The Area of Figures Representable by Büchi Automata

Takeuti Izumi
Graduate School of Informatics，Kyoto Univ．606－8501，JAPAN．

Abstract

． Yen Hsu－Chun and Lin Yih－Kai showed that Büchi automata represent various kinds of figures．They proved that if a figure is represented by a deterministic Büchi automaton，then the area of the figure is a rational number．This paper shows the theorem that if a figure is represented by a non－deterministic Büchi automaton， then the area of the closure of the figure is a rational number．as is an extension of their theorem for deterministic Büchi automata．

1 Büchi Automaton

Definition 1．1（Büchi Automaton）A Büchi automaton is defined by the datum which is consists of five components（ $\left.\Sigma, S, \delta, s_{0}, F\right)$ ，where each compo－ nent has the following meaning：

Σ	：alphabet，the set of symbols
S	：the set of states
$\delta \subset S \times \Sigma \times S$	$:$ transition relation
$s_{0} \in S$	：the initial state
F	：the set of final states

Actually，final states are not final，but are to be visited infinitely many times．
Let B be a Büchi automaton such as $B=\left(\Sigma, S, \delta, s_{0}, F\right)$ ．Then $L(B)$ is a subset of Σ^{ω} which defined as the following．For $\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in \Sigma^{\omega}$ ，

$$
\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in L(B)
$$

iff there is $\left(s_{1}, s_{2}, \ldots\right) \in S^{\omega}$ such that $\left(s_{i-1}, \sigma_{i}, s_{i}\right) \in \delta$ for each $i=1,2, \ldots$ ，and that there are infinitely many i＇s such that $s_{i} \in F$ ．The set $L(B)$ is called the language of B ．
Definition 1.2 （Determinism）A Büchi automaton $B=\left(\Sigma, S, \delta, s_{0}, F\right)$ is deterministic iff for each $s \in S$ and each $\sigma \in \delta$ ，there exist at most one $s^{\prime} \in S$ such that $\left(s, \sigma, s^{\prime}\right) \in \delta$ ．

Definition 1.3 （Measure over infinite words）Let Σ be a set which con－ sists of N characters．If μ is written as a measure over the set Σ^{ω} ，then μ denotes the ordinal measure over Σ^{ω} ，which is defined as following：We write $\left(x_{1}, x_{2}, \ldots, x_{n}, *\right)$ for the set $\left\{\left(y_{1}, y_{2}, \ldots\right) \in \Sigma^{\omega} \mid y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{n}=x_{n}\right\}$ ． Then，$\mu\left(x_{1}, x_{2}, \ldots, x_{n}, *\right)=1 / N^{n}$ ．Hence $\mu\left(\Sigma^{\omega}\right)=1$ ．

Definition 1.4 (Closure) For $E \subset \Sigma^{\omega}$, we write \bar{E} for the closure of E with respect to the ordinal topology of Σ^{ω}. That is, for each $\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in \Sigma^{\omega}$, $\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in \bar{E}$ iff for any positive integer n, there exists an infinite sequence $\left(\sigma_{n}^{\prime}, \sigma_{n+1}^{\prime}, \sigma_{n+2}^{\prime}, \ldots\right) \in \Sigma^{\omega}$ such that $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}, \sigma_{n}^{\prime}, \sigma_{n+1}^{\prime}, \ldots\right) \in E$

2 Representations of Figures

Definition 2.1 The sets $2,2^{2}, \mathbf{2}^{3}$ is written as follows.

$$
\mathbf{2}=\{0,1\}, \mathbf{2}^{2}=\left\{\left.\binom{x}{y} \right\rvert\, x, y \in \mathbf{2}\right\}, \mathbf{2}^{3}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x, y, z \in \mathbf{2}\right\} .
$$

The sets $\mathbf{2}^{\omega},\left(\mathbf{2}^{2}\right)^{\omega},\left(\mathbf{2}^{3}\right)^{\omega}$ is written as follows.

$$
\begin{aligned}
\mathbf{2}^{\omega} & =\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbf{2}\right\} \\
\left.\mathbf{2}^{2}\right)^{\omega} & =\left\{\left(\sigma_{1}, \sigma_{2}, \ldots\right) \mid \sigma_{i} \in \mathbf{2}^{2}\right\}, \\
\left(\mathbf{2}^{3}\right)^{\omega} & =\left\{\left(\sigma_{1}, \sigma_{2}, \ldots\right) \mid \sigma_{i} \in \mathbf{2}^{3}\right\}
\end{aligned}
$$

The sets 2^{n} and $\left(2^{4}\right)^{\omega}$ for $n=4,5, \ldots$ are defined similarly.
Definition 2.2 The function ϕ maps 2 into the unit interval $[0,1]$ such as:

$$
\phi:\left(x_{1}, x_{2}, \ldots\right) \mapsto \phi\left(x_{1}, x_{2}, \ldots\right)=\sum_{i=0}^{\infty} 2^{-i} x_{i}
$$

The function ϕ is continuous and surjective, but not injective. The function ϕ also maps $\left(2^{2}\right)^{\omega}$ into the unit square $[0,1]^{2}$ such as:

$$
\phi:\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots\right) \mapsto \phi\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots\right)=\binom{\phi\left(x_{1}, x_{2}, \ldots\right)}{\phi\left(y_{1}, y_{2}, \ldots\right)}
$$

The function ϕ also maps a subset $E \subset\left(2^{2}\right)^{\omega}$ into a subset $\phi(E) \subset[0,1]^{2}$ such as:

$$
\phi(E)=\{\phi(\vec{\sigma}) \mid \vec{\sigma} \in E\}
$$

The functions ϕ over elements $\vec{\sigma} \in\left(2^{n}\right)^{\omega}$ and over subsets $E \subset\left(2^{n}\right)^{\omega}$ are also defined similarly.

