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Abstract

This paper demonstrates that preference structure $\mathrm{m}\mathrm{a}^{\tau}\mathrm{y}$ play a pivotal
role in generating indeterminacy in stylized models of endogenous growth.
By $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ two-sector models of endogenous growth with labor-leisure
choice, we show that if the utility function of the representative family
is not additively separable between consumption and pure leisure time,
then indeterininacy may hold even if production technologies satisfy social
constant returns. We first explore local indeterminacy in the context of a
model with physical and human capital. We also examine global indeter-
minacy in a model without physical capital.

1 Introduction
The last decade has seen extensive investigations on irideterminacy of equilibrium
in the representative agent models of economic growth. Most studies on this issue
havc examined models with external increasing returns. Early studies such as
Benhabib and Farmer (1994) and Boldrin and Rustichini (1994) reveal that the
deglee of increasing returns should be sufficiently large to produce indeterminacy.
The real business cycle theorists criticize this result and they claim that empirical
validity of the business cycle theory based on indeterminacy and sunspots is
dubious.1 To cope with the criticism, the recent literature intends to find out the
conditions under $\backslash \mathrm{v}l_{1}\mathrm{i}\mathrm{c}\mathrm{h}$ indeterminacy emerges without assuming strong degree
of increasing returns to scale: see, for example, Benhabib and Farmer (1996),

Perli. (1998) and Wen (1998).

$\mathrm{s}_{\mathrm{G}\mathrm{l}\mathrm{n}\mathrm{a}\mathrm{i}1}$ addrcss:sino@rosc.rokkodai.kobe-u.ac.j1)
1Schmitt-Groh\v{c} (1997) prcscnts a dctailed exaIuiIlation of empirical plausibility of those

studies.
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The purpose of this paper is to make a contribution to such a research en-
deavour. In finding indeterminacy conditions, we put more emphasis on the role
of preference structure rather than on that of production technologies. More
specifically, we analyze two-sector endogenous growth models \‘a la Lucas (1988
and 1990) that involve sector-specific externalities and labor-leisure choice. It
is demonstrated that if the utility function of the representative family is not
additively separable between consumption and pure leisure time, then indetermi-
nacy may hold even if technologies of the final good and the new human capital
production sectors $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi$ social constant returns. We also explore models with
quality leisure time in which effective leisure units are defined as the amount of
time spent for leisure activities augmented by the level of human capital. In this
formulation, we again verify that non-separability of the utility function may play
a pivotal role in generating indeterminacy.

In the existing literature, Benhabib and Perli (1994) and Xie (1994) explore
indeterminacy in the Lucas model. Xie (1994) presents a detailed analysis of
transitional dynamics in the presence of indeterminacy by setting specific condi-
tions on parameter values involved in the model. Since he treats a model without
labor-leisure choice, indeterminacy needs strong increasing returns. Benhabib
and Perli (1994) consider endogenous labor supply and show that indeterminacy
may be observed with relatively small degree of increasing returns. They use an
additively separable utility function, so that indeterminacy stems from specific
production structure assumed in their model. In contrast to these contributions,
the main discussion of this paper, without assuming social increasing returns,
concentrates on the role of non-separable utility function.2

The central concern of this paper is closely related to two recent developments
in the literature on indeterminacy in growth models. The first are the studies on
the relation between non-separable utility and indeterminacy conducted by Ben-
nett and Farmer (1998) and Pelloni and Waldmann (1998 and 1999). Bennett and
Farmer (1998) introduce a non-separable utility function into the model of Ben-
habib and Farmer (1994) and find that a small degree of increasing returns would
be enough for indeterminacy to hold. Pelloni and Waldmann (1998 and 1999),
on the other hand, examine the role of non-separable utility in the one-sector
endogenous $\mathrm{g}\mathrm{r}\mathrm{o}\backslash \mathrm{v}\mathrm{t}\mathrm{h}$ model developed by Romer (1986). They show that indeter-
minacy can be observed in a simple $Ak$ framework if there are sufficiently strong
increasing returns. We push this line of research further to demonstrate that in
two-sector endogenous growth models with non-separable utility indeterminacy
would hold even in the absence of increasing returns.s

2See also Mitra (1998).
3In Iuonetary dynamics literature, it hae been well known that non-separable utility Inay

yicld complex dynaInics. For examplc, as shown by Obstfeld (1984) and Matsuyama (1991),
if the utility function is note separable $\mathrm{b}\mathrm{e}\mathrm{t}\backslash \mathrm{v}\mathrm{e}\mathrm{e}\mathrm{n}$ consumption and real $\mathrm{n}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{y}$ balances, there
$\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{y}$ exist multiple converging paths. In contraet, the representative agent models of growth
witbout money have usually assumed additively separable utility functions when the models
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The other development that is closely related to our analysis is made by Ben-
habib and Nishimura (1998 and 1999). These authors reveal that indeterminacy
may hold in the neoclassical multi-sector growth models with social constant re-
turns. The key condition for their finding is that relative factor intensities of the
social technologies involving externalities may be opposite to that of the private
technologies. Since the Lucas model we use assumes that the education sector
employs human capital alone, there is no factor intensity reversal between the
social and the private technologies. Therefore, the cause of indeterminacy with
social constant returns in our discussion mainly comes from the preference side
rather than ffom the production side emphasized by Benhabib and Nishimura
(1998 and 1999).4

