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ABSTRACT. A pre-play communication-process is presented which
leads to a Nash equilibrium of a strategic form game. In the commu-
nication process each player predicts the other players’ actions, and
$\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ communicates privately $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ conjecture through message
according to a protocol. All the playe.r$\mathrm{s}$ receiving the messages learn
and revise their conjectures. After a }$\mathrm{o}\mathrm{n}\mathrm{g}$ round of the communi-
cations they reach a Nash equilibrium: We show that the profile of
players’ conjectures in the revision process leads a Nash equilibrium
of a game in the long run if the protocol contains no cycle.

1. INTRODUCTION

The concept of Nash equilibrium ( $\mathrm{J}.\mathrm{F}$ . Nash [10]) has become central
in game theory, economics and its related fields. Yet a little is known
about the process by which players learn if they do. Recent papers by
E. Kalai and E. Lehrer [6], J. S. Jordan [5] (and references in therein)
indicate increasing interest in the mutual learning processes in games
that leads to equilibrium.

They have studied the learning processes modeled by Bayesian updat-
ing: Each player starts with initial erroneous belief regarding the actions
of all the other players. They show that if each player assigns a positive
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probability to the real action played by the others, their belief about the
future actions of the others converge in the long run.

E. Kalai and E. Lehrer [6] studies two-player repeated games, and
they show the two strategies converges to an $\epsilon$-Nash equilibrium of the
repeated game if the common prior belief satisfies a certain uniform con-
dition. J. S. Jordan [5] investigates the general convergence result for
strategic form games. R. B. Myerson [9] proposes the Bayesian games
with mediated communication in which each player is asked to confi-
dentially report his type to the meditator, after getting these reports,
the meditator coffidentially recommends an action to each player. He
characterizes the acceptable correlated equilibria as a subclass of the
correlated equilibria in the Bayesian games.

As for as Nash’s fundamental notion of strategic equilibrium is con-
cerned, $\mathrm{R}.\mathrm{J}$ . Aumann and A. Brandenburger [1] gives epistemic condi-
tions for Nash equilibrium. However it is not clear just what learning
process leads to Nash equilibrium.

The present article aims to fill this gap. The pre-play communication
process according to a protocol is proposed. It is a mutual learning that
leads to a Nash equilibrium of a strategic form game such as a cheap talk
proceeding as follows: The players start with the same prior distribu-
tion on a state-space. In addition they have private information which
is given by a non-partitional structure. Each player communicates pri-
vately $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ belief about the other players’ actions through messages,
and accordingly the receiver of the message updates $\mathrm{h}\mathrm{e}\mathrm{r}/\mathrm{h}\mathrm{i}\mathrm{s}$ belief. When
a player communicates with another, the other players are not informed
about the contents of the message. The players’ predictions regarding the
future beliefs converge in the long run, which lead to a Nash equilibrium
of a game. Precisely, at every stage each player communicates privately
not only $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ belief about the others’ actions but also $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ rational-
ity as messages according to a protocol, the receivers update their private
information and revise their belief. Where each message is not required
to become common-knowledge among all players. Then we prove:

Theorem. In a communication process of a strategic form game accord-
ing to a protocol with revisions of their beliefs about the other players $J$

actions, their predictions induces a Nash equilib$7^{\sim}ium$ of the game in the
long run if the protocol contains no cycle.

This paper organizes as follows. Section 2 presents the communica-
tion process for a game according a protocol. In Section 3 we give the
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statement and proof of the theorem (Theorem$(3.1)$ ), assuming the tech-
nical result (Fundamental lemma (3.2)). Section 4 gives the proof of the
lemma.

2. THE MODEL

Let $\Omega$ be a non-empty set called a state-space, $N$ a set of finitely many
piayers 1, 2, . . . $n$ , and let $2^{\Omega}$ be the family of all subsets of $\Omega$ . Each
member of $2^{\Omega}$ is called an event and each element of $\Omega$ called a state. Let
$\mu$ be a probability measure on $\Omega$ which is common for all players.

2.1. Information and Knowledge (Samet [13], Binmore [3]). An in-
fo$7mation$ structure $(P_{i})_{i\in N}$ is a class of mappings $P_{i}$ of $\Omega$ into $2^{\Omega}$ . It is
called an $RT$-infomation structure if for every player $i$ the two properties
are true: For each $\omega$ of $2^{\Omega}$ ,

Ref: $\omega\in P_{i}(\omega)$ ;
$\mathrm{b}\mathrm{n}$ : $\xi\in P_{i}(\omega)$ implies $P_{i}(\xi)\subseteq P_{i}(\omega)$ .
Given our interpretation, an player $i$ for whom $P_{i}(\omega)\subseteq E$ knows, in

the state $\omega$ , that some state in the event $E$ has occurred. In this case we
say that in the state $\omega$ the player $i$ knows $E$ . An $i’ \mathrm{s}$ knowledge operator
is an operator $K_{i}$ on $2^{\Omega}$ such that $K_{i}E$ is the set of states of $\Omega$ in which
$i$ knows that $E$ has occurred; that is,

$K_{i}E=\{\omega\in\Omega|P_{i}(\omega)\subseteqq E\}$ . (1)

We note that the $i’ \mathrm{s}$ knowledge operator satisfies the following properties:
For every $E,$ $F$ of $2^{\Omega}$ ,

$\mathrm{N}$ : $K_{i}\Omega=\Omega$ and $K_{i}\emptyset=\emptyset$ ;
$\mathrm{K}$ : $K_{i}(E\cap F)=K_{i}E\cap K_{i}F$ ;
$\mathrm{T}$ : $K_{i}F\underline{\subseteq}F$ ;
4: $K_{i}F\subseteq K_{i}K_{i}F$.

