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Abstract
In this paper, we consider general equilibrium models with public utilities which
produce public goods or private goods. In the models, the case of increasing returns is
not a priori excluded. The products of the public utilities are allocated to the consumers
according to rules that depend on information communicated to the public utilities. We
present a cost allocation rule for which equilibrium allocations are always Pareto optimal.
Moreover, the message spaces of the mechanisms are of finite dimension.

1 Introduction

It is now widely recognized that, in economies with nonconvex production sets, marginal
cost pricing does not necessarily leads to a Pareto optimal allocation. Recently, in-
a class of economies with nonconvex production sets, Kamiya [1995] and Moriguchi
[1996] presented decentralized mechanisms (nonlinear pricing rules) which determine
Pareto optimal allocations. However, the production sets in their models are somewhat
restrictive. In Moriguchi [1996], nonconvexity is solely caused from fixed costs, although
joint production is allowed. In Kamiya [1995], each firm produces single output, although
wide classes of nonconvexities are allowed. The main purpose of this paper is to present
a pricing rule for firms with general nonconvex production sets, which determines Paleto
optimal allocations.

On the other hand, in economies with public goods in which the case of increasing
returns is not a priori excluded, Kaneko [1977] and Mas-Colell and Silvestre {1989] pre-
sented cost allocation rules which determine Pareto optimal allocations. We also show
that our rule is applicable to their models, i.e., the equilibrium allocations are always
Pareto optimal if the firms adopt our rule. Moreover, the message space of our model is of
finite dimension, although Kaneko, Mas-Colell, and Silvestre directly used cost functions
which may not be parametrized by a finite number of parameters.

It is now well known that marginal cost pricing just meets the first order necessary -
condition for Pareto optimality. Then it is natural to investigate the following two
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problems:

1. What additional conditions guarantee Pareto optimality of marginal cost pricing
equlilibria?

2. What pricing rules lead the economy to Pareto optimal allocations?

Dierker [1986] and Quinzii [1991] investigated the first problem. They showed that
marginal cost pricing equilibria are Pareto optimal if the elasticities of demand function
and of the cost function satisfy conditions which guarantee that social indifference curve,
at an equilibrium, does not ”cut inside” the production set.

~ The second problem is rather involved. Since marginal cost pricing rule is a linear
pricing rule and it is the first order necessary condition for Pareto optimality, then any
linear pricing rules, except marginal cost pricing, satisfy even the first order condition for
Pareto optimality. Thus any linear pricing rules do not lead the economy to Pareto opti-
mal allocations. In order to overcome the difficulty, Kamiya [1995] and Moriguchi [1996]
investigated nonlinear pricing rules. They showed that if the firms follow their nonlinear
pricing rules, then the equilibrium allocations are always Pareto optimal. However, their
pricing rules are only applicable to some special cases. The main purpose of this paper
is to extend their approach to general cases.

It is worthwhile noting that the equilibria in our model have similar properties as
Roemer and Silvestre [1993]’s proportional solutions. However, unlike our approach,
their model does not have an explicit mechanism to achieve the solution.

The paper is organized as. follows. First, in section 2, we present our model and
functions used for our mechanisms. Section 3 is devoted to an economy with public goods.
We present a mechanism for the economy and prove the Pareto optimality of equilibria.
Moreover, in the case of decreasing returns, we prove the existence of equilibria. In
section 4, we present a mechanism for an economy with private goods and prove the
Pareto optimality of equilibria. The existence of equilibria is proved in the case of
decreasing returns. ' '

2 . The Basic’ Model

We consider an economy with #; +/, goods, where ¢; > 1'and ¢, > 1. The first /; goods,
called P goods, are produced by firms with nonconvex production sets and the other £,
goods, called C goods, are not produced. There are n firms and the j-th firm produces
the n(j — 1) + 1-th, - - -, n(j)-th goods, where 3%, n(y) = 1, n(y) 2 1,y =1, -+, n,
and n(0) = 0. That is joint production is allowed and each P good is produced just by
one firm. Each firm produces its outputs using C' goods, i.e., the j-th firm has an input
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requirement set correspondence 7; : R"fr' — P‘” That is, for a given output vector
y; € Rl n) , 1;(y;) 1s a set of inputs (vectors of C' goods) from which the firm can produce
Y Th€l€ are m > 2 consumers and the i-th consumer has the consumption set Rf,_‘“’,
an initial endowment w; € RO and a utility function w; : Ri‘”g = R,1=1,

The notations are as follows. For a vector z € R4+, 7 = (2, .- -, 41) and
2= (2e,41, "+ Ze,46, ). Fore € R? and f € R, e- [ denotes their inner product. For
a set B in the Euclidean space, int B denotes the interior of B in the space.