The paper is organized as follows. Section 2 sets up the base model with phys-
ical and human capital. Section 3 characterizes the dynamics of the model and
presents local indeterminacy results. Section 4 explores models without physical
capital and finds the global indeterminacy conditions. Concluding remarks are
given in Section 5.

2 The Base Model
The analytical ffamework of this paper is essentially the same as that of Lu-
cas (1988 and 1990). We introduce sector-specific externalities into the original
model. Production side of the economy consists of two sectors. The first sector
produces a final good that can be used either for consumption or for investment
on physical capital. The production technology is given by

$Y_{1}=K^{\alpha}H_{1}^{\beta_{1}}K_{E}^{\epsilon}H_{1E}^{\phi_{1}}$, $\alpha,$ $\beta_{1}>0,$ $\alpha+\beta_{1}+\epsilon+\phi_{1}=1$ , (1)

where $Y_{1}$ denotes the final good, $K$ is stock of physical capital and $H_{1}$ is human
capital devoted to the final good production. $K_{E}^{\alpha}$ and $H_{1E}^{\phi_{1}}$ represent sector-
specific externalities associated with physical and human capital employed in this
sector. The key assumption in (1) is that the production technology is socially
constant returns to scale.

Following the Uzawa-Lucas setting, we assume that new human $\mathrm{c}‘ \mathrm{a}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}$ pro-
duction needs human capital alone and its technology is specified as

$Y_{2}=\gamma H_{2}^{\beta_{2}}H_{2E}^{\phi_{2}}$ , $\gamma,$
$\beta_{2},$ $\phi_{2}>0$ , $\beta_{2}+\phi_{2}=1$ . (2)

Here, $H_{2}$ is human capital used in the education sector, $H_{2E}^{\phi_{2}}$ stands for sector
specific externalities. Again, the production technology of new human capital
exhibits social constant returns.
consider endogcnous labor supply..

4 Mino (1999b) $\mathrm{r}\mathrm{e}$-considcrs Benhabib-Nishinlura proposition by using a two sector endoge-
nous growth Inodcl in wbich both the final good and tlle new human capital producing sectors
employ physical as $\backslash \mathrm{v}\mathrm{e}\mathrm{l}\mathrm{l}$ as human $\mathrm{c}\mathrm{a}_{1^{)}}\mathrm{i}\mathrm{t}\mathrm{a}1$ . It is shown that Benhabib and Nishimura result can
be verified in the context of endogenous growth as wcll.
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It is assumed that the total time available to the representative household is
unity. Thus denoting the time length devoted to leisure by $l\in[0,1]$ , the full
employment condition for human capital is

$H_{1}+H_{2}=(1-l)H$ ,

where $H$ is the total stock of human capital. As a result, if we define $v=$

$H_{1}/H$ , accumulation of physical and human capital respectively given by

$\dot{K}=K^{\alpha}(vH)^{\beta_{1}}K_{E}^{\epsilon}H_{1E}^{\phi_{1}},$ $-C-\delta K$ , $0<\delta<1$ , (3)

$\dot{H}=\gamma[(1-v-l)H]^{\beta_{2}}H_{2E}^{\phi_{2}}-\eta H$ , $0<\eta<1$ . (4)

In the above, $C$ denotes consumption, and $\delta$ and $\eta$ are the depreciation rates of
physical and human capital.

The objective function of the representative household is

$U= \int_{0}^{\infty}u(C, l)e^{-\rho t}dt$, $\rho>0$ ,

where the instantaneous utility function is given by the following:5

$u(C, l)=\{$
$\frac{[C\Lambda(l)]^{1-\sigma}-1}{1-\sigma}$ , $\sigma>0,$ $\sigma\neq 1$ ,
$\ln C+\ln\Lambda(l)$ , for $\sigma=1$ .

(5)

Function $\Lambda(l)$ is assumed to be monotonically increasing and strictly concave in
$l$ . We also assume that

$\sigma\Lambda(l)\Lambda’’(l)+(1-2\sigma)\Lambda’(l)^{2}<0$ . (6)

This assumption, along with strictly concavity of $\Lambda(l)$ , ensures that $u.(C, l)$ is
strictly concave in $C$ and $l$ .

