechanics by extending the work of Laplace and Lagrange on
the stability of planetary orbits. Poisson’s other works include Théorie Nouvelle de {’Action Capillaire (1831) and
Théorie Mathématique de la Chaleur (1835).
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4 The Tradition of Condorcet’s Social Mathematics

The starting point of social mathematics goes back to Marie Jeén Antoine Nicholas Caritat
Marquis de Condorcet (1743-1794). Condorcet was born at Riebemont-sur-Aisine, in Picardy.
By 1763, Condorcet’s mathematical genius had come into blossom and developed a new field
in integral calculus. Condorcet published Calcul de Intégralin 1765. In 1769, Condorcet was
admitted to the Academie des Sciences undér the powerful patronage of d’Alembert 1°. Later
Condorcet became acquainted with Turgot, vwho was also to influence Condorcet’s career since
then. Being the trusted aide of Turgot, Condorcet worked as Inspecteur de Monnaies until 1790
and as commissioner to the Treasuary from 1791 to 1792. At first glance, these busy works
seemed to disturb Condorcet’s mathematical activity, but he planned to establish new genre
in mathematics, that is social mathematics 6. It consisted of two projects, which were closely
interconnected. »

(1) It aimed at the creation of social s‘ciences, the method of which was to be comparable with
that of the natural sciences. |

(2) It made use of probability theory as a principal tool of analysis.

Social mathématics fascinated some of the mathematicians in the Revolution era, such as
Lagrahge, Laplace and Vandermonde, who expected the emergence of a new branch of mathe-
matics diffe‘rent from Laplace-Lagrange’s physico-mathematics. In particular, Vandermonde 7
felt a deep sympathy with it and gave a lecture on mathematical economics at Ecole Normale.
Social mathematics encompassed epistemolpgy, psychology of brain and behavior, economics,

actuarial science and the theory of voting.

*'S.Ieaxl le Rond d’Alembert (1717-1783), French mathematician, was one of the most leading figures in
France during the mid-eighteenth century. He worked on partial differential equations, solving the vibrating
string problem and the genéral wave equation. At his age of twenty-four, d’Alembert had been elected to the
Academie des Sciences, and he became its secrétaire perpetuel in 1754. From 1751 to 1772, he collabolated
in the twenty-eight volumes of the celebrated Encyclopédie, for which he wrote the much-admired “Discours
préliminaire,” as well as most of the mathematical and scientific articles. As a result of his activities, and of his
friendship with Voltaire and others among the “philosophes,” he was one of those who paved the way for the

FFrench Revolution.
' Baker analyzed historically the particular course of Condorcet’s intellectual development in the general context

of Enlightment to which he contributed. See Baker (1975).
7 Alexandre Théophile Vandermond (1735-1796), French mathematician, made an important contributions

to algebra. In his time, algebra was known as the science of solution of equations. The problem was that of finding
methods for expressing the solutions of algebraic equations in terms of the coeflicients using arithmetic operations
dnd extraction of roots of arbitrary degree. No one knew how to solve by radicals the equation 2™ — 1 = 0 for
n > 10 up until 1770. Vandermonde analyzed the case n = 11 in his paper of 1770. The work of Vandermond

devoted 1o algebraic equations introduced the first group-theoretic theorem, that is substituions.
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Condorcet provided his program with a concrete shape in his FEssai sur {'Application de
I"Analyse a la Probabilité des Décisions Rendues d la Pluralité des Voiz (henceforth Essaz).

Laplace and Poisson as well as Condorcet regarded jurisprudence as a natural field of appli-
cation of probability.

However, social mathematics was declining in prosperity with the change of the times.

Under the restriction of the academic freedom in the years of Napoleon’s despotism, Laplace
changed his attitude. He seemed to ha.ve’no solid political conviction. As soon as Napoleon fell
from power, Laplace collected the remaining copies of his treatise from bookstores and hastened
to replace the dedication to Napoleon with the one to Louis XVIII. And Condorcet’s life came
to a tragic end in the Terror. Nontheless, Condorcet’s influence barely persisted in French
mathematicians beyond his time.