We use the following assumptions.

Assumption Al: (i) Fori =1, ---, m, w; is strictly increasing, i.e., u;(2;) > u; ( 4) f01
Tig 2> T, k=1, -, by + £y, with at least one strict inequality. (i ) For: =1, -, m,
w.,'k:O, v = ,--~,.€1,a.1ldwik,>0,k=/,’1—|—1, "',(/1+€2.

Assumption A2: For j =1, ---, n, (i) 5, is a contmuous correspondence for y; €
R_|_ ’)\{0} and is nonempty convex valued for y; € R+ , (1) 0 € 1;(0), and (iii) for y;, -
y; € R+]) such that y;, > yjy for k=n(7 = 1)+ 1, -, n(5), 7;(yie) C 7;(v)-

Assumption Al-(i) is standard in general equilibrium theory. Assumption Al-(ii)
says that each consumer is endowed with all C' goods and do not have any P goods. In
Assumptlon A2-(i), it is assumed that the input requirement set 1;(y;) is convex for each

yj€ R_,_ and Assumption A2- (111) is the standard monotonicity condition. Notice that
in Assumption A2, no convexity is assumed in the outpul space.

For j =1, -+, n, we define the cost function C; : P ) x P 3 (y;, q) = R+ and the
demand correspondence (for inputs) ¢; : Ri(") X Rfﬁ(a (y;» ¢)) = RZ as follows, where
q € R% is a price vector of C goods. '

Ci(ys» @) = min{g- syls; € ny(yy))
#i(yi» @) = arg min{g- s;ls; € ny;)}.

By Assumption A2, C; and ¢; are well defined.
By Berge’s maximum theorem and Assumption A2, the following lemma holds.

Lemma 2.1: Under Assumption A2, for j = 1,.---, n, (i) C;(0, ¢) = 0 for all
q € R%, (ii) C; is increasing, i.c., for any given ¢ € R%\{0}, Cily;, q) = C,(/,, q) if
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Yik = Yo k=1, -+ -, n(y), (i) C; is continuous in ¢ € RZ and y; € [ ’” \{0} iv) C;
is homogeneous of degree one in ¢ € RY, i.e., C;(y;, M) = A\Ci(y;, q) f01 A >0, (v)e;
is upper hemi-continuous in ¢ € RZ and y; € Ri('i)\{O}, and (vi) ¢; is homogeneous of
degree 0 in ¢ € R+-, e, ¢;(y5, Aq) = ¢;(y;, ¢) for A > 0.

In Lemma 2.1, C; can be discontinuous at y; = 0, ¢.¢., fixed cost is allowed.
Next, we define functions which will be used for the definition of our cost allocation
rule.

Definition 2.1: Functions B;;, : Ry x RZ, x Ri_l_ (3 (Yjks ¢, 9;)) = R,k =n(j—1)+1,
-, n(7), are said to be cost allocation functions Jf for given ¢ € R, and 3; € P”(’

(i) ,BJA(y]L, g, ¥;), a function of y;;, is expressed by a finite number of parameter,
(ii) A—n(J 141 Bik(Vjk; ¢, V) = i, q)

(1“) lf JJ}\ > ',lj?/, then IB[A(jjl\’ q, v ) > ﬂ,/l.( /I.) q, v _")a

(lv) —n(] 1 +1 ﬁ?k(]/lﬂ (1’ ) < C (17’ q) fO" d]l jl E Bn

Definition 2.2: Functions %, : Ry x R2, x P++ (3 (Wjrr g, ;) = Ry k=n(G-1)+1,
-+, n(J), are said to be concave cost allocation functions, if, for given ¢ € R, and
v; € Ri(i , (1), (ii), (iii), (iv), and the following condition are satisfied.