The representative household maximizes $U$ subject to (3), (4) and given initial
levels of $K$ and $H$ by controlling $C,$ $v$ and $l$ . In so doing, the household takes se-
quences of external effects, $\{K_{E}(t),$ $H_{1E}^{\phi_{1}}(t),$ $H_{2E}^{\phi_{2}}(t)\}_{t=\mathit{0}}^{\infty}$ , as given. The current
value Hamiltonian for the optimization problem can be set as

$\mathcal{H}$ $=$
$\frac{[C\Lambda(l)]^{1-\sigma}-1}{1-\sigma}+p_{1}[K^{\alpha}(vH)^{\beta_{1}}I\zeta_{E}^{\epsilon}H_{1E}^{\phi_{1}},$ $-C-\delta K]$

$+p_{2}[\gamma(1-v-l)^{\beta_{2}}H^{\beta_{2}}H_{2\mathcal{B}}^{\phi_{2}}-\eta H]$ ,

\={o}As is well $\mathrm{k}\mathrm{I}\mathrm{l}\mathrm{O}\backslash \mathrm{v}\mathrm{n}$ , if the utility function involves pure leisure $\mathrm{t}\mathrm{i}\mathrm{n}$) $\mathrm{e}$ as an argument, the
functional form should be (5) in order to define feasible balanced-growth equilibrium.
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where $p_{1}$ and $p_{2}$ are respectively denote the prices of consumption good and new
human capital. Under given sequences of external effects, the necessary conditions
for an optimum are the following:

$C^{-\sigma}\Lambda(l)^{1-\sigma}=p_{1)}$ (7)

$C^{1-\sigma}\Lambda’(l)\Lambda(l)^{-\sigma}=\gamma p_{2}\beta_{2}(1-v-l)^{\beta_{2}-1}H^{\beta_{2}}H_{\dot{2}E}^{\phi_{2}}$ , (8)

$p_{1}\beta_{1}K^{\alpha}v^{\beta_{1}-1}H^{\beta_{1}}K_{E}^{\epsilon}H_{1E}^{\phi_{1}}=\gamma p_{2}\beta_{2}(1-v-l)^{\beta_{2}-1}H^{\beta_{2}}H_{2E}^{\phi_{2}}$, (9)

$\dot{p}_{1}=p_{1}[\rho+\delta-\alpha K^{\alpha-1}(vH)^{\beta_{1}}K_{E}^{\epsilon}H_{1E}^{\phi_{1}}]$ , (10)

$\dot{p}_{2}$ $=p_{2}[\rho+\eta-\gamma\beta_{2}(1-v-l)^{\beta_{2}}H^{\beta_{2}-1}H_{2E}^{\phi_{2}}]$ (11)

$-p_{1}[.\beta_{1}K^{\alpha-1}v^{\beta_{1}}H^{\beta_{1}-1}K_{E}^{\epsilon}H_{1E}^{\phi_{1}}]$ ,

together with the transversality conditions:

$\lim_{tarrow\infty}e^{-\rho t}p_{1}K=0$ ; $\lim_{tarrow\infty}e^{-\rho t}p_{2}H=0$ . (12)

3 Local Indeterminacy

3.1 Dynamic System

For analytical simplicity, the following discussion assumes that $\Lambda(l)$ is specified
as

$\Lambda(l)=\exp(\frac{l^{1-\theta}-1}{1-\theta})$ , $\theta>0,$ $\theta\neq 1$ , (13)

where $\Lambda(l)=l$ for $\theta=1$ . Given this specification, when $\sigma=1$ , the instantaneous
utility function becomes

$u(C, l)= \ln C+\frac{l^{1-\theta}}{1-\theta}$

It is to be noted $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}$ , under tllis spccification, condition (6) reduces to

$(1-\sigma)l^{1-\theta}-\sigma\theta<0$ . (14)
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If we assume that the number of firms is normalized to one, in equilibrium
it holds that $K_{E}(t)=K(t)$ and $H_{iE}(t)=H_{i}(t)$ for all $t\geq 0$ . Thus, keeping in
mind that $\alpha+\beta_{1}+\in+\phi_{1}=1$ and $\beta_{2}+\phi_{2}=1$ , from (7) and (8) we obtain

$\frac{C\Lambda’(l)}{\Lambda(l)}=\frac{p_{2}\gamma\beta_{2}H}{p_{1}}$ .