The set $P_{i}(\omega)$ will be interpreted as the set of all the states of nature that
$i$ believes to be possible at $\omega$ , and $K_{i}E$ will be interpreted as the set of
states of nature for which $i$ believes $E$ to be possible. We will therefore
call $P_{i}$ an $i’ \mathrm{s}$ possibility operator on $\Omega$ and also will call $P_{i}(\omega)$ the $i’ \mathrm{s}$

possibility set at $\omega$ . An event $E$ is said to be an $i’ \mathrm{s}$ truism if $E\subseteqq K_{i}E$

We should note that the $RT$-information structure $P_{i}$ is uniquely de-
termined by the knowledge operator $K_{i}$ such that $P_{i}( \omega)=\bigcap_{\omega\in K;E}E=$

$\bigcap_{\omega\in T=K_{i}T}T$ .
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2.2. Game and Knowledge (Aumann and Brandenburger [1]). By
a game $G$ we mean a finite strategic form game $\langle N, (A_{i}), (g_{i})\rangle$ with
the following structure and interpretations: $N$ is a finite set of play-
ers $\{1, 2, \ldots,i, \ldots n\}$ with $n\geq 2,$ $A_{\dot{f}}$ is a finite set of $i’ \mathrm{s}$ actions (or $i’ \mathrm{s}$

pure strategies) and $g_{\mathfrak{i}}$ is an $i’ \mathrm{s}$ payoff-function of $A$ into $\mathbb{R}$ , where A
denotes the product $A_{1}\cross A_{2}\cross\cdots\cross A_{n},$ $A_{-i}$ the product $A_{1}\cross A_{2}\cross\cdots\cross$

$A_{i-1}\cross A_{i+1}\cross\cdots\cross A_{n}$ . We denote by $g$ the $n$-tuple $(g_{1}, g_{2}, \ldots g_{n})$ and
denote by $a_{-i}$ the $(n-1)$-tuple $(a_{1}, \ldots , a_{i-1}, a_{i+1}, \ldots , a_{n})$ for $a$ of $A$ .

A probability distribution $\phi_{i}$ on $A_{-i}$ is said to be an $i’ \mathrm{s}$ overall con-
jecture (or simply $i’ \mathrm{s}$ conjecture). For each player $j$ other than $i$ , this
induces the marginal on $j’ \mathrm{s}$ actions; we call it an $i’ \mathrm{s}$ individual conjecture
about $j$ (or simply $i’ \mathrm{s}$ conjecture about $j.$ ) Functions on $\Omega$ are viewed like
random variables in a probability space $(\Omega, \mu)$ . If $\mathrm{x}$ is a such function
and $x$ is a value of it, we denote by $[\mathrm{x}=x]$ (or simply by $[x]$ ) the set
$\{\omega\in\Omega|\mathrm{x}(\omega)=x\}$ .

An $RT$-information structure $(P_{i})$ with a common-prior $\mu$ yields the
overall conjecture $\phi_{i}$ defined by

$\phi_{i}(a_{-i},\omega)=\mu([\mathrm{a}_{i}=a_{i}]|P_{i}(\omega))$ ;

it is viewed as a random variable of $\phi_{i}$ . We denote by $[\phi_{i}=\phi_{i}]$ the in-
tersection $\bigcap_{a-i\in A_{-i}}[\phi_{i}(a_{-i})=\phi_{i}(a_{-i})]$ and denote by $[\phi]$ the intersection
$\bigcap_{i\in N}[\phi_{i}=\phi_{i}]$ . Let $\mathrm{g}_{i}$ be a random variable of an $i’ \mathrm{s}$ payoff-function
$g_{i}$ and $\mathrm{a}_{i}$ a random variable of an $i’ \mathrm{s}$ action $a_{i}$ . Where we assume that
$[a_{i}]:=[\mathrm{a}_{i}=a_{i}]$ is $i’ \mathrm{s}$ truism for every $a_{i}$ of $A_{i}$ . The pay-off functions
$g=$ $(g_{1}, g_{2}, \ldots , g_{n})$ is said to be actually played at a state $\omega$ if $\omega$ belongs
to $[ \mathrm{g}--g]:=\bigcap_{i\in N}[g_{i}=g_{i}]$ . An $i’ \mathrm{s}$ action $a_{i}$ is said to be actual at a
state $\omega$ if $\omega$ belongs to the set $[\mathrm{a}_{i}=a_{i}]$ .