(v)B;) is concave in y,;, € Ry.

Under the following assumption, we can construct cost allocation functions.

Assumption A3: For j =1, -+, n, C; is C? with respect to y; € Ri‘q’;) and is strictly
increasing, i.e., for any given ¢ € R\{0}, C;(y;, ¢) > Ci(y, q) for y;, v} € R™Y such
that y;x > yjpr, E=n(j — 1)+ 1, -+, n(y), with at least one strict inequality.

Theorem 2.1: Under Assumptions A2 and A3, there exist concave cost allocation
functions.

Proof: See Appendix.
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3  An Economy with Public Goods

In this section, P goods are considered as public goods.!  Using the cost allocation
function B, we construct our cost allocation rule by an iterative process as follows.
(Note that the concave cost allocation function B5). will be used in Section 4.) The j-th
firm chooses real numbers oy, > 0,1 =1, .-, m, k=1, ---, ¢, such that doimy e = 1.
Each consumer first reports the demand for the k-th P good (public good) for k = 1,
-+, £y later, we discuss how the first report is determined. Let #;. denote the i—th
consumer’s demand for the k-th P good. If the i-th consumer’s new demand for the
k —th P good is z, then he pays B;i(2ik; Zik, q)ovin.? :

Note that if Zy = 2y = @y = Ty for all 4,4 =1, -, m,and all k =1, - -+, ¢},
then by Definition 2.1 (ii) the total outlay is equal to the cost. That is if all consumers
demand the same amount of public goods, then the firms break even. ,

The consumers maximize their utilities subject to their budget constraints, i.e., for

=1+, m,

max  u;(z)
st 3 jm 227)1(.7'—1)+1 Bir(wik; Tir, Q)ask + ¢ 2§ < ¢ wf,
T € Rﬂ_l+£2-

If the ¢-th consumer’s demand for the k-th P good, &, is not equal to &, #;, will be
Z; In the next iteration. Note that Z,; in the first iteration can be chosen arbitrarily.

Definition 3.1: An mfly + m(€y + 03) + £, + £, tuple ((a3), (23), (y3), ¢*) € 5™ x
RT(hH?) x R x R{ is said to be an equilibrium if the following conditions hold, where
5™ is the (m — 1)-dimensional unit simplex and S™ is the ¢, times product of $™.

(i) Foralli =1, ---, m,

' It is worthwhile comparing our model with Kaneko [1977)’s model and Mas-Colell
and Silvestre [1989]’s model. In Mas-Colell and Silvestre’s model, the number of firms
is one, t.e., n = [, and the number of inputs is one, i.e., £, = [. In Kaneko’s model, joint
production is not allowed, i.e., n(j) = { for all j = [, - -, n, and the number of inputs is
one, i.e., £3 = [. Of course, our model has several firms and several inputs, and allows
for joint production.

? Unlike our allocation rule, Kaneko [1977] and Mas-Colell and Silvestre [1989] con-
structed cost allocation rules directly using the cost functions.
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2} € arg max{u;(2;)| 2y =1" 21(_17)” a1 Bl @, ¢)af + ¢ - af < q* - W

z; € RK"HZ}
(i) J LS+ YR 2 < T wf for some 8§ € ¢;(y], ¢7),
(iii) ka =¥ forall k = 77(] - l) +1, (J) andall =1, -+, n
(iv) 2y, >0foralli=1, -+, mand 111 k =1, - 0.

" In the above definition, (i) is standard, and (ii) and (iii) are the market clearing
condition for C goods and P goods, respectively, (iv) simply says the demands for P.
goods are positive. Note that, by (i), @j, = ¥y, 1 = L,--om, k=1,---¢ hold in
equilibria.

The following definitions are also standard.