Given (13), the above becomes

$C=(p_{2}/p_{1})\gamma\beta_{2}l^{\theta}H$ . (15)

Letting $x=K/vH,$ (9) is written as

$\frac{p_{2}}{p_{1}}=\frac{\beta_{1}}{\gamma\beta_{2}}x^{\alpha+\epsilon}$ . (16)

Equations (15) and (16) give $C=\beta_{1}l^{\theta}x^{\alpha+\epsilon}H$ . Hence, using $x=K/vH$, the
commodity market equilibrium conditions (3) and (4) yield the following growth
equations of capital stocks: ,

$\frac{\dot{K}}{K}$

$=$
$x^{\alpha+\epsilon-1}- \frac{\beta_{1}l^{\theta}x^{\alpha+\mathrm{g}}}{k}-\delta$, (3’)

$\frac{\dot{H}}{H}$

$=$ $\gamma(1-l-\frac{k}{x})-\eta$ (4’)

On the other hand, (10) gives the following:

$\dot{p}_{1}/p_{1}=\rho+\delta-\alpha x^{\alpha+\epsilon-1}$ , (9’)

Additionally, in view of (9), equation (11) becomes

$\dot{p}_{2}/p_{2}=\rho+\eta-\gamma\beta_{2}(1-l)$ . (10’)

As a result, by use of $(9’),(10’)$ and (16), $x$ changes according to

$\frac{\dot{x}}{x}=\frac{1}{\alpha+\in}[\eta-\delta+\alpha x^{\alpha+\epsilon-1}-\beta_{2}\gamma(1-l)]$ . (17)

Under (13), equation (6) is given by

$C^{-\sigma}l^{-\theta} \exp((1-\sigma)\frac{l^{1-\theta}-1}{1-\theta})=p_{1}$ .

Tbus substituting (6) into (14) and $\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{I}$ tilne derivativcs, we obtain

$[(1- \sigma)l^{1-\theta}-\sigma\theta]\frac{i}{i}=(1-\sigma)\frac{\dot{p}_{1}}{p_{1}}+\sigma(\frac{\dot{p}_{9}\sim}{p_{2}}+\frac{\dot{H}}{H})$ . (18)
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Note that if the utility function is additively separable $(\sigma=1)$ , the above becomes

$\frac{i}{l}=-\frac{1}{\theta}(\frac{\dot{p}_{2}}{p_{2}}+\frac{\dot{H}}{H})$ .

Namely, the optimal change in leisure time is negatively proportional to the
change in aggregate value of human capital.

Using (4’), (9’) and (10’), equation (18) yields the dynamic equation of leisure:

$\frac{i}{l}=\triangle(l)\{\alpha(1-\sigma)x^{\alpha+\epsilon-1}+\sigma\gamma\frac{k}{x}-\sigma\gamma(1-\beta_{2})(1-l)-\rho-(1-\sigma)\delta\}$ ,

(19)

where $\triangle(l)=[\sigma\theta-(1-\sigma)l^{1-\theta}]^{-1}$ , which has a positive value under the as-
sumption of (14). Finally, (3’) and (4’) mean that the dynamic equations for the
behavior of $k(=K/H)$ is given by

$\frac{\dot{k}}{k}=x^{\alpha+\epsilon-1}-\frac{\beta_{1}l^{\theta}x^{\alpha+6}}{k}-\delta+\eta-\gamma(1-l-\frac{k}{x})$ . (20)

Consequently, we find that (17), (19) and (20) constitute a complete dynamic
system with respect to $k(=K/H),$ $x(=K/vH)$ and $l$ .

3.2 Indeterminacy Conditions
Since the complete dynamic system derived above is highly nonlinear, the precise
analytical conditions for generating indeterminacy are hard to obtain. The com-
mon strategy to deal with such a situation is to find numerical examples exhibiting
indeterminacy by setting parameter values at empirically plausible magnitudes.
In the following, rather than displaying the results of numerical experiments, we
impose specific conditions on parameters in order to obtain analytical conditions
for indeterminacy in a clearer manner. Following Xie’s (1994) idea, we focus on
the special case where $\sigma=\alpha$ . As shown below, this condition enables us to reduce
the three-dimensional dynamic system to a two-dimensional one. Additionally,
we also assume that $\delta=\eta$ , that is, physical and human capital depreciate at the
identical rate. This a.ssulnption is made only for notational simplicity and the
main results obtained below are not $\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{e}\iota\cdot \mathrm{e}\mathrm{d}$ when $\delta\neq\eta$ .

The assumption $\sigma=\alpha$ simplifies the argument as the following can be held:

Lemma 1 If $\sigma=\alpha$ and $\theta=1$ , the $consumption- ph\uparrow/sical$ capital ratio, $C/K$ ,
stays $const,ant$ over time.
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Proof. Let us define $z=\beta_{1}x^{\alpha+\in}l/k(=C/K)$ . If $\sigma=\alpha$ and $\theta=1$ , then (19)
becomes

$\frac{i}{l}=x^{\alpha+\epsilon-1}-z-\gamma(1-l)+\gamma\frac{k}{x}$ .

Therefore, by (19) and (20) we obtain:

$\frac{\dot{z}}{z}$ $=$ $(\alpha+\in)+-\overline{x}\overline{l}\overline{k}$

$\dot{x}$
$i$ $\dot{k}$

$=$ $z- \frac{\alpha+(1-\alpha)\delta}{\alpha}$ .