In his remarkable work Fssai, Condorcet constructed a theory of voting, which have been still
attracting considerable attentions (see McLean & Hewitt (1994), Young (1988)). He illustrated a
paradoxical property of voting, cyclic majority, under majority rule. He proposed a solution for
ranking any number of alternatives even when cyclic majority was involved. In Essai, Condorcet
began by introducing the notion homo suffragans, as the impartial and intelligent voter, which
was to play a central part in hlS scheme.

Laplace’s Théorie Analytique des Probabilitésis alandmark in the history of plobablllty theory,
because it was not only a compilation of preceding probability theory but also it paved a new
development. An important contribution by himself is the rigorous deduction of the DeMoivre-
Laplace central limit theorem on the convergence of the binominal distribution to the normal
distribution. Laplace applied it to the solution of a number of urn problems 2.

In his Essai Philosophique sur les Probabilités, he admitted the possibility of applications
of probability theory to both of natural and social sciences. In chapter 11 of the Théoric
Analytique des Probabilités, Laplace studied the probabilistic estimation of testimonies of witness
and verdicts of law courts.

It must be emphasized here that these problems due to Condorcet and Laplace have essentially
the probabilistic nature in the sense that the stochastic element does not vanish even if a

considerable number of observations of the same kind would be made.

1¥\We mention here one such problem. Consider that-there are two urns A and B, each containing n white
balls and n black balls. These balls are moved cyclically, one by one, from one urn to another. Then what is the
probability z.,» that wrn A will contain r white balls after -r moves? (chapter 3.) Laplace solved this problem
by using generating functions. Laplace also applied the central limit theorem when he calculated the value of life

annuities. (chapter 9.)
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Poisson published Recherches sur la Probabilité des Judgments en Matiére Criminelle et en
Matiére Civile in 1837, the analytical method of which was due to Condorcet and Laplace. In
this book, Poisson regarded the law of large numbers as the key in every application of the
probability theory. Then how did he understand the law of large numbers?

As well known, the classical result of it, due to Bernoulli, can be stated as follows.

The Bernoulli law of large numbers (1713): Let X, Xs,--+, X,,--- be a sequence of mutually
n
independent random variable with the same distribution. Denote the sum by S, = ZXk.

k=1
If the expectation m = E(X,) exists, then for any ¢ > 0,

°(

In other words, the probability P that the frequency S,/n in n repeated trials differs only

S,
J—m'ﬁe)—)l as n — 00.
- pS

within certain limits from the expectation m = E(X,) converges to unity as the number of trials
increases indefinitely. Historically, this law passed to the Borel strong law of large numbers. It

can be stated as follows.

The Borel strong law of large numbers (1909): Let X, Xs,--+,Xn, -+ be a sequence of
mutually independent random variables and that obey an identical distribution. If E(]|X}])

exists, then S,/n almost surely converges to the expectation m = E(|X,|).
Poisson (1837, pp. 137-143) described his law of large numbers as follows.

The Poisson law of large numbers (1837):
[1] Suppose that in n trials an event E occurs with probabilities p1, p2, - -+ , p» and the opposite
event I occurs with probabilities ¢1,¢2,- -+, gn.

Let .S,, be the number that an event F occurs in n trials, then the difference hetween
1
My = ;(Pl +p2t+-+pa)

and the relative frequency .S, /n converges to zero as the number n of trials increases indefinitely.
(2] Suppose that mutually exclusive causes C,Cq,--- ,C5 bring about an event E and that
the probabilities of the occurrence are vy, 792, -+ ,¥n. Now also suppose that the probability that

an event [ occurs is ¢; in the presence of cause C;. Let
Y=m0+ 720+ Tala.