Definition 3.2: An m(¢; + ¢;) + 4y tuple (( ,); (y;)) € Rm(C’HE) x R is said to be a
feasible allocation if Z"_l s;+ Yl <Yk lw for some s; € 1;(y;), and @ = y i, for
alk=n(G—-1+1,---,n(y )and all]—l

Definition 3.3: An m(¢; + €) + ¢, tuple ((@), (y,)) € R"L(L’JAo x R is said to be a
Pareto optimal allocation if it is a feasible allocation and thele is no feasible allocation
(=), (y;)) € RTMH?) x RY such that w;(a}) > wi(x;) for alli =1, - - -, m with at least
one strict inequality.

Theorem 3.1: Under Assumptions Al and A2, if an m& + m(ly + ¢3) + £, + £ tuple
(( %), (1), (D), ¢7) € ™0 x RT(“H?) x RY x S is an equilibrium, then ((27), (y}))
is a Paleto optimal allocation. :

Proof: Suppose ((2}), (v)) € RMOFR) R s a feasible allocation satisfying u;(2}) >
ui(a¥) foralli=1,---,m w1th at lea.st one strict inequality. Then, by Al-(i),

(s iy B (s 2 07)0h + 47+ 1) > Ty 07
Since ((li), (y:)) is feasible,

P 127;(7311 1+1ﬁjk(yﬂn Il Z 5 > 0 for some ‘ E’ZI(U)

This contradicts Y™, af, =1, k=1, ---, f;,and
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Zz-(jr)t (7-1)+1 ﬂ]k(JMI N zl.’ q ) < C?(-Ué) (j*) < (1* : 511 QED

As in Mas-Colell and Silvestre [1989], we prove the existence of equilibria only in
the case of decreasing returns, i.e., the case of convex cost functions. In the case of
increasing returns, although the existence of equilibria is not automatically excluded,
the curvatures of indifference curves and of §j; will be essential for the existence.

We use the following assumptions.

Assumption A4: For j =1, n, (i) n; : Ri — R_,_ has a convex graph, (ii) for any
sequence {y;}(y} € R+ hmt_,,\ ||y | = +o0), limyu mf{”s,[”s € 1;(v;)} = oo, where
(1)

- || denotes the Euclidean norm and (iii) C; is differentiable with respect to y; € R}
J Yi ++
and

Iim Cj(yjl oYk +e, s Yin( 7)) (' (J})
elo p

exists for y; € Ri(j) such that y;; = 0.

Assumption A4-(i) says that the technologies do not exhibit increasing returns. As-
sumption A4-(ii) means that the technologies are proper. v
For a condition for n; which guarantees the differentiability of C;, see Fujiwara [1985].

Assumption A5: Fori=1,---,m, (i) u; is a continuous, quasi-concave function for
=1, m, (ii) for any 2; € ]i’“‘“z and 2! € ORYTE u( ;) > w(a ) holds, where

ORY +eo denotes the boundaly of BC‘*"’”

By Assumption A4, Bj), can be linear. Namely, for arbitrary chosen £;; > 0 such that

n(j)
k=n(5-1) 151/‘

(3.1) Bin(ysns ¢» ) = 228y — 5,0) + €3.C5(35, q)

"}yjk

satisfies all the conditions for g;;. Note that if 5;; = 0, then J_CJ;(—JU%Q‘) denotes the right
o o Yy o

differential coefficient.
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Theorem 3.2: Under Assumptions Al, A2, A4 and A5, if ;). has the form (3.1), then
there exists an equilibrium.

Proof: See Appendix.

Remark 3.1: As in Kamiya [1995], it is easy to introduce competitive firms, which
produce C goods using P goods and C goods, in our model. The competitive firms
maximize their profits for a given price vector of C' goods and the given cost allocation
rule for P goods. The profits are distributed in proportion to the share holdings of the
consumers. In such a economy, the existence and the Pareto optimality of equilibria are
established using the same proof as of Theorems 3.1 and 3.2.