Since this system is completely unstable, on the perfect-foresight competitive
equilibrium path the following should hold for all $t\geq 0$ :

$z(= \frac{C}{K})=\frac{\rho+(1-\alpha)\delta}{\alpha}$ .

Hence, consumption and physical capital change at the same rate even in the
transition process. $\blacksquare$

The above result means that on the equilibrium path $x$ is related to $k$ and $l$

in such a way that

$x=(( \frac{\alpha+(1-\alpha)\delta}{\alpha})\frac{k}{l})^{\frac{1}{\alpha+\epsilon}}$

Substituting this into (19) and (20), we obtain the following set of differential
equations:

$\frac{\dot{k}}{k}=(\lambda\frac{k}{l})^{1-\frac{1}{\alpha+\epsilon}}+\frac{\gamma}{\lambda}(\lambda\frac{k}{l})^{1-\frac{1}{\alpha+\epsilon}}l-\gamma(1-l)-\lambda$,

$\frac{i}{l}=(1-\alpha)(\lambda\frac{k}{l})^{1-\frac{1}{\alpha+e}}+\frac{\gamma}{\lambda}(\lambda\frac{k^{\wedge}}{l})^{1-\frac{1}{\alpha+e}}l-\gamma(1-\beta_{2})(1-l)-\lambda$,

where $\lambda=[\rho+(1-\alpha)\delta]/\alpha$ . To simplify further, denote $q=(\lambda k/l)^{1-\frac{1}{\alpha+\epsilon}}$ . Then
the above system may be rewritten in the following manner:

$\frac{\dot{q}}{q}=(\frac{1-\alpha-\epsilon}{\alpha+\in})[\gamma\beta_{2}(1-l)-\alpha q]$ , (21)

$\frac{i}{l}\backslash =(1-\alpha+\frac{\gamma}{\lambda}l)q-\gamma(1-\beta_{2})(1-l)-\lambda$ . (22)

Under thc conditions $\backslash \mathrm{v}l$)$\mathrm{e}\mathrm{r}\mathrm{e}\sigma=\alpha$ and $\theta=1$ , this system is equivalent to the
original dynamic equations given by (17), (19) and (20).

By inspection of (21) and (22), we find the following results:
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Lemma 2 If the dynamic system consisting of (21) and (22) has a stationary
point with a saddle-point property, then the $\mathit{0}7\dot{\nu}ginal$ dynamic system exhibits local
dete$7minacy$. If a stationary point of (21) and (22) is a sink, then the $\mathrm{o}r\dot{\mathrm{v}}ginal$

system involves local indeteminacy.

Proof. If (21) and (22) exhibit a saddle point property, there (at least)
locally exists a one-dimensional stable manifold around the steady state. Hence,
the relation between $q$ and $l$ on the stable manifold can be expressed as $q=q(l)$ .
By displaying phase diagrams of (21) and (22), it is easy to confirm that if the
stationary point is saddle, the stable arms has a negative slopes. By definition of
$q$ , it holds that

$k=lq(l)^{\frac{\alpha+\epsilon}{\alpha+\epsilon-1}}$ (23)

Since on the saddle path $q$ is negatively related to $l$ , the right hand side of the
above monotonically increases with $l$ . This implies that under a given initial level
of $k$ , the initial value of $l$ is uniquely determined to satisfy (23). Thus converging
path in the original system with respect to $(k, x, l)$ is uniquely given as well. In
contrast, if the stationary point of (21) and (22) is a sink, there are an infinite
number of converging paths in $(q, l)$ space Thus we cannot specip a unique
initial values of $l$ and $x$ under a given initial level of $k$ . $\blacksquare$

As for the uniqueness of balanced-growth equilibrium, we find the following
conditions:

Lem.ma 3 (i) There is a unique, feasible balanced growth equilib$7\dot{?}um$, if and only
if

$\gamma(\beta_{2}-\alpha)>\rho+(1-\alpha)\delta$ . (a)

(ii) There may exist dual balanced-growth equilibria, if
$\gamma(\beta_{2}-\alpha)<\rho+(1-\alpha)\delta$ . (b)

Proof. Condition $\dot{q}=0$ in (21) yields $q=(\gamma\beta_{2}l\alpha)(1-l)$ . Thus conditions
$i=\dot{q}=0$ are established if the following equation holds:

$\xi(\mathit{1})=\frac{\gamma\beta_{2}}{\alpha}(1-\alpha+\frac{\gamma}{\lambda}l)(1-l)-\gamma(1arrow\beta_{2})(1-l)-\lambda=0$.