Then S, /n converges to v as n — oo.
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[3] Suppose that in each trial a certain quantity A correspondes one or another of its values
a1, az.- - ,ax. Let ¢;; be the probability of A assuming value a; given the cause C; and let 7,

be the probability that C; is at work. Then the mean of a; over n trials would be
Qj = Y1€15 + Y2C25 + 11+ YACy;-

Then S, /n converges to the expectation ajoy + azag + -+ -+ ayay as n — 0.

In essence, the Poisson law of large numbers was the generalization of the Bernoulli law of
large numbers. It can be also verified that the Borel strong law of large number implies the
Poisson law of large numbers.

Poisson tried to keep even the most capricious phenomena in the reach of rigorous analysis,
having recourse to this law. '

It is certain that Cournot, as a Poisson’s fervent disciple, was acquainted with the law of large
numbers. Sheynin (1978) and also Martin (1996) insist that Cournot did not mention the law
of large numbers in his Ezposition. They argue that Cournot underestimated the law of large
numbers. Sheynin says; (1) Probably because of Bienaymé’s (1875) criticism Cournot just did
not mention this law at all (Sheynin, (1978) p. 274) and (2) Bienaymé’s criticism was being
based on his conviction that this law just did not exist (Sheynin, (1978) p. 273).

However, Sheynin completely misunderstands the content of Bienaymé’s criticism. What
Bienaymé actually says is ’simply that we should not regard the law of large numbers as a new
mathematical discovery due to Poisson and hence we should refer to this law as the principle or
the theorem of Bernoulli. |

A careful examination of Cournot’s Ezposition reveals the contradiction of Cournot’s text and
Sheynin-Martin’s claim. In fact, Cournot exclusively referred to this law as “the principle of
Bernoulli” rather than as “the law of large numbers”. This change of vocabulary seems to be
a stumbling block which impeded Sheynin and Martin to grasp Cournot’s attitude to the law
correctly.

Cournot gave a full explanation of the principle of Bernoulli, in such as 86 and 87 of his
Frposition. It fol]o»;'s from the law of large numbers that the relative frequencies of occurrence
of events in consecutive series of trials are approximately equal to one another. Cournot applied
this law of large numbers to the ratio of birth of boys and girls observed in various countries. In
a large number of cases, Cournot considers that from past events we can try to obtain clues that
may guide us in our conjecture about the causes on which these events depend. Ior example,

bearing in mind that the ratio of birth of boys and girls is the almost same in Egypt and in the
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Cape of Good Hope, we see that climate has a negligible effect in this respect (chapter 13).
Consequently, it is certain that Cournot was in favor of the law of large numbers. Nevertheless
Cournot’s method of economics was solely mathematical analysis and not probability theory. How
shall we understand this?
As we pointed out at the end of section 1, it seems very hard to find out any materials in
Cournot’s works which directly answer this question. What we are trying to present here is a
hypothetical interpretation of Cournot’s mathematical methodology, by means of which we may

rationalize his attitude.

5 Cournot’s Methodology for Mathematical Economics

In our views, the law of large numbers seemed to play an important role behind Cournot’s
economics. Cournot understood the law in two meanings, which should be distinguished by
nature. However it is this twofold understanding of the law of large numbers which enabled
Cournot to find out the way to introduce mathematical analysis to economics. The first meaning
of this law is the regularity as mass phenomena in the probabilistic sense, and the second one is

the regularizing effect resulting from smoothing by aggregation.
(1) regularity as mass phenomena in the probabilistic sense