4. An Economy with Private Goods

In this section, the P goods are considered as private goods.® The cost allocation
rules (nonlinear prices of P goods) are defined using 8;’s. IMirst, we consider the following
process. The i-th consumer first reports their demands for P goods, = (T, Tiey ) a8
in Section 3, the first report is chosen arbitrarily. According to the report, the firms set
an individualized (nonlinear) price schedule as follows. For ;. > 0, the ¢-th consumer’s
outlay for 2, k=n(j—1)+1, -+, n(y), is

Cc

Cir(iks Tj, Tiks @) = ﬁ]k(l’ik%‘s; q, 5])%

where 3; = (Vjn(j-1)+1> * - *» Djn(j)) = (Tim1 Tin(i=1)41> ** 75 izt Lin(j)):

Note that if Z;, = @y for alli =1, ---, m, and all k =1, - - -, ¢}, the total outlay is
equal to the cost.

The consumers maximize their utilities subject to their budget constraints, i.e., for
i=1,--- n,

max  u(a)
n n(7) O T i€ (1402
st ey Thmngiony Cik(@ins 0y Tis @) + ¢ 2] S q-wf, v € RETE.

* Below, we compare our model with Kamiya [1995]’s model and Moriguchi [1996]'s
model. In Kamiya’s model, joint production is not allowed, i.e., n(y) =l for all j =1,
., n. In Moriguchi’s model, although joint production is allowed, increasing returns 1S
solely caused from fixed costs. Of course, our model allows for joint production and for

general types of increasing returns.



If the 2-th consumer’s demand for the k — th P good, &, is not equal to &, & will be
Z;; in the next iteration. Note that Z;. in the first iteration can be chosen arbitrarily.

Definition 4.1: An m(éy + €3) 4+ {1 + {5 tuple ((27), (7), ¢°) € RUOFE) o RY < R

is said to be an equilibrium if the following conditions hold.

(i) Forall: =1, -+, m,

* € arg max{y(a )|Z f('n] 1 +l§jk($i};, U3, )+ ¢ S ¢ Wl g €
s
R+1+ 3
where E*L =ym an,1=1,--n, k—n(j—l)—|—1 | n(7),
(i) J S ]+§: 1:L*‘:<Z: L wf for some s En,(y,)
(iii) yh = Xk af forall j =1, - n, k= 77(] —1)+1, n(y)

(iv)aj, >0foralli=1,---,m a.nd a.ll k=1, 0.

Definition 4.2: An m(¢, + ;) + ¢, tuple ((x ) (y;)) € R} (L+0) o RY is said to be a
feasible allocation if Z"_l s;+ymial <L Z’” LW f01 some §; € 0i(y;). Simy Tie < ik for
alk=n(j-1)+1, - n( ) and allJ =1,

Definition 4.3: An m(fy + €3) + £ tuple (), (y;)) € B2 x RY is said to be a
Pareto optimal allocation if it is a feasible allocation and there is no feasible allocation

((21), (v})) € RPOHR) o RY such that wi(a!) > wi(x;) forall i = 1, - - -, m with at least
one strict inequality.

Theorem 4.1: Under Assumptions Al and A2, if an m(¢4; 4+ () + ¢; tuple ((27),

3
(v7), ¢") € RT(“HQ) x R x 5% is an equilibrium, then ((2}), (y7)) is a Pareto optimal
allocation.

Proof: Suppose ((z}), (v;)) € R7TF2)  RY is a feasible allocation satisfying u;(a}) >
wi(zf) foralle=1,---,m with at lea.st one strict inequality. Then, by Al-(i),

7 7 k. *e m
-iﬁ-_l(zjlzl 28)(] 1)+1 ﬁ/l.( 1/.1;;‘% ([ ) )_L +(/ ) > Zl 1 (/

Since ((27), (y})) is feasible,

103
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n(j) 1 Tk e me\E e o (v
=1 Zk=n(i-1)+1 O5k(T ikze 4 Uj),l.);_k — ¢ Ty 85 > 0 for some 57 € 1;(y}).

Since Y5y Cpl) i pya1 BeWins €% 7)< Cilyl 47) S 7

Zl\—n(] 1+1[ 1:3;L( 11,1 -5, v} )“i‘ ; (J,Aa q, )] > 0.

Since ((2}), (y})) is feasible and 5, is increasing in the first argument,

(1) IZL_ n(j-1 +1[ =1 ﬂ (@) JL ~ ) q, 57)% _ﬁycl.( s D;)] > 0.
By >, (= M;;Lt—);;& = Y™ 2! and the concavity of B3 in the first argument, the left
Vi
hand side of (1) must be nonpos1t1ve. This contradicts (1). Q.E.D.