Note that

$\xi(0)$ $=$ $(\gamma\beta_{2}/\alpha)(1-\alpha)-\gamma(1-\beta_{2})-\lambda$

$=$ $(1/\alpha)[\gamma(\beta_{2}-\alpha)-\rho-(1-\alpha)\delta]$

$\xi(1)$ $=$ $-(1/\alpha)[\rho+(1-\alpha)\delta]<0$
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If condition (a) is met, $\xi(0)>0$ and $\xi(l)$ is monotonically decreasing with $l$ for
$l\in[0,1]$ . Hence, $\xi(l)=0$ has a unique solution in between $0$ and 1. If (b) is
satisfied, then $\xi(0)<0$ . Since $\xi(l)=0$ is a quadratic equation, if $\xi(l)=0$ has
solutions for $l\in[0,1]$ , there are two solutions. $\blacksquare$

Using the results shown above, we obtain the indeterminacy results for the
special case of $\sigma=\alpha$ :

Proposition 1 Suppose that $\sigma=\alpha$ and $\theta=1$ . Then the balanced-growth
equilib$7\dot{\eta}$um is locally indeterminate, if and only if the following conditions are
satisfied:

$(1- \beta_{2}-\frac{\beta_{2}(\alpha+\epsilon-1)}{\alpha+\in})\overline{l}+\frac{\beta_{2}(\alpha+\epsilon-1)}{\alpha+\in}+\frac{\rho+(1-\alpha)\delta}{\alpha}<0$ , (24)

$\beta_{2}-\alpha+\frac{\alpha\gamma\beta_{2}}{\rho+(1-\alpha)\delta}(2\overline{l}-1)>0$ , (25)

where $\overline{l}$ denotes the steady-state value of leisure time.

Proof. Linearizing (21) and (22) at the stationary point and using the steady
state conditions that satisfy $i=\dot{q}=0$ , we find that signs of the trace and the
determinant of the coefficient matrix of the linearized system fulfill:

sign (trace)

$=$ sign $\{(1-\beta_{2}-\frac{\beta_{2}(\alpha+\epsilon-1)}{\alpha+\epsilon})\overline{l}+\frac{\beta_{2}(\alpha+\epsilon-1)}{\alpha+\epsilon}+\frac{\rho+(1-\alpha)\delta}{\alpha}\}$ ,

sign $( \det)=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\{\beta_{2}-\alpha+\frac{\alpha\gamma\beta_{2}}{\rho+(1-\alpha)\delta}(2\overline{l}-1)\}$ .

Therefore, if (24) and (25) hold, then the trace and the determinant respectively
have negative and positive values. This means that the linearized system has two
stable eigenvalues, and thus in view of Lemma 2, the balanced growth equilibrium
is locally indeterminate. $\blacksquare$

The above result implies the following fact:

Corollary 1 If the system has dual steady states and if (24) is fulfilled, then
one of the balanced-growth equilibria is locally dete$7minate$, while the other is
locally $indete\tau\cdot 7ninate$ .

Proof. Since there are two stationary points, the determinant of the co-
efficient matrix changes its sign depending on which steady state is chosen to
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evaluate each element of the matrix. Thus if (24) is held, one of the balanced-
growth equilibrium satisfies (25) as well, so that it is locally indeterminate. This
means that the other balanced growth equilibrium is a saddle point so that from
Lemma 2 it is determinate. $\blacksquare$

Since the indeterminacy conditions displayed above contains an endogenous
variable, $\overline{l}$, examination of numerical examples would be helpful. As an example,
suppose that $\alpha=\sigma=0.6,$ $\epsilon=0.1,$ $\beta_{2}=0.8,$ $\rho=0.05,$ $\delta=\eta=0.04$ and
$\gamma=0.18$ . These examples $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}^{\gamma}$ condition (b) in Lemma 3. Actually, equation
$\xi(l)=0$ yields two feasible solutions: $\overline{l}=$ 0.125 and 0.735. The corresponding
growth rates in the steady state are 0.0034 and 0.082, respectively.6 In this
example, we can verify that (24) and (25) are met when $\overline{l}=$ 0.735, while (25)
does not hold when $\overline{l}=$ 0.125. Consequently, the balanced growth equilibrium
with a larger amount of leisure (so the low rate of economic growth) is locally
indeterminate. In contrast, the high growth equilibrium is locally determinate.

We have assumed that $\sigma=\alpha<1$ , the utility function is not separable by
the assumption. As demonstrated by Ladr\’on-de-Guevara et al. (1999), the pure
leisure time model may contain multiple balanced growth equilibria even if we
assume that there are no externalities and that utility function is separable.7
This means that multiple steady states and indeterminacy may be established
in our model even in the case that $\sigma=1$ . However, under plausible parameter
values, we may confirm that indeterminacy is $\mathrm{h}\mathrm{a}.\mathrm{r}\mathrm{d}$ to obtain when we assume a
separable utility.

