The Area of Figures Representable by Büchi Automata

Takeuti Izumi

Graduate School of Informatics, Kyoto Univ. 606-8501, JAPAN.

Abstract.

Yen Hsu-Chun and Lin Yih-Kai showed that Büchi automata represent various kinds of figures. They proved that if a figure is represented by a deterministic Büchi automaton, then the area of the figure is a rational number. This paper shows the theorem that if a figure is represented by a non-deterministic Büchi automaton, then the area of the closure of the figure is a rational number. as is an extension of their theorem for deterministic Büchi automata.

1 Büchi Automaton

Definition 1.1 (Büchi Automaton) A *Büchi automaton* is defined by the datum which is consists of five components $(\Sigma, S, \delta, s_0, F)$, where each component has the following meaning:

Σ	: alphabet, the set of symbols
S	: the set of states
$\delta \subset S \times \Sigma \times S$: transition relation
$s_0 \in S$: the initial state
F	: the set of final states

Actually, final states are not final, but are to be visited infinitely many times.

Let B be a Büchi automaton such as $B = (\Sigma, S, \delta, s_0, F)$. Then L(B) is a subset of Σ^{ω} which defined as the following. For $(\sigma_1, \sigma_2, ...) \in \Sigma^{\omega}$,

$$(\sigma_1, \sigma_2, ...) \in L(B)$$

iff there is $(s_1, s_2, ...) \in S^{\omega}$ such that $(s_{i-1}, \sigma_i, s_i) \in \delta$ for each i = 1, 2, ..., and that there are infinitely many *i*'s such that $s_i \in F$. The set L(B) is called the *language* of B.

Definition 1.2 (Determinism) A Büchi automaton $B = (\Sigma, S, \delta, s_0, F)$ is *deterministic* iff for each $s \in S$ and each $\sigma \in \delta$, there exist at most one $s' \in S$ such that $(s, \sigma, s') \in \delta$.

Definition 1.3 (Measure over infinite words) Let Σ be a set which consists of N characters. If μ is written as a measure over the set Σ^{ω} , then μ denotes the ordinal measure over Σ^{ω} , which is defined as following: We write $(x_1, x_2, ..., x_n, *)$ for the set $\{(y_1, y_2, ...) \in \Sigma^{\omega} | y_1 = x_1, y_2 = x_2, ..., y_n = x_n\}$. Then, $\mu(x_1, x_2, ..., x_n, *) = 1/N^n$. Hence $\mu(\Sigma^{\omega}) = 1$.

Definition 1.4 (Closure) For $E \subset \Sigma^{\omega}$, we write \overline{E} for the closure of E with respect to the ordinal topology of Σ^{ω} . That is, for each $(\sigma_1, \sigma_2, ...) \in \Sigma^{\omega}$, $(\sigma_1, \sigma_2, ...) \in \overline{E}$ iff for any positive integer n, there exists an infinite sequence $(\sigma'_n, \sigma'_{n+1}, \sigma'_{n+2}, ...) \in \Sigma^{\omega}$ such that $(\sigma_1, \sigma_2, ..., \sigma_{n-1}, \sigma'_n, \sigma'_{n+1}, ...) \in E$

2 Representations of Figures

Definition 2.1 The sets $2, 2^2, 2^3$ is written as follows.

$$\mathbf{2} = \{0,1\}, \ \mathbf{2}^2 = \{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x, y \in \mathbf{2} \}, \ \mathbf{2}^3 = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x, y, z \in \mathbf{2} \}.$$

The sets 2^{ω} , $(2^2)^{\omega}$, $(2^3)^{\omega}$ is written as follows.

$$\begin{array}{lll} \mathbf{2}^{\omega} &= \{(x_1, x_2, \ldots) | \ x_i \in \mathbf{2}\}, \\ (\mathbf{2}^2)^{\omega} &= \{(\sigma_1, \sigma_2, \ldots) | \ \sigma_i \in \mathbf{2}^2\}, \\ (\mathbf{2}^3)^{\omega} &= \{(\sigma_1, \sigma_2, \ldots) | \ \sigma_i \in \mathbf{2}^3\}. \end{array}$$

The sets 2^n and $(2^4)^{\omega}$ for n = 4, 5, ... are defined similarly.

Definition 2.2 The function ϕ maps 2 into the unit interval [0, 1] such as:

$$\phi: (x_1, x_2, ...) \mapsto \phi(x_1, x_2, ...) = \sum_{i=0}^{\infty} 2^{-i} x_i$$

The function ϕ is continuous and surjective, but not injective. The function ϕ also maps $(2^2)^{\omega}$ into the unit square $[0,1]^2$ such as:

$$\phi: \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \ldots) \mapsto \phi\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \ldots) = \begin{pmatrix} \phi(x_1, x_2, \ldots) \\ \phi(y_1, y_2, \ldots) \end{pmatrix}$$

The function ϕ also maps a subset $E \subset (\mathbf{2}^2)^{\omega}$ into a subset $\phi(E) \subset [0,1]^2$ such as:

$$\phi(E) = \{\phi(\vec{\sigma}) \mid \vec{\sigma} \in E\}.$$

The functions ϕ over elements $\vec{\sigma} \in (2^n)^{\omega}$ and over subsets $E \subset (2^n)^{\omega}$ are also defined similarly.