As in Section 3, we prove the existence of equilibria only in the case of decreasing
returns. We use

T — aC; Ty, . — -
B (yins @, 5;) = 2B (g — 550) + €,4C5(05, q).

dyyk

In this case, if 7;; > 0,

’U LO T
Czk( Tik, 'U], Zik, (I) d(y N Tk + (é]kc ( ) ] .;f%%ll)JA)#f

holds, and if 9;;, = 0, we define

_ ac ac,(v,, . o . -
Cir(2ak, 95, 0, q) = —L%l—-—)l,;‘, where —%’kﬂ denotes the right differential coefficient.

Theorem 4.2: Under Assumptions Al, A2, A4, and A5, if ¢;x has the above linear
form, then there exists an equilibrium.

Proof: See Appendix.

Remark 4.1: As in Remark 3.1, it is easy to introduce competitive firms in our model.
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Appendix

Proof of Theorem 2.1: The stlateoy of the construction of 5, is as follows. First, we
find quadratic functions which locally satisfy the conditions for ,8 °.’s. Then we extend
the functions to the domain Ry using linear functions.

Let @ be a negative real number satis{ying

22C;(9; ,9)
Yk 0Y et

1 (i) n;
a<—3 Zk:n(j—1)+1 Zk’:ﬂ(j-1)+l

Let b, = ﬁ—q’%fk—qz —2av;, k =n(7 — 1)v+ 1, -+, n(y)

and ,
cir = ==Ci (9, q) — (w ~b,Av,L,A_n(J—1)+l o, (7).

=50

Then we define
Tie(Yirs ¢ 05) = ayly + binyin + cip, K =n(i = 1)+ 1, -+, n(j).

It is easy to check that 7/, s Iocally satlsfy the conditions for 3%.’s, i.e., thele exist intervals
[yjx, Uix] C [0,00], k = 77(] - l) + 1, n(j), such that o, € (/,A, j,A) and Tjs satlsfy
the conditions for §5,’s in Hk (- 1)+1[171, k] Note that condition (iv) can be verified
using the second 01de1 Taylor formula of C;(-, ¢) around ;. Then we extend 7/.s to
Ry. : v A

Let A ={y; € RZ Myin < Gie for all k= n(j — 1)+ 1, -+, n(j), and yjr < yj for
some k}. For k=n(j —1)+1, -, n(y), let ‘ - o

C\"(yjk, - yﬂ,) - Tikc(}J__.,-k, 3 Uj . q) 1{ 0<yr< y.jl.:

o5 (Yix; 05, q) = z . S

5 (3a3 93 0) { o Tiklyy, 0,9 iy, S Yir < Uik

Below, we show that there exists o € R4 such that o > —#J’Ii—ﬂ for-all kand
J

S oy O By @) < Cyly;s q) for all y; €

Suppose the contrary. Then we can find sequences {a’} and {yi}(y; € A) such that

limyy 0 @ = 00 and Ek:vz(i—1)+10;jk(~/j1\f’ v, q) > Cly! yi, q) for all 1. Since A is com-

pact, {t} has a subsequence {t'} such that limy,.yl = y3 € A for all k = n(j —
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D+1, -+ n(y). Iy /7 Fy = (yl,”(./__l)ﬂ, e y'/_”(./,)), by the construction of o3,

J =
limy e Zk a(i-1)+1 ‘TJA ('JW i, q) = —co. This is a contradiction. If yr = Y
limy o Zk ‘n(j 141 T3k ('/,-L; Uj, q) > (‘(' ¢) holds. This contradicts
lmy e Z}‘_n(] 141 O'JL (y]A,L;],q) < Z,\ Zn(i—-1)41 ’f,;‘k(g‘,jk; 9, q) < C(QJ" ¢). Thus we can

choose an « satisfying the above conditions.

Finally, for all k = n(j — 1) £ 1, - - -, n(j), let

Tik(Tik; 05, ) ‘ iy 2 i
Bir(yin; 0j, q) = /L(JJAv7 q) ff Y S Yik S Uik
oy, — )+7',A(J,7U7af1) if0< yjkgﬂ.,'k

By the construction, 8%,’s obviously satisfy (i) — (v). Q.E.D.