An player $i$ is said to be rational at $\omega$ if each $i’ \mathrm{s}$ actual action $a_{i}$

maximizes the expectation of his actually played pay-off function $g_{i}$ at $\omega$

when the other players actions are distributed according to his conjecture
$\phi_{i}(\omega)$ : Formally, letting $g_{i}=\mathrm{g}_{i}(\omega)$ and $a_{i}=\mathrm{a}_{i}(\omega)$ ,

$\mathrm{E}\mathrm{x}\mathrm{p}(g_{i}(a_{i}, \mathrm{a}_{-i});\omega)\geqq \mathrm{E}\mathrm{x}\mathrm{p}(g_{i}(b_{i}, \mathrm{a}_{-i});\omega)$

for every $b_{i}$ in $A_{i^{1}}$. Let $R_{i}$ denote the set of all the states at which an
player $i$ is rational, and $R$ the intersection $\bigcap_{j\in N}R_{j}$ .

1The expectation $\mathrm{E}\mathrm{x}\mathrm{p}$ is defined by

$\mathrm{E}\mathrm{x}\mathrm{p}(g_{i}(b_{i},\mathrm{a}_{-i});\omega):=$

$\sum_{a-:\in A_{-}}.g_{i}(b_{i},a_{-i})\phi_{i}(\omega)(a_{-i})$
.
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2.3. Protocol (Parikh and Krasucki [11], Krasucki [7]). We assume that
players communicate by sending messages. Let $T$ be the time horizontal
line $\{0,1,2, \cdots t, \cdots\}$ .

A protocol is a mapping $\mathrm{P}\mathrm{r}$ of the set of non-negative integers into
the Cartesian product $N\cross N$ that assigns to each $t$ a pair of players
$(s(t), r(t))$ such that $s(t)\neq r(t)$ . Here $t$ stands for time and $s(t)$ and
$r(t)$ are, respectively, the sender and the receiver of the communication
which takes place at time $t$ . We consider a protocol as the directed graph
whose vertices are the set of all players $N$ and such that there is an edge
(or an arc) from $i$ to $j$ if and only if there are infinitely many $t$ such that
$s(t)=i$ and $r(t)=j$ .

A protocol is said to be fair if the graph is strongly-connected; in
words, every player in this protocol communicates directly or indirectly
with every other player infinitely often. It is said to contain a cycle
if there are players $i_{1},$ $i_{2},$

$\ldots$ , $i_{k}$ with $k\geqq 3$ such that for all $m<k,$ $i_{m}$

communicates directly with $i_{m+1}$ , and such that $i_{k}$ communicates directly
with $i_{1}$ . The period of the protocol is the minimal number of all the
natural number $m$ such that $\mathrm{P}\mathrm{r}(t+m)=\mathrm{P}\mathrm{r}(t)$ for every $t$ .

2.4. Pre-play Communication. By this we intuitively mean the learn-
ing process such that each player communicates privately $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ belief
about the other players’ actions through messages according to a proto-
col, and $\mathrm{s}\mathrm{h}\mathrm{e}/\mathrm{h}\mathrm{e}$ updates $\mathrm{h}\mathrm{e}\mathrm{r}/\mathrm{h}\mathrm{i}\mathrm{s}$ belief according to the message received.
In addition, at every stage each player communicates privately not only
$\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ belief about the others’ actions but also $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ rationality as
messages, the receivers update their p..rivate information and revise their
belief. $\dot{\mathrm{W}}$hhen a player communicates with another, the other players are
not informed about the contents of the message.

Formally, a pre-play communication process according to a protocol $\mathrm{f}|$or
a game $G$ with revisions of players’ conjectures is a tuple

$\langle \mathrm{P}\mathrm{r}, (P_{i}^{t})_{i\in N}, (\phi_{i}^{t})_{i\in N}|t\in T\rangle$

with the following structures: the players have a common-prior $\mu$ on a
state-space $\Omega$ , a protocol $\mathrm{P}\mathrm{r}(t)=(s(t), r(t))$ satisfies the conditions that
$r(t)=s(t+1)$ for every $t$ and that the communications proceed in rounds
(i.e. there exists a time $m$ such that $\mathrm{P}\mathrm{r}(t)=\mathrm{P}\mathrm{r}(t+m)$ for all $t.$ ) An
$n$-tuple $(\phi_{i}^{t})_{i\in N}$ is a profile of $i$ ’s individual conjectures at time $t$ . The $i’ \mathrm{s}$

information structure $P_{\mathfrak{i}}^{t}$ at time $t$ is the mapping of $\Omega$ into $2^{\Omega}$ defined
inductively as follows:

Set $P_{i}^{0}(\omega)=P_{i}(\omega)$ . If $i=s(t)$ is a sender at $t,$ $\phi_{s(t)}^{t}$ is the message
sent by $i$ to $j=r(t)$ at $t$ . Assume that $P_{i}^{t}$ is defined. It yields the overall
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conjecture $\phi_{i}^{t}(a_{-i},\omega)=\mu([\mathrm{a}_{i}=a_{i}]|P_{i}^{t}(\omega))$ , whence we denote by $R_{i}^{t}$ the
set of all the state $\omega$ at which $i$ is raiional according to his conjecture
$\phi_{i}^{t}(\omega)$ : i.e., each $i’ \mathrm{s}$ actual action $s_{i}$ maximizes the expectation of his
pay-off function $g_{i}$ being actually played at $\omega$ when the other players
actions are distributed according to his conjecture $\phi_{i}^{t}(\omega)$ at time $t^{2}$. Let
$\Phi^{t}$ denote the partition of $\Omega$ that is decomposed into the components
$\Phi_{i}^{t}(\omega)i$ consisting of all the states $\xi$ such that $\phi_{i}^{t}(\xi)=\phi_{i}^{t}(\omega)$ . Denote
by $\mathcal{G}_{i}$ the partition $\{[\mathrm{g}_{i}=g_{i}^{t}], \Omega\backslash [\mathrm{g}_{i}=g_{i}]\}$ of $\Omega$ , and $\mathrm{R}_{i}^{t}$ the partition
$\{R_{i}^{t}, \Omega\backslash R_{i}^{t}\}$ . Let $W_{i}^{t}$ denote the join $\mathcal{G}_{i}\vee\Phi_{i}^{t}\vee \mathrm{R}_{i}^{t}$ that is the partition
of $\Omega$ generated by $\mathcal{G}_{i},$ $\Phi_{i}^{t}$ and $\mathrm{R}_{i}^{t.3}$ Then $P_{i}^{t+1}$ is defined as follows: If $i$

is a receiver of a message at time $t+1$ then $P_{i}^{t+1}(\omega)=P_{i}^{t}(\omega)\cap W_{s(t)}^{t}(\omega)$ .
If not, $P_{i}^{t+1}(\omega)=P_{i}^{t}(\omega)$ . It is of worth noting that $(P_{i}^{t})_{i\in N}$ is an RT-
information structure for every $t\in T$ .

We require that the pre-play communication process satisfies the fol-
lowing two conditions: Let $K_{i}^{t}$ be the knowledge operator corresponding
to $P_{i}^{t}$ by (1) ;

(a) For each $i\in N$ and every $t\in T$ , both $[\phi_{i}^{t}]$ and $R_{i}^{t}$ are $i’ \mathrm{s}$ truisms ’.

(b) For every $t\in T$ , the intersection $\bigcap_{i\in N}K_{i}^{t}([g_{i}]\cap[\phi_{i}^{t}]\cap R_{i}^{t})$ is not
empty.

The specification of (a) is that each player’s conjecture and $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ ratio-
nality are truism, and the specification of (b) is that each player knows
$\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ pay-off, rationality and conjecture at every time $t$ .

2.5. Remark. For every player $i$ , the sequence of correspondences $\{P_{i}^{t}|t=$

$0,1,2,$ $\ldots\}$ is stationary in finitely many rounds. Furthermore so is the
sequence of $i’ \mathrm{s}$ conjectures $\{\phi_{i}^{t}|t=0,1,2, \ldots\}$ in finitely many rounds.
That is, there is a sufficiently large time $\tau\in T$ such that for every $i$ , for
all $\omega\in\Omega$ and for all $t\geq\tau,$ $P_{i}^{t}(\omega)=P_{i}^{\tau}(\omega)$ , and therefore $\phi_{i}^{t}=\phi_{i}^{7}$ .

In fact, the sequence $\{P_{i}^{t}(\omega)|t=0,1,2, \ldots\}$ is a descending chain in
$2^{\Omega}$ . Since $\Omega$ is finite it immediately follows that there exists a time $\tau$

2Formally, letting $g_{i}=\mathrm{g}_{i}(\omega),$ $a_{i}=\mathrm{a}_{i}(\omega)$ , the expectation at time $t,$ $\mathrm{E}\mathrm{x}\mathrm{p}^{t}$ , is defined
by

$\mathrm{E}\mathrm{x}\mathrm{p}^{t}(g_{i}(b_{i}, \mathrm{a}_{-i});\omega):=$

$\sum_{a_{-:}\in A_{-}}.g_{i}(b_{i}, a_{-i})\phi_{i}^{t}(\omega)(a_{-i})$
.

Anplayer $i$

-

is said to be rational according to his conjecture $\phi_{i}^{t}(\omega)$ at $\omega$ if for all $b_{i}$

in $A_{i}$ ,
$\mathrm{E}\mathrm{x}\mathrm{p}^{t}(g_{i}(a_{i},\mathrm{a}_{-i});\omega)\geqq \mathrm{E}\mathrm{x}\mathrm{p}^{t}(g_{\mathfrak{i}}(b_{i}, \mathrm{a}_{-;});\omega)$ .