Cournot started his economic analysis with an aggregated average demand function but not
with individual demand functions. An individual demand function may be influenced by some
random elements. We now consider an economy with £ goods and denote the price vector by
pE Ri. Therefore the individual ©’s demand function & must be expressed as &; : Rﬂ_ xQ — RE,
which depends upon two variables p and w. Here Q denotes a probability space, an element w
of which stands for a variety of needs, fortunes and caprices aiccord'mg to Cournot. (See the
quotation below.) He rejected to deal with an individual demand function directly. If Cournot
had attempted to start with an individual demand function, he would have depended upon
probability theory. By virtue of the law of large numbers, if &;’s are independent and subject to
the same distribution, then the average of individual demand functions converges almost surely

to the expected value of &;. Strictly speaking, the limiting relation

1 — .
- &i(pow) — El&(p, )] as n — 00
=1
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holds true for almost all w € Q. Roughly speaking, under these conditions the average of &;’s
converges to its expected value with probability 1. In this sense, the limit of the average of
individual demand functions no longer depends on w € Q. In other words, aggregated average
demand function would be markedly independent of the anomalies of chance if n is very large.

In order to justify our formulation investigated so far, it suffices to remember that the Borel
strong law of large numbers!® essentially generalizes what Poisson and Cournot understood as
the law of large numbers. Thus, we can understand the way of Cournot’s thinking without
changing the essential feature.

If we rewrite this limit F(p), this function p — F(p) is the starting point for Cournot.

Thus a door was opened for Cournot to get out of the probability world provided that he
agreed to start with an aggregated average demand function. Cournot thus distinguished the
field to which probability theory should be applied from the field in which probability theory

can be dispensed with.
(2) smoothing by aggregation

Moreover, Cournot recognized the concept of so-called smoothing by aggregation. Even if
the behavior of an individual is irregular, discontinuous or nonsmooth, as can be seen in casual
observations, the aggregation of sufficiently many functions which differ slightly to each other
gives rise to a rather regular, continuous and smooth function through the cancellation of the
irregularity. Thus we can assume that an aggregated average demaﬁd function is smooth and
continuous 2. v |

This prin‘ciple of smoothing by aggregqtion enabled Cournot to apply classical mathematical

analysis to an aggregated average demand function.

Cournot (1838, pp. 49-50) notes;

We assume that the function F(p), which expresses the law of demand or of the
‘market, is a continuous function,i.e. a function which does not pass suddenly from
one value to another, but which takes in passing all intermediate values. It might be
otherwise if the number of consumers were very limited: thus in a certain household
the sa‘mo.qua.ntity of firewood will possibly be used whether wood costs 10 franc or -

15 francs the stere, and the consumption may suddenly be diminished if the price

Y his type of the law of large numbers explicitly uses the concept of measure, which was unknown in Poisson-

Cournot’s time. -
20 A modern treatment of this problem was promoted by Debreu’s paper.-See Debreu (1972).
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of the stere rises above the latter fizure. But the wider the market extends, and
the more combinations of needs, of fortunes or even of caprices, are varied among

consumers, the closer the function F(p) will come to varying with p in a continuos

manner.

Incidentally, the quotation shows that Cournot could not distinguish the concept of continuity
from that of differentiability of a function. The distinction of these two concepts was made clear
by Cauchy 2! in his rigorous treatment of analysis.

Thanks to the first law of large numbers, Cournot was able to find out an approach to eco-
nomics which was traceable without bothering about probabilistic randomness. Moreover thanks
to the second one, Cournot succeeded in finding a way of applying mathematical analysis to eco-

nomics.
(3) Cournot versus Walras: a modern evaluation

Walras started his theoretical research with the critical examination of Cournot’s economic
theory. He often mentioned August Walras together with Cournot, as the authors to whom
he had owed most in establishing his economics. And Walras applied mathematical analysis
directly to an individual utility function. Consequently, Walras’ attitude on the methodology
of economics seems to contradict to Cournot’s in that Walras applied mathematical analysis
directly to an individual utility function. How can we evaluate this gap between the two?
Although he also referred to the law of large numbers to justify the mathematization of economics

22 we can not expect that Walras had a methodological consideration in mind as deep as