Proof of Theorem 3.2: Let $ = {¢ € I?ﬁf| o1 @k = 1}. We use S® as the domain
of the price vector of the C' goods.
The attainable consumption set is defined as follows:

)_

= {(zy, -, ¥n) € P77L(1‘+C°)| thelc exist y; € Ri(j), J , n., such that
iy i+ s S U Wi for some s; € 1;(y;) and, for all j = l s Yik = Ty
i=1,--,mk=n(-1)+1, - 71(])}

The compactness of Q follows from Assumptions A2-(i) and Ad4-(ii). Moreover, the
nonemptyness of @ follows from Assumption Al-(ii) and A2-(ii). Thus there exists
b € Ry, such that Q C int[0, bJ™(0+@), Let X; = [0, b]ate, i =1, .-, m.

We choose an arbitrary i; € n;(b, - - -, b). Let 0;(y;) = 77,(/, )N {s € R?|s; < /I,A,
k=1, £} for y; € [0, 5] and gol,(,/‘,,, q) = arg min{q- s;|s; € 1;(y;) } for y; € [0,
b]*U) and ¢ € S%. By Assumption A2-(iii), 7; is nonempty, convex, compact valued
and, by Assumptions A2 and A4 ¢; is an upper hcmi continuous correspondence with a
nonempty, convex, compact value for y; € [0, b]*) and ¢ € S*.

Let zf = (%4, - - -, Zi, ). Let the correspondence F' = (I, Iy, F3, Fy) : S
7, X x [0, b0 x S — §m6 5 I X; x [0, )™ x 5% be

. . _p _ cr,-k+max{0,;7:;k-71— zm: Zik}
Fl((azk ) (1‘1)7 (:Li )’ ([) = ({ 1+Z:"=l max{O,.v,’;.:#i:fll Tik}

)
Ey((ai), (), (1), @) = (arg max,, ¢z {w(@)| Tiey Thonovysr Airlin, T Qo+
q¢-2{ < q-wi}),

Fy((aw), (i), (71), 0) = ({a1}),
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F4((} 'A:)a (17i)-, (i?)v q) = arg max, st {7" : (Z, 1P (m Doy ik, (1) +Z:nl xy
Yoy wf .

F is obviously an upper hemi-continuous, convex valued correspondence; the convex

valuedness of F, follows from the linearity of 8;;. Note that, by ¢ € 5% and wy, > 0
fore=1,-<-,mand k =0, + 1,

ol + 0, g wb > 0 always holds and thus F, is
upper hemi-continuous. Thus, by Kakutani’s fixed point theorem, F' has a fixed point
((afr), (27), (27%), ¢*). Below, we show that ((af,), (27), (v

y7), ¢7) is an equilibrium,
where y¥ = D5 o, k=n(j - 1)+ 1, -+, n(j), 1 =1,

Since
a’-* af, +max{0 ,z} IZ @t}
ik 1+Z ma‘c{O ".I. et SN

holds, then

m 1 mo,.% —_— ™ mo,

=1 ma‘{{O rl m L~i=1 ‘Lik.} - ma.x{O, Tip — m l—i=1 zl\}
holds. Thus (m—1) ¥, max{0, a% — ;1;- i :1,,\} = 0 holds so that @5 — - 51, 2% <0
holds for all 7 = 1, m. If there e\lsts i such that a7, — - ,”;1:1,% < 0, then
Th + Z#,/ rh < m - %Z:”l:z',,\ = ”‘1 a%, holds. This is a contradiction. Thus
W= s ik Al = y/k holds for all 7 = 1, - -+, m, so that (iii) in Definition 3.1 holds.