4 Global Indeterminacy in a Model without Phys-
ical Capital

In this section we briefly examine a model without physical capital. Although the
endogenous growth model that does not $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}’ \mathrm{l}\mathrm{v}\mathrm{e}$ physical capital may lack reality,
it is helpful for analyzing the global behavior of the economy. The production
and preference structure are the same as before. Only difference is that there is
no physical capital: both final good and new human capital producing sectors
use human capital alone. Since the final good is used only for consumption, the
market equilibrium condition for the first good is

$C=(vH)^{\beta_{1}}H_{1E}^{\phi_{1}},$ $\beta_{1}\in(0,1)$ , $\phi_{1}>0$ . (26)

The production function of new human capital is (2) in the base model.

6Note that the transversality conditions (12) is cxpressed a.s $\overline{g}(1-\sigma)<\rho$ in the steady
state. Thus our exalnpl.e does not violate the transversality condition.

7See also de Heck (1998) who explores multiplicity of the steady state in the neoclassical
optilnal growth model involving endogenous labor supply.
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We first consider a model with pure leisure time where the utility function

is given by (12). Again, we assume that the consumption good sector has a
socially constant returns to scale technology so that $\beta_{1}+\phi_{1}=1$ . The Hamiltonian
function for the household’s optimization problem is

$\mathcal{H}$ $=$
$\frac{[C\Lambda(l)]^{1-\sigma}-1}{1-\sigma}+p_{1}[(vH)^{\beta_{1}}H_{1E}^{\phi_{1}},$ $-C]$

$+p_{2}[\gamma(1-v-l)^{\beta_{2}}H^{\beta_{2}}H_{2E}^{\phi_{2}}-\eta H]$ ,

where $p_{1}$ is the price of the consumption good. Noting that $\beta_{1}+\phi_{1}=\beta_{2}+\phi_{2}=$

$1$ and that $H_{1E}=vH$ and $H_{2E}=(1-l-v)H$ for all $t\geq 0$ , the necessary

conditions for optimization are:

$C^{-\sigma} \exp((1-\sigma)\frac{l^{1-\theta}-1}{1-\theta})=p_{1}$ , (27)

$C^{1-\sigma}l^{-\theta} \exp((1-\sigma)\frac{l^{1-\theta}-1}{1-\theta})=\gamma p_{2}\beta_{2}H$, (28)

$\beta_{1}p_{1}=\dot{\gamma}\beta_{2}p_{2}$ , (29)

$\dot{p}_{2}=p_{2}[\rho+\eta-\gamma\beta_{2}(1-l)]$ . (30)

Additionally, the transversality condition is given by $\lim_{tarrow\infty}p_{2}e^{-\rho t}H=0$ .
Using (27), (28) and (29), we obtain

$C=\beta_{1}l^{\theta}H$ . (31)

On the other hand, in the presence of socially constant returns to scale, (26)

becomes $C=vH$. Thus (31) gives the relation between $l$ and $v$ :

$v=\beta_{1}l^{\theta}$ . (32)

Substituting (31) into (28) and $\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}\backslash$

.
logarithmic differentiation with respect to

time, we obtain

$- \sigma\theta\frac{i}{l}-\sigma\frac{\dot{H}}{H}.+(1-\sigma)l^{1-\theta_{\frac{i}{l}=\frac{\dot{p}_{2}}{p_{2}}}}$ .

Accordingly, from (4’), (30) and (32), the above yields a complete dynamic equa-

tion of leisure time $l$ :

$i=l\triangle(l)[\gamma(\beta_{2}-\delta)(1-l)+\sigma\gamma\beta_{1}l^{\theta}-\rho-(1-\sigma)\eta]$ , (33)

where $\triangle(l)=\sigma\theta-(1-\sigma)l^{1-\theta}>0$ by the concavity assumption. Equation (33)

sumlnarizes the entire model. Since the initial level of $l$ is not specified, if (33) is

stable around the stationary point, local indeterminacy emerges.
Inspection of (33) reveals the following results:
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Lemma 4 (i) There is a unique, balanced-growth equilibrium, if either (i-a) or
(i-b) below is satisfied:

$\sigma$ $>$ $\max\{\beta_{2},$ $\frac{\rho+\eta}{\gamma\beta_{1}+\eta}\}$ , (i-a)

$\sigma$ $<$ $\min\{\beta_{2},$ $\frac{\rho+\eta}{\gamma\beta_{1}+\eta}\}$ . (i-b)

(ii) There may exist dual balanced-growth equilib$7\dot{\mathrm{v}}a$, if either (ii-a) or (ii-b) is
satisfied:

$\frac{\rho+\eta}{\gamma\beta_{2}+\eta}$ $<$ $\sigma<\beta_{2},$ $\gamma(\beta_{2}-\sigma)>\rho+(1-\sigma)\eta$ and $\theta<1_{i}$ (ii-a)

$\frac{\rho+\eta}{\gamma\beta_{2}+\eta}$ $<$ $\sigma<\beta_{2},$ $\gamma(\beta_{2}.-\sigma)-<\rho+(1-\sigma)\eta$ and. $\theta\geq|1$ . (ii-b)

Proof. Define

$\mu(l)-arrow\gamma(\beta_{2}-\sigma)(1-l)+\sigma\beta_{1}l^{\theta}-[\rho+(1-\sigma)\eta]$ .