2! Augustin-Louis Caucy (1789-1857), French mathematician, was a pioneer in analysis and the theory of
substituion groups. Cauchy’s greatest contributions to mathematics was characterized by the clear and rigorous
methods he introduced. Cauchy clarified the principles of calculus and put them on a satisfactory basis by
developing the theory of functions of a complex variable. Cauchy’s contributions on mathematics was embodied
in his three treatises: Cours d’Analyse de I'Ecolt: Royale Polytechnique (1821), Résumé des Legon sur le Calcul
Infinitésimnal (1823) and Legon sur les Applications du Calcul Infinitésimal a la Géometrié (1826-2R). Cauchy was

a prolific worker. providing a total of 789 papers on mathematics and sciences.
22\Walras put it;* There is nothing to indicate that the individual demand curves - - -, or the individual demand

equations -- -, are continuous, in other words, that an infinitesimally small increase in p, produces an infinites-
imally small decrease in d,. On the contrary, these functions are often discontinuous. In the case of oats, for
example, surely our first holder of wheat will not reduce his demand gradually as the price rises, but he will do it
in soimne intermittent way every time he decides to keep one horse less in his stable. His individual demand curve
will. in reality. take the form of a step curve - --. All the other individual demand curve will take the same general
form. And yet the aggregate demand curves --- can, for all practical purposes, be considered as continuous by

virtue of the so-called low of large numbers.”
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Cournot. It seems almost impossible for us to reconstruct Walras’ attitude toward this problem
and vindicate it being based upon his own words. So we had better evaluate Walras’ attitude
from the viewpoint of modern economic theory.

There are several justifications for Walras’ attitude to start from utility theory rather than a
demand function.

(1) In the analysis starting from an observable demand function, it is a given datum and
not an object of explanation. The properties mentioned about it are the facts to be verified
statistically or inductively. However if we seek to ezplain these properties of a demand function
instead of just describing or assuming them away, we have to make clear how it is generated by
more elementary factors like a preference relation or a utility function.

Moreover when we are required to examine whether the properties of a demand function are
general ones or ezceptional ones, we have again to start from a utility as a generating factor.

23 any function which satisfies the continuity,

(2) According to Sonnenschein-Debreu’s theorem
homogeneity and Walras’ law can be an excess demand function deduced from some utility
functions through consumers’ maximization behaviors. On the grounds of this result, it seems
to be a reasonable way for us to analyze an excess demand function by supposing as if it were
generated by the utility maximization béhaviors of some ideal consumers. Such a reasoning may
be regarded as an experiment in thought, which is even more important since it is difficult to
carry out an ordinary experiment in economics.

(3) If we assume the strong axiom of revealed preference and a demand function which satisfies
the Lipschitz condition with respect to income, we can derive a continuous utility function which
generates this demand function?®. If we can admit those assumptions, we have a good reason
to start from a utility theory.

[Even if we can justify the use of a ufility function, how can we justify the supposition of its
differentiability?

(a) At first, a continuous utility function can be approximated by a smooth function (Stone-
Weierstrass’ theorem). It may be sometimes justified to suppose the differentiability of a utility
function as a way of approximation.

(3) 1t is one of the important task of demand theory to identify the direction of changes of

demands corresponding to changes of prices. In the real world, such a change is observed in a

See Walras® Elément. translated by Jaffé (1977), section 52. p. 95.
2 See Sonnenschein (1972, 1973) and Debreu (1972)
*See Uzawa (1960)
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discrete or finite quantity. However we can safely make use of a smooth utility function as a
theoretical devise which explains how the demands depend upon prices, provided that it predicts
the same direction of changes in the real world 2°.

Thus we have found several justifications for the application of mathematical analysis to a
utility function. They also reinforce the validity of Walras’ methodological view on mathematical

economics.

6 - Comments on the Recent Literature

We are now in a position to evaluate the preceding investigations on this topic in the recent
literature in comparison with the one developed in this paper.