3Therefore the component $W_{i}^{t}(\omega)=[g_{i}]\cap[\phi_{i}^{t}]\cap R_{1}^{t}$. if $\omega\in[g_{i}]\cap[\phi_{i}^{t}]\cap R_{i}^{t}$ .
4That is, $K_{i}^{t}$ is defined by $K_{\mathfrak{i}}^{t}E=\{\omega\in\Omega|P_{i}^{t}(\omega)\subseteqq E\}$ .
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such that $P_{i}^{\tau}(\omega)=P_{\dot{f}}^{\tau+1}(\omega)=P_{i}^{\tau+2}(\omega)=\cdots$ for all $\omega$ . Hence for all
$t\geq\tau$ , we can observe that $\phi_{i}^{t}=\phi_{i}^{\tau}$ as required.

3. THE RESULT

We now state and prove the main result:

3.1. Theorem. Suppose that the players in a strategic form game have
a common-prior. In a pre-play communication process according to a
protocol for the game with revisions of their conjectures $\{(\phi_{i}^{t})_{i\in N}|t=$

$0,1,2,$ $\ldots\}$ , there exists a time $\tau$ such that for each $t\geq\tau$ , the n-tuple
$(\phi_{i}^{t})_{i\in N}$ induces a Nash equilibrium of the game if one of the following
conditions is true.

(i) The protocol contains no cycle.
(ii) Any two players communicate directly to each other:

Assuming the result (Fundamental lemma) we complete the proof of
the theorem: A non-empty event $H$ is said to be $P_{i}$-invariant if for every
$\xi$ of $H,$ $P_{\mathrm{i}}(\xi)$ is contained in $H$ .
3.2. Fundamental lemma. 5 Let $(P_{i})_{i\in N}$ be an $RT$-information struc-
ture with $\mu$ a common-prior. Let $X$ be an event and $q_{i}$ the player $i^{f}s$

posterior of $X_{i}$ that $is_{f}q_{i}=\mu(X|P_{i}(\omega))$ . If there is an event $H$ such
that the following two conditions (a), (b) are true, then we obtain that
$\mu(X|H)=q_{i}$ :

(a) $H$ is non-empty and it is $P_{i}$ -inva$r\cdot i$ant,
(b) $H$ is contained in $[q_{i}]:=\{\omega\in\Omega|\mu(X|P_{i}(\omega))=q_{i}\}$ . $\square$

We let $\tau$ be the time of $T$ in Remark (2.5) and $t$ an arbitrary element of
$T$ with $t\geq\tau$ . Let $\omega_{t}$ be an state that belongs to $\bigcap_{i\in N}K_{i}^{t}([g_{i}]\cap[\phi_{i}^{t}]\cap R_{i}^{t})\subseteqq$

$\bigcap_{i\in N}([g_{i}]\cap[\phi_{i}^{t}]\cap R_{i}^{t})$ . The following result is the another key to proving
Theorem (3.1):

3.3. Proposition. In a pre-play communication process of a game with
revisions of their conjectures $\{(\phi_{i}^{t})_{i\in N}|t=0,1,2, \ldots\}$ , if the protocol has
no cycle then both the marginals of the conjectures $\phi_{i}^{t}$ and $\phi_{j}^{t}$ on $A_{-i-j}$

must coincidej that is, $\phi_{i}^{t}(a_{-i-j})=\phi_{j}^{t}(a_{-i-j})$ for all $a\in A$ .

Before proceeding with, we prove that

5A similar result is implicitly appeared in D. Samet [12] (Theorem 7), and also it
is explicitly appeared with the sketchy proof in T. Matsuhisa and K. Kamiyama [8]
(Kndamental lemma). Here we shall give the detailed proof for its importance and
for the readers’ convenience.
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3.3.1. Lemma. In a rational pre-play communication process of a game
with revisions of their conjectures, if a player $i$ communicates $his/her$

message directly to another player $j$ then both the marginals of the con-
jectures $\phi_{i}^{t}$ and $\phi_{j}^{t}$ on $\mathrm{A}_{-i-j}$ must coincidej that is, $\phi_{i}^{t}(a_{-i-j})=\phi_{j}^{t}(a_{-i-j})$

for all $a\in \mathrm{A}$ .

Proof. We denote $H$ by $[\phi_{i}^{t}]\cap[\phi_{j}^{t}]$ which is not empty because $\omega_{t}$ belongs
to it. It can plainly be observed the two points: First that $H$ is contained
in $[\phi_{i}^{t}(a_{-i-j})]\cap[\phi_{j}^{t}(a_{-i-j})]$ for every $a\in A$ and secondly that $H$ is both
$P_{i}^{t}$-invariant and $P_{j}^{t}$-invariant by the definition of $P_{i}^{t}$ . In view of Funda-
mental lemma (3.2) it follows that $\mu([a_{-i-j}]|H)=\phi_{i}^{t}(a_{-i-j})=\phi_{j}^{t}(a_{-i-j})$ ,
in completing the proof. $\square$

3.3.2. Proof of Proposition (3.3). 6 We note that the protocol $\mathrm{P}\mathrm{r}$ has
the property: If $i$ and $j$ are distinct players with $\mathrm{P}\mathrm{r}(t)=(i,j)$ then
$\mathrm{P}\mathrm{r}(t+m)=(j, i)$ for some $m\in \mathbb{N}$ , because $\mathrm{P}\mathrm{r}$ has no cycle. View-
ing Lemma(3.3.1) we may assume the number of players in a pre-play
communication process is at least three.