By 5: = a;" for i =1, - - -, m, local nonsatiation of u;, and ¢* - @ilys, ¢*) = Cilyr,
),

Q* . (2‘721 (;J(j;" q*) + Z/n /. Z:nlw )
— 5\ C(J q)+ :nlq ( —wf)

- Z.l IC (y_/’ q ) + Z r..?/)l(, 1)+1 ﬂ/k(l:kl.? ”’l":}\:v q*)
=0

holds. Thus, by ¢* € Fy((af.), (27), (), ¢°), it is easy to velify (i1) in Definition 3 1.
(i) in Definition 3.1 can be proved by 2 € Fy((af,), (27), (%:7), ¢

argument. (See, for example, Debreu [1959, Chapter 5].) By q" > 0 and Assumption

A5 (i1), it is easy to show (iv) in Definition 3.1. . Q.E.D.

"), ¢*) and the standard
Ty

Proof of Theorem 4.2: The attainable consumption set is defined as follows:
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moal+ Yrys; < Tk, wf for some s; € n;(y;) and yup = Ty wa, g = Lo
ESn( - H L n0)),

Q' = {(a1, ---, 'Lm) € R{™| there exist y; € Rn('), j = 1, - -+, n, such that

As in the proof of Theorem 3.2, the compactness and the nonemptyness of @’ follow from
Assumptions A2-(i)(ii) and A4-(ii). Thus there exists d € Ry such that Q' C int[0,
dj™+) | Let ):’,L’ =[0,d* =1, m.

“We choose an arbitrary i € n;(md, - -+, md). Let 7} = n;(y;) N {s; € RZ s < Wy
k=1, - 6} for y; € [0, md]*") and @(y;, ¢) = arg min{q- s;ls; € 7;(y;)} for y; € [0,
md)” J) and g € 5. As in the proof of Theorem 3.2, ¢; is an upper hemi-continuous
correspondence with nonempty, convex, compact values for y; € [0, md]" () and ¢ € S*.

Let the correspondence F' = (F!, F}, F}) : I, X! x [0, (1]””1 x 5% — T2, X! x [0,
d)™ x S% be

Fi((@:), (20), 0) = (a1 w0, e s Sjmn Tr0sygn G 5, Foe @) -5 <

), @) = ({27}),
zf), q) = arg max,gse{r - ( 1P (Jn )+ T — 2w},

where y;;, = Y, x;. F is obviously an upper hemi-continuous, convex valued corre-
spondence. Thus, by Kakutani’s fixed point theorem, F' has a fixed point ((27), (Z;"),
q*). Let yj;, = Y™ z%. Then, using the same argument as in the proof of Thcowm 3.2,

we can show that ((27), (¥}), ¢*) is an equilibrium. Q.E.D.

References

Brown, D.J., 1991, Equilibrium Analysis with Nonconvex Technologies, in Handbook
of Mathematlcal Economics, Vol.4, W. Hildenbhrand and H. Sonnenschein eds , (North
Holland). :

Cornet, B., 1988, General Equilibrium Theory and Increasing Returns: Presentation,
Journal of Mathematical Economics 17, 103-118.

Debreu, G., 1959, Theory of Value (Wiley, New York).

Dierker, E., 1986, When Does Marginal Cost Pricing Lead to Pareto Efficiency, Jour-
nal of Economics, Suppl. 5, 41-66.

Fujiwara, O., 1985, A Note on Differentiability of Global Optimum Values, Mathe-
matics of Operations Research 10, 612-618.



109

Kamiya, K., 1995, Optimal Public Utility Pricing: A General Equilibrium Analysis,
Journal of Economic Theory 66, 548-72.

Kaneko, M., 1977, The Ratio Equilibrium and a Voting Game in a Public Goods
Economy, Journal of Economic Theory 16, 123-136.

Mas-Colell, A. and J. Silvestre, 1989, Cost Share Equilibria: A Lindahl Approach,
Journal of Economic Theory 47, 239-256.

Moriguchi, C., 1996, Two Part Marginal Cost Pricing in a General Equilibrium Model,
Journal of Mathematical Economics 26, 363-85.

Quinzii, M., Efficiency of Marginal Cost Pricing Equilibria, in ”Equilibrium and
Dynamics, Essays in Honor of David Gale”, M. Mujumder, Ed.,MacMillan, London.

Roemer, J.E. and J. Silvestre, 1993, The Proportional Solution for Economies with
both Private and Public Ownership, Journal of Economic Theory 59, 426-44.