The mathematical contributions by those who succeeded the tradition of social mathematics
have been studied in several literature. Among others, Sheynin (1976/77, 1978) reviews Laplace’s
and Poisson’s mathematical works on probability respectively. But we can not agree with his
assertion that Cournot did not mention the law of large numbers in his Ezposition. On the
contrary, we insist that he referred to the same law by another terminology, the principle of
Bernoulli and he was in favor of this law.

In addition, detailed explanation of Laplace’s theory of probability is given in Kolmogorov

and Yushkevich’s (1992) survey of the history of probability theory in the nineteenth century,
which is a reliable basic reference from mathematical point of view.
- Stigler (1986) provides a history of statistics, with special attentions to the application of
probability to social sciences and discusses Cournot’s works on probability in detail. Martin
(1996) provides a comprehensive study on Cournot’s work in the field of probability, focusing
on its philosophical aspects, which we omit in this paper.

Ingrao & Israel (1990. chapter 2) precisely evaluate the role of social mathematics in the
history of economics.v They also correctly point out that the relationship between Cournot
and the tradition of social mathematics; “social mathematics appeared in his writings as veiled
allusions, with few direct references. Reading between the lines, one could infer that he was
not unaware of the texts, or at least the projects, of his predecessors (p. 79).” But they seem
to regard that the influence of social mathematics was reflected only on his attitude toward
mathematizing economics. They did not try to elucidate that Cournot marked a significant

turning-point in introducing the application of mathematical analysis into the program of social

**This argument scemes to be in accordance with Samuelson’s spirit. See Samuelson (1947).



273

mathematics. Thus, we are naturally led to ask the question: (1) how did Cournot get out of
the world of probability, which had been the traditional field of social mathematics? (2) how
did Cournot succeed in introducing bclassical analysis to economics? |

Ménard (1987) also tried to gave an answer to the question; why is mathematical economies
possible? He stressed Cournot’s cautious attitude towa.fd the use of statistics in economics. “In
adopting this attitude, Cournot was inspired by nineteenth-century physics, which he considered
to be the exemplary science (p. 530).” Ménard affirms the,t Cournot erected the first economic
model accoding to the image of classical physics (p. 141);” Even if we can adrriit his argument,
Cournot clearly stated that “so many moral causes capable of neither enumeration nor mea-
smement affect the law of demand” (Recherches, p. 47). Thus, some p1obab1hstlc elements still
remain m his Recherdhes Therefore, it Stlll remains to mqmre the questlon how Coumot could
get out of the probability world, but Ménard failed to gave a decisive answer to this question. In
our views, Ménard misses the first meaning of the Iaw in our sense, that is to say the regularity
in the probabilistic sense, which enabled Cournot ‘co get out of the probablhty world. By this
very failure to recognize the la,w’ of large numbers in this sense, the explanation of Cournot’s
methodology justifying the application efvmathematical analysis to economics remains more or
less u nsétisfactory o

Ménard 1ecoomzed the second meaning of the law of large numbers in our sense played a
role in Cournot’s economics; “The law of large numbers the prmcxple of compensation, and the
calculation of averages had to be able to explain the shape and characteristics of the demand
curve (p. 533).” On this point, De Villé and Ménard (1989) said that Cournot thought that
the extension of market activities within several major countries as well as the development
of international trade would expand the role of regularities and reduce the weight of irrational
behaviors (p. 498). And Ménard considered that these reguralities in the economic world
enabled Cournot to introduce classical analysis into economics. We connpletely"egl'eed with this
conclusion, but it must be emphasized that smoothing by aggregation has nothing to do with
the probabilistic law of large numbers. Therefore, although Ménard succeeded to explain the
reason why Cournot found a way of introducing mathematical analysis to economics, Vit still

remains to inquire that how Cournot could get out of the probability world.
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7 Concluding Remarks

In this paper, we have investigated Cournot’s methodological foundations for applying math-
ematical analysis to economics. We explored the reason of French mathematicians’ critical view
against the mathematization of economics. The only mathematical tool they admitted as ap-
plicable to economics was probability theory. The origin of this thought can be traced back
to Condorcet’s social mathematics. Although Cournot also succeeded the tradition of social
mathematics, the mathematical tool chosen in Cournot’s economics was not probability theory
but mathematical analysis. The transformation of mathematical methodology of economics due
to Cournot was made possible by his peculiar grasp of the law of laige numbers.