Suppose to the contrary that there exists at least one pre-play com-
munication-process that is fair and contains no cycle with the property:
There are two distinct players $k,$ $l$ such that $\phi_{k}^{t}(a_{-k-l})\neq\phi_{l}^{t}(a_{-k-\iota})$ for
some $a\in A$ .

We can take one example such that the period of it is the minimal in
all those of such pre-play communication processes. Since the protocol
contains no cycle, there exists two players $i,$ $j$ such that $i$ communicates
$\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ message directly to $j$ and $j$ sends $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ message directly back
to $j$ . It follows bom the above lemma that the marginals of $\phi_{i}^{t}$ and
$\phi_{j}^{t}$ on $A_{-i-j}$ must coincide. By removing the pre-play communication
process between $i$ and $j$ , we can modify the example into the new pre-
play communication process whose number of players is lesser than that
of players in the preceding pre-play communication process. The new
protocol containing $k,$ $l$ as vertices is still fair and it contains no cycle
such that $\phi_{k}^{t}(a_{-k-}\iota)\neq\phi_{l}^{t}(a_{-k-}\iota)$ for some $a\in A$ . This contradicts the
minimality of the period of the ffist example, in completing the proof. $\square$

3.4. Proof of Theorem (3.1). We denote by $\Gamma(i)$ the set of all the
players that directly receive the message from $i$ on $N$ ; i.e., $\Gamma(i)=\{j\in$

$N|(i,j)=\mathrm{P}\mathrm{r}(t)$ for some $t\in T$}. For any subset $I$ of $N$ denote $a_{-J}$ $:=$

$(a_{i})_{i\in N\backslash I}$ .

6The discussion below follows the line of Krasucki [7].
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3.4.1. Proof for (i): For each $i\in N$ , we denote $[g_{i}]\cap[\phi^{t}]\cap R^{t}$ by $F_{i}$ . It
is noted that $F_{i}$ is a non-empty $P_{i}$-invariant set because $\emptyset\neq\bigcap_{i\in N}([g_{i}]\cap$

$[\phi_{i}^{t}]\cap R_{i}^{t})\subseteq F_{i}$ and because $P_{i}^{t}(\omega)\subseteq F_{\dot{f}}$ for every $\omega\in F_{i}$ by the definition.
We observe the ffist point that for each $i\in N,$ $j\in\Gamma(i)$ and for every
$a\in A$ ,

$\mu([a_{-j}]|F_{i}\cap F_{j})=\phi_{j}^{t}(a_{-j})$ : (2)
For, we note that $F_{i}\cap F_{j}\subseteq[\phi_{j}^{t}(a_{-j})]$ and $F_{i}\cap F_{j}$ is $P_{j}$-invariant because
$j\in\Gamma(i)$ . Hence by Fundamental lemma (3.2), we plainly obtain (2) as
required. Then summing over $a_{i}$ , we obtain that

$\mu([a_{i}]|F_{i}\cap F_{j})=\phi_{j}^{t}(a_{\mathfrak{i}})$ for any $a\in A$ ; (3)

and therefore that $\phi_{j}^{t}(a_{i})$ is independent of the choices of every $j\in\Gamma(i)$ .
We set the probability distribution $\sigma_{i}$ on $A_{i}$ by $\sigma_{i}(a_{i}):=\phi_{j}^{t}(a_{i})$ , and

the profile $\sigma=(\sigma_{\dot{f}})$ . We observe the second point that for every $a$ $\in$

$\prod_{i\in N}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{i})$ ,

$\phi_{i}^{t}(a_{-i})=\sigma_{1}(a_{1})\cdots\sigma_{i-1}(a_{i-1})\sigma_{i+1}(a_{i+1})\cdots\sigma_{n}(a_{n})$ :
$’$

(4)

In fact, viewing the definition of $\sigma_{i}$ we shall show that $\phi_{i}^{t}(a_{-i})=\prod_{k\in N\backslash \{i\}}\phi_{i}^{t}(a_{k})$ .
To verify this it suffices to show that for every $k=1,2,$ $\cdots$ , $n$ ,

$\phi_{i}^{t}(a_{-i})=\phi_{\dot{f}}^{t}(a_{-I_{k}})\prod_{k\in t_{k}\backslash \{i\}}\phi_{i}^{t}(a_{k})$
: (5)

We prove by induction on $k$ . For $k=1$ the result is immediate. Suppose
it is true for $k\geq 1$ . On noting the protocol is fair, we can take the
sequence of sets of players $\{I_{k}\}_{1\leq k\leq n}$ with the following properties:

(a) $I_{1}=\{i\}_{\neq\neq\neq\neq\neq\neq}\subset_{I_{2}I_{k}I_{k+1}I_{n}}\subset\cdots\subset\subset\subset\cdots\subset=N$ :
(b) For every $k\in N$ there is a player $i_{k+1} \in\bigcup_{j\in I_{k}}\Gamma(j)$ with $I_{k+1}\backslash I_{k}=$