The balanced growth equilibrium level of $l$ is a solution of $\mu(l)=0$ , Note that

$\mu(0)$ $=$ $\gamma(\beta_{2}-\sigma)-[\rho+(1-\sigma)\eta]$ ,
$\mu(1)$ $=$ $(\gamma\beta_{1}+\eta)\sigma-(\rho+\eta)$ .

If condition (i-a) is held, it is easy to see that $\mu(l)$ is monotonically increasing
and $\mu(1)>0>\mu(0)$ . Thus $\mu(l)=0$ has a unique solution $l\in(0,1)$ . In the
case of condit.ion (i-b), we see that $\mu.(0)>0.>\mu(1)$ and $\mu(l)$ is monotoni-
cally decreasing. Hence, $\mu(l)=0$ has only one solution in between $0$ and 1.
If $(\rho+\eta)/(\gamma\beta_{2}+\eta)<\sigma<\beta_{2}$ , then $\mu(0)$ and $\mu(1)$ have the same sign. This
means that if the balanced-growth path exists, there are at least two equilibria.
Under conditions (ii-a), $\mu(0)<0,$ $\mu(1)<0$ and $\mu(l)$ is strictly convex in $l$ .
Therefore, if $\mu(l)=0$ has solutions, there are two solutions in between $0$ and 1.
Conversely, under conditions (ii-b), we find that $\mu(0)>0,$ $l^{l}(1)>0$ and $\mu(l)$ is
strictly concave, and hence $\mu(l)=0$ also have dual solutions for $l\in(0,1)$ . $\blacksquare$

Those results immediately yield the following proposition:

Proposition 2 Given condition (i-a), the balanced-growth equilib$7^{\cdot}ium$ is
globally $determinate_{2}$ while it is $globall?/indete7minate$ if condition (i-b) holds. If
conditions (ii-a) $a7^{\backslash }e$ satisfied, the balanced-growth equilibriu$7\gamma\iota$ with a lower level
of $l$ is loca,$lly$ indete$7minate$, while $t,he$ other with a higher level of $l$ is locally
determinate. In case of (ii-b), $tl\iota e$ opposite results hold.

Proof. Since condition (i-a) $\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{u}\iota\cdot \mathrm{e}\mathrm{s}\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}di/dl>0$ for all $l\in[0,1]$ , the
$\mathrm{b}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{d}- \mathrm{g}\mathrm{r}\mathrm{o}\backslash \mathrm{v}\mathrm{t}\mathrm{l}\mathrm{l}$equilibriuln is globally dcterminate. Given condition (i-b), $di/dl<$
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$0$ for all $l\in[0,1]$ , so that global indeterminacy is established. In a similar man-
ner, it is easy to see that results for the cases of (ii-a) and (ii-b) can be held.

$\blacksquare$

Notice that If the utility function is additively separable between consumption
and leisure (a $=1$ ), only condition (i-a) can be satisfied. Therefore, we never
observe indeterminacy if we assume a separable utility function.

5 Concluding Remarks

This paper has demonstrated that preference structure may play a pivotal role
in generating indeterminacy in endogenous growth models. Unlike the existing
studies which explore the role of non-separable utility function in growth models,
we have demonstrated that in the two-sector endogenous growth setting \‘a la
Lucas (1988), indeterminacy may emerge even in the absence of social increasing
returns to scale. Since our model precludes the possibility of reversal of social
and private factor intensity conditions emphasized by Benhabib and Nishimura
(1998 and 1999), indeterminacy mainly stems from preference structure.

In this paper we have assumed that leisure activity of the representative house-
hold depends on pure time alone. An alternative formulation, which was sug-
gested by Becker (1975), is that leisure activities need human capital as well8. In
a longer version of the present paper (Mino 2000), it is demonstrated that if effec-
tive leisure depends on the level of human capital as well as on time, the economy
has a unique balanced-growth equilibrium.9 In this setting indeterminacy will not
emerge under social constant returns. In the presence of social increasing returns,
non-separability of the utility function, however, may be relevant for generating
indeterminacy. These results suggest that not only form of the utility function
but also specification of leisure activities would be relevant for the emergence of
indeterminacy. Therefore, if we consider leisure as a home good produced by a
more general technology than that we have assumed in the paper, we may have
a larger possibility of indeterminacy under weaker restrictions on the production
technology.

8A simple utility function that captures this idea is

$u(c, ll \iota)=\frac{(\mathrm{c}^{\gamma}(lh)^{1-\gamma})^{1-\sigma}-1}{1-\sigma}$

.

9Ortigueira (1998) presents a detailed analysis of this class of model that does not involve
externalities (so that indeterminacy will not cmerge).
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