Lemma 2.3 (Cascade Product) Let B and B' be Büchi automata with 2^2 as their alphabet. Then there is a Büchi automaton B'' which satisfies the following:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, ... \in L(B'')$$

iff there is $(z_1, z_2, ...) \in \mathbf{2}^{\omega}$ such that

$$\begin{pmatrix} x_1 \\ z_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ z_2 \end{pmatrix}, \ldots \in L(B) \text{ and } \begin{pmatrix} z_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ y_2 \end{pmatrix}, \ldots \in L(B').$$

In the case of the previous lemma, we call B'' a cascade product of B and B'.

Remark 2.4 Cascade products are defined not only for automata with 2^2 as their alphabet, but also for automata with 2^3 , or sets of higher dimension, as their alphabets.

Lemma 2.5 There is a Büchi automaton B_0 such that

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, ... \end{pmatrix} \in L(B_0) \quad iff \quad \phi(x_1, x_2, ...) = \phi(y_1, y_2, ...).$$

Remark 2.6 For each Büchi automaton B with 2^n as its alphabet, there is a Büchi automaton B' such that $\vec{\sigma} \in L(B')$ iff $\phi(\vec{\sigma}) \in \phi(L(B))$. This B' is made as a cascade product of B and n duplications of B_0 of Lemma 2.5.

Put n = 2 especially. For this B' above, it holds that if $\phi(x_1, x_2, ...) = \phi(x'_1, x'_2, ...)$ and $\phi(y_1, y_2, ...) = \phi(y'_1, y'_2, ...)$, then

$$(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \ldots) \in L(B') \quad \text{iff} \quad (\begin{pmatrix} x'_1 \\ y'_1 \end{pmatrix}, \begin{pmatrix} x'_2 \\ y'_2 \end{pmatrix}, \ldots) \in L(B').$$

Theorem 2.7 (Affine Transformation) For each Büchi automaton B with 2^2 as its alphabet, and for each 2×2 -matrix A over rational numbers, there is a Büchi automaton B' such that $\phi(L(B')) = A(\phi(L(B)))$

Proof. In [JS'99].

Theorem 2.8 (Non-representability of Circles) There is no Büchi automaton B such that $\phi(L(B))$ is a circle.

Proof. In [JS'99].

Definition 2.9 (Measure over real numbers) If μ is written as a measure over the interval [0, 1], then μ denotes the ordinal Lebesque measure over [0, 1].

Similarly, if μ is written as a measure over an interval $[0, 1]^n$, then μ denotes the ordinal Lebesque measure over $[0, 1]^n$.

Lemma 2.10 The function ϕ preserves μ . That is, for any subset $E \subset 2^{\omega}$, $\mu(\phi(E)) = \mu(E)$.

Lemma 2.11 The function ϕ preserves the closure operation. That is, for any subset $E \subset 2^{\omega}$, $\phi(\overline{E}) = \overline{\phi(E)}$.

I

3 Measure of Languages

Theorem 3.1 (Lin & Yen '00) For a deterministic Büchi automaton B, the measure of the language $\mu(L(B))$ is rational.

Proof. In [Lin&Yen'00].

Remark 3.2 Lin and Yen proves the theorem above by the property of Markov chains. A deterministic Büchi automaton is regarded as a Markov chain in their proof. Unfortunately, their method cannot be applied to non-deterministic Büchi automata. We prove the theorem only on the closures of the languages of non-deterministic Büchi automata. A characterisation for the measure of the languages of non-deterministic Büchi automata is still open.

Lemma 3.3 For any Büchi automaton B, we can construct a deterministic Büchi automaton \overline{B} such that $\overline{L(B)} = L(\overline{B})$.

Theorem 3.4 (Main Result) For each Büchi automaton B, the measure of the closure of the language $\mu(\overline{L(B)})$ is rational.

Proof. By Theorem 3.1 and Lemma 3.3 above.

Corollary 3.5 For each Büchi automaton B with 2^2 as its character set, the area of the closure $\overline{\phi(L(B))}$ is rational.

References

- [JS'99] Jurgensen, H. & Staiger, L.: Finite Automata Encoding Geometric Figures, the pre-proceedings of the Workshop on Imprementing Automata 1999.
- [Lin&Yen'00] Lin, Yih-Kai & Yen, Hsu-Chun: An omega-automata approach to the compression of bi-level images, Proc. CATS 2000, Electronic Notes in Theoretical Computer Science, Vol. 31. No. 1. Elsevier Science B. V., 2000.

Acknowledgement

I am greatful for Lin Yih-Kai, Ito Masami and Takahashi Masako for discussions and comments.