$\{i_{k+1}\}$ .
We let take $j\in I_{k}$ such that $i_{k+1}\in\Gamma(j)$ . Set $H_{i_{k+1}}:=[a_{i_{k+1}}]\cap F_{j}\cap F_{i_{k+1}}$ .
We note that $H_{i_{k+1}}$ is not empty because $\sigma_{\mathfrak{i}}(a_{i})=\phi_{j}^{t}(a_{i})=\mu([a_{i}]|F_{i}\cap$

$F_{j})\neq^{0}>$ in viewing of (3), and we note that $H_{i_{k+1}}$ is $P_{i_{k+1}}^{t}$ -invariant which
is included in $[\phi_{i_{k+1}}^{t}(a_{-j-i_{k+1}})]$ . It immediately follows from Fbndamental
lemma (3.2) that $\mu([a_{-j-i_{k+1}}]|H_{i_{k+1}})=\phi_{-j-i_{k+1}}^{t}(a_{-j})$ . Dividing $\mu(F_{j}\cap$

$F_{i_{k+1}})$ yields that

$\mu([a_{-j}]|F_{j}\cap F_{i_{k+1}})=\phi_{i_{k+1}}^{t}(a_{-j})\mu([a_{i_{k+1}}]|F_{j}\cap F_{i_{k+1}})$ .
In viewing of (2) and (3) it follows $\phi_{j}^{t}(a_{-j})=\phi_{i_{k+1}}^{t}(a_{-j-i_{k+1}})\phi_{j}^{t}(a_{i_{k+1}})$ ;
then summing over $a_{I_{k}}$ we obtain $\phi_{j}^{t}(a_{-I_{k}})=\phi_{i_{k+1}}^{t}(a_{-I_{k}-i_{k+1}})\phi_{j}^{t}(a_{i_{k+1}})$ . It
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immediately follows ffom Proposition (3.3) that
$\phi_{i}^{t}(a_{-I_{k}})=\phi_{i}^{t}(a_{-I_{k}-i_{k+1}})\phi_{i}^{t}(a_{i_{k+1}})$ .

Viewing (4) we have just observed that

$\phi_{i}^{t}(a_{-i})=\phi_{i}^{t}(a_{-I_{k+1}})$ $\prod$ $\phi_{\mathfrak{i}}^{t}(a_{k})$ ,
$k\in I_{k+1}\backslash \{i\}$

as required.
Therefore each action $a_{i}$ with $\phi_{i}^{t}(a_{i})\neq^{0}>$ for some $j\in\Gamma(i)$ maximizes

$g_{i}$ against $\phi_{\mathfrak{i}}^{t}$ because $a_{i}=\mathrm{a}_{i}(\omega_{i}),$ $g_{i}=\mathrm{g}_{\dot{f}}(\omega_{i})$ and $\phi_{i}^{t}=\phi_{i}^{t}(\omega_{i})$ at some
state $\omega_{i}$ of $H_{i}=[a_{i}]\cap F_{i}\cap F_{j}$ . Viewing (4) we conclude that each action
$a_{\iota’}$ appearing with positive probability in $\sigma_{i}$ maximizes $g_{i}$ against the
product of the distributions $\sigma_{l}$ with $l\neq i$ . This implies that the profile
$\sigma=(\sigma_{i})_{i\in N}$ is a Nash equilibrium of $G$ , in completing the proof. $\square$

3.4.2. Proof for (ii): For each agent $i$ , we set $[g]\cap[\phi]\cap R$ by $F$ and $[\mathrm{a}_{i}=$

$a_{i}]\cap F$ by $H_{i}$ . We note that $F$ is non-empty and it is $P_{i}$-invariant because
$\omega_{t}\in F$ and because any distinct two players communicate directly to each
other. We can observe that $F$ is a common-knowledge at $\omega_{t}^{7}$ . While the
conclusion follows by the similar discussion on Theorem $\mathrm{B}$ in Aumann
and Brandenburger [1], we shall give the detail proof for completeness:

We set the probability distribution $Q$ on $A$ by $Q(a)=\mu([a]|F)$ . Let
$Q(a_{i})$ denote the marginal of $Q$ on $A_{i}$ and $Q(a_{-i})$ denote the marginal
of $Q$ on $A_{-i}$ . We define a probability distribution $\sigma_{j}$ on $A_{j}$ by $\sigma_{j}(a_{j})=$

$Q(a_{j})$ for each $j$ . Let $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ denote the support of $\sigma_{j}$ . We note that
for every agent $i$ , if $a_{j}$ belongs to $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ then $H_{j}:=[\mathrm{a}_{j}=a_{j}]\cap F$

is non-empty and it is $P_{j}$-invariant: For it follows from $\sigma_{j}(a_{j})>0$ that
$\mu([\mathrm{a}_{j}=a_{j}]\cap F)\neq 0$ and that $H_{j}$ is non-empty. On noting that both $F$

and $[a_{j}]$ are $P_{j}$-invariant, we can observe that $H_{j}$ is also $P_{j}$-invariant.
We observe the point that: For every agent $i$ , all conjectures $\phi_{j}^{t}$ with