Cournot understood the twofold meanings of it; one is the regularity as mass pheneomena in
the probabilistic sense, and the other is the regularity result‘ing from smoothing by aggregation.
Thanks to the first law of large numbers, Cournot was able to get out of the world of probability.
Moreover the second law of large numbers enabled him to find a way of applying mathematical
analysis to economics. In this way, Cournot succeeded in paving the way to mathematical
economics on the tradition of Laplace-Lagrange’s analytic mechanics.

Walras, on the other hand, applied mathematical analysis even to a utility function. We
evaluated the methodological difference between Cournot and Walras. And we presented a way

of justification for Walras’ approach from a viewpoint of modern economic theory.
Appendix

In this Appendix, we now exemplify some results obtained in the discipline of social mathe-

madtics.
(a) Condorcet

Let us assume 2q+1 voters, who vote independently each other. Let v stand for the probability
that his vote is correct in view of the truth. On the contrary, w represents the probability that
his vote is an error. Let V7 and W7 stand for the probabilities that the social decision is correct

and erroneous respectively. Then we must have
. 241 o2 21 2 : 1
171 = pet +2041 Cv 7 2041 sz LT/ R HE +2g+1 quq+ ’qu,

and
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W = w2+l +24+1 CleqU +2g+1 ngz"_lv2 + ot quq“vq.
Since we obtain

Vatl = 23 +24+3 C’lv2q+2w +2q+3 sz2q+1’w2 + - Foge3 Cq+1vq+2wq+1,
by a similar way. it follows that

VIth — V9 =y 11 Cy1 —2941 Cov?Thw?™2,

Taking account of the relations 354+1Cq41 =24+1 Cy and

VIt VI =, 1 CoutTwit x (v~ w),
we have

Vi=v+ (v-w) x {vw+3 Crvw? + e dggoy Cypviw?}.

Similarly, we have

W= w+ (w—v) x {wv+3 Crw?v? + - 991 Cpurwiv?}.

According to Condorcet, this result implies that the probability that social decision by max
jority is correct converges to 1 as the number of voters increases if v > w. However since this
assumption (v > w) is not necessarily realistic, he advocated the necessity of a good education

in order to overcome this difficulties.
(b) Laplace

For example, consider the situation that a ticket is drawn from an urn containing n tickets
numbered from 1 to n. There are two witnesses, whose testimonies coincide with each other.
The degree of confidence of both testimonies are p and p’ respectively. A witness testimonies
that the ticket drawn is the one numbered, say, i and both make no mistake for the sake of
simplicity: (a) both do not deceive and (b) both deceive. Let us consider the case (a). In
this case. the ticket numbered ¢ is actually drawn, the probability of which is 1/n. Thus the

probability of the case (a) is pp’/n. On the contrary, in the case of (b), the probability that the
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ticket numbered 7 is drawn and both deceive is

(1-p)(1-p)
n(n—1)

Consequently, the probability that the ticket numbered 7 is drawn turns out to be

/

pp
py + Upisr)’

In the case of n = 2 and p = p’, this formula will be

P+ (1-p?

Proceeding from this simple consideration, Laplace applied this result to the discussion of the
work of tribunals.

Let us assume that the probability p of a just verdict is the same for each judge and that
exceeds one-half. Under these assumptions, the probability that r judges unanimously bring in
a correct verdict turns out to be

r

N
P+ (1-pr

This is one of the main results obtained in Laplace’s work. The concrete value of p must be
estimated from statistical data. Once this estimation is done, the optimal number of judges, say

r, is to be solved.
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