Lemma 2.3 (Cascade Product) Let B and B^{\prime} be Büchi automata with $\mathbf{2}^{2}$ as their alphabet. Then there is a Büchi automaton $B^{\prime \prime}$ which satisfies the following:

$$
\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots\right) \in L\left(B^{\prime \prime}\right)
$$

iff there is $\left(z_{1}, z_{2}, \ldots\right) \in \mathbf{2}^{\omega}$ such that

$$
\left(\binom{x_{1}}{z_{1}},\binom{x_{2}}{z_{2}}, \ldots\right) \in L(B) \quad \text { and }\left(\binom{z_{1}}{y_{1}},\binom{z_{2}}{y_{2}}, \ldots\right) \in L\left(B^{\prime}\right)
$$

In the case of the previous lemma, we call $B^{\prime \prime} a$ cascade product of B and B^{\prime}.
Remark 2.4 Cascade products are defined not only for automata with $\mathbf{2}^{2}$ as their alphabet, but also for automata with $\mathbf{2}^{3}$, or sets of higher dimension, as their alphabets.

Lemma 2.5 There is a Büchi automaton B_{0} such that

$$
\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots\right) \in L\left(B_{0}\right) \text { iff } \phi\left(x_{1}, x_{2}, \ldots\right)=\phi\left(y_{1}, y_{2}, \ldots\right) .
$$

Remark 2.6 For each Büchi automaton B with $\mathbf{2}^{n}$ as its alphabet, there is a Büchi automaton B^{\prime} such that $\vec{\sigma} \in L\left(B^{\prime}\right)$ iff $\phi(\vec{\sigma}) \in \phi(L(B))$. This B^{\prime} is made as a cascade product of B and n duplications of B_{0} of Lemma 2.5.

Put $n=2$ especially. For this B^{\prime} above, it holds that if $\phi\left(x_{1}, x_{2}, \ldots\right)=$ $\phi\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)$ and $\phi\left(y_{1}, y_{2}, \ldots\right)=\phi\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$, then

$$
\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots\right) \in L\left(B^{\prime}\right) \text { iff }\left(\binom{x_{1}^{\prime}}{y_{1}^{\prime}},\binom{x_{2}^{\prime}}{y_{2}^{\prime}}, \ldots\right) \in L\left(B^{\prime}\right) .
$$

Theorem 2.7 (Affine Transformation) For each Büchi automaton B with $\mathbf{2}^{2}$ as its alphabet, and for each 2×2-matrix A over rational numbers, there is a Büchi automaton B^{\prime} such that $\phi\left(L\left(B^{\prime}\right)\right)=A(\phi(L(B)))$

Proof. In [JS'99].
Theorem 2.8 (Non-representability of Circles) There is no Büchi automaton B such that $\phi(L(B))$ is a circle.

Proof. In [JS'99].
Definition 2.9 (Measure over real numbers) If μ is written as a measure over the interval $[0,1]$, then μ denotes the ordinal Lebesque measure over $[0,1]$.

Similarly, if μ is written as a measure over an interval $[0,1]^{n}$, then μ denotes the ordinal Lebesque measure over $[0,1]^{n}$.

Lemma 2.10 The function ϕ preserves μ. That is, for any subset $E \subset 2^{\omega}$, $\mu(\phi(E))=\mu(E)$.

Lemma 2.11 The function ϕ preserves the closure operation. That is, for any subset $E \subset 2^{\omega}, \phi(\bar{E})=\overline{\phi(E)}$.

3 Measure of Languages

Theorem 3.1 (Lin \& Yen '00) For a deterministic Büchi automaton B, the measure of the language $\mu(L(B))$ is rational.

Proof. In [Lin\&Yen'00].
Remark 3.2 Lin and Yen proves the theorem above by the property of Markov chains. A deterministic Büchi automaton is regarded as a Markov chain in their proof. Unfortunately, their method cannot be applied to non-deterministic Büchi automata. We prove the theorem only on the closures of the languages of non-deterministic Büchi automata. A characterisation for the measure of the languages of non-deterministic Büchi automata is still open.

Lemma 3.3 For any Büchi automaton B, we can construct a deterministic Büchi automaton \bar{B} such that $\overline{L(B)}=L(\bar{B})$.

Theorem 3.4 (Main Result) For each Büchi automaton B, the measure of the closure of the language $\mu(\overline{L(B)})$ is rational.

Proof. By Theorem 3.1 and Lemma 3.3 above.
Corollary 3.5 For each Büchi automaton B with $\mathbf{2}^{2}$ as its character set, the area of the closure $\overline{\phi(L(B))}$ is rational.

References

[JS'99] Jurgensen, H. \& Staiger, L.: Finite Automata Encoding Geometric Figures, the pre-proceedings of the Workshop on Imprementing Automata 1999.
[Lin\&Yen'00] Lin, Yih-Kai \& Yen, Hsu-Chun: An omega-automata approach to the compression of bi-level images, Proc. CATS 2000, Electronic Notes in Theoretical Computer Science, Vol. 31. No. 1. Elsevier Science B. V., 2000.

Acknowledgement

I am greatful for Lin Yih-Kai, Ito Masami and Takahashi Masako for discussions and comments.