$j\neq i$ induces the same distribution $\sigma_{i}$ on $A_{i}$ . In fact, for every agent $j$ and
every $a$ of $A$ with $a_{-j}$ of $A_{-j}$ and $a_{j}$ of $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ , we obtain by Fundamen-
tal Lemma that $\mu([a_{-j}]|H_{j})=\phi_{j}^{t}(a_{-j})$ because $H_{j}\subseteqq[\phi_{j}^{t}(a_{-j})=\phi_{j}^{t}(a_{-j})]$ .
Dividing by $\mu(F)$ yields that $\mu([a]|F)=\phi_{j}^{t}(a_{-j})\mu([a_{j}]|F)$ . This means
that

$Q(a)=\phi_{j}^{t}(a_{-j})Q(a_{j})$ . (6)

Summing up over $a_{j}$ we obtain that for every $a_{-j}$ of $A_{-j}$ ,

$Q(a_{-j})=\phi_{j}^{t}(a_{-j})$ . (7)

7An event $F$ is said to be common-knowledge at $\omega$ if $\omega$ belongs to
$\bigcap_{\{i_{1},i_{2},\cdots,i_{\mathrm{k}}\}\subseteq N,k\in \mathrm{N}}Ic_{i_{1}}^{t}K_{i_{2}}^{t}\cdots K_{i_{k}}^{t}F$.
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Therefore we can plainly observe that for each $i\neq j,$ $\phi_{j}^{t}(a_{i})=Q(a_{i})=$

$\sigma_{i}(a_{i})$ ; that is, for all $j$ the conjecture about $i$ induced by $\phi_{j}^{t}$ is the same
distribution $\sigma_{i}$ which is independent of $j$ .

By (6) and (7) it follows immediately that for every $j$ and for all $a_{j}$ of
$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j}),$ $Q(a)=Q(a_{-j})Q(a_{j})$ . Rom this we can $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\Phi$ by induction on
$j=1,2,$ $\ldots,$

$n$ that the distribution $\phi_{j}^{t}$ is the product of $\sigma_{j}$ ; that is,

$\phi_{j}^{t}(a_{-j})=\sigma_{1}(a_{1})\cdots\sigma_{j-1}(a_{j-1})\sigma_{j+1}(a_{j+1})\cdots\sigma_{n}(a_{n})$ . (8)

Therefore we can observe that each action $a_{j}$ with $\phi_{j}^{t}(a_{j})=\sigma_{j}(a_{j})>0$

for some $i\neq j$ maximizes $g_{j}$ against $\phi_{j}^{t}$ because $a_{j}=\mathrm{a}_{j}(\omega_{j}),$ $g_{j}=\mathrm{g}_{j}(\omega_{j})$

and $\phi_{j}^{t}=\phi_{j}^{t}(\omega_{j})$ at some state $\omega_{j}$ of $H_{j}$ . By (8) we conclude that $(\sigma_{j})$ is
a Nash equilibrium of $G$ , in completing the proof. $\square$

4. PROOF OF FUNDAMENTAL LEMMA

We define the equivalence $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim \mathrm{o}\mathrm{n}$ the state-space $\Omega$ by

$\xi\sim\omega$ if and only if $P_{i}(\xi)=P_{i}(\omega)$ .

We denote by $\Pi_{i}(\omega)$ the equivalence class of a state $\omega$ . Since $H$ is $P_{i^{-}}$

invariant, it immediately follows that $H$ is decomposed into a disjoint
union of components $\Pi_{i}(\xi)$ for $\xi\in H$ . We can observe that each compo-
nent $\Pi_{i}(\xi)$ is $\mu$-measurable. We set by $S$ the class of all the components
$\Pi_{i}(\xi)$ of $H$ such that $\mu(X|\Pi_{i}(\xi))=q_{i}$ , and denote by $S$ the union of all
members of $S$ .

To prove the fundamental lemma it suffices to show that $S=H$.
Suppose to the contrary that $S\neq H$ , and therefore that $S$ is properly
contained in $H$ . We observe the point that there exists a state $\omega_{0}\in H\backslash S$

such that $P_{i}(\xi)\backslash S=P_{i}(\omega_{0})\backslash S$ for every $\xi\in P_{i}(\omega_{0})\backslash S$: For if not,
noting that $P_{i}$ satisfies both (Ref) and $(\mathrm{b}\mathrm{n})$ , we can plainly obtain an
infinite sequence $\{\omega_{n}\}$ of states in $H$ such that $\omega_{n+2}$ belongs to the set
$P_{i}(\omega_{n+1})\backslash S$ that is properly contained in $P_{i}(\omega_{n})\backslash S\subseteqq H\backslash S$ for every
$n=0,1,2,$ $\ldots$ , in contradiction to the assumption that $\Omega$ is finite as
required. Therefore, we can $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\theta$ that $\Pi_{i}(\omega_{0})=P_{i}(\omega_{0})\backslash S$ , and since
$\omega_{0}\in H\subseteqq[q_{i}]$ we conclude that $\Pi_{i}(\omega_{0})\in S$ , in final contradiction. This
establishes the fundamental lemma. $\square$
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