<table>
<thead>
<tr>
<th>項目</th>
<th>インターネット提供元</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>根系に付随する2次のイニシャルイデアル:代数系、形式言語および計算理論</td>
</tr>
<tr>
<td>著者</td>
<td>Ohsugi, Hidefumi; Hibi, Takayuki</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1166: 216-221</td>
</tr>
<tr>
<td>発行日</td>
<td>2000-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64337</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版機関</td>
<td>Kyotou University</td>
</tr>
</tbody>
</table>
根系に付随する２次のイニシャルイデアル

阪大理 大杉英史 (Hidefumi Ohsugi)
阪大理 日比孝之 (Takayuki Hibi)

序

根系 A_{n-1} の正根に付随するGKZ-超幾何方程式系の解空間の次元を計算するために，Gel’fand–Graev–Postnikov は根系 A_{n-1} の正根に原点を加えた配置の正則単模三角形分割を具体的に構成し，その配置の正規化数体積がカタラン数 $(2n-2)_n$ に一致することを示した．（[1] 参照）彼等の結果の本質はその配置のトーリックイデアルの 2 次 squarefree 単項式から成るイニシャルイデアルを発見した事にある．そのようなイニシャルイデアルがである配置の正規化数体積，エルハート多項式などがイニシャルイデアルから導かれる有限グラフの独立集合の数え上げで計算できる．Gel’fand–Graev–Postnikov の結果に刺激され，[5] では根系 B_n, C_n, D_n, BC_n の各々について，その根系のすべての正根に原点を加えた配置のトーリックイデアルの 2 次 squarefree 単項式から成るイニシャルイデアルの存在を証明した．今後は，[5] で構成した 2 次 squarefree 単項式から成るイニシャルイデアルから導かれる有限グラフの独立集合の数え上げを実行することを目標である．これが成功すれば，B 型, C 型, D 型, BC 型の根系の正根に付随するGKZ-超幾何方程式系の解空間の次元と一致する, 2 次, 3 次, 4 次, BC 型のカタラン数と呼ぶべきものが有限グラフの数え上げ理論の範疇で議論できる可能性が出てくる．また，根系 A_{n-1} の幾つかの正根に原点を加えた配置は完全単模であるから常に squarefree 単項式から成るイニシャルイデアルを持つ (Stanley)，という既知の結果を背景に，[6] では根系 BC_n の幾つかの正根に原点を加えた配置の正規性を議論した．根系 BC_n の幾つかの正根から成る配置は n 個の頂点を持つ無向完全グラフに有向辺，ループ，サークルを添加した有限グラフの部分グラフ（の隣接行列）と思うことができそのような部分グラフに付随する配置で正規となるものを完全に分類することが最終目標である．現在の所，そのような分類が組合せ論的に綺麗な形で得られるかどうかは不明であるが，配置の正規性は単模被覆の存在から従い，そのような配置で単模被覆を持つものを極大化の組合せ論で記述することは，正規化体積 1 なる単体をグラフの言葉で記述することと本質的には同一であるから，部分グラフから生起する配置で単模被覆を持つものを極大化の組合せ論で完全に記述することは十分に可能であると思われる．本論文では特に，[5] で得られた結果について概説する．

The first author is supported by JSPS Research Fellowships for Young Scientists.
Let $K[t, t^{-1}, s] = K[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}, s]$ denote the Laurent polynomial ring over a field K. Let $t^a s = t_1^{a_1}t_2^{a_2} \cdots t_n^{a_n}s \in K[t, t^{-1}, s]$ if $a = (a_1, a_2, \ldots, a_n) \in \mathbb{Z}^n$. We associate given a finite set $\{a_1, a_2, \ldots, a_N\} \subset \mathbb{Z}^n$ with the affine semigroup ring $R (\subset K[t, t^{-1}, s])$ generated by the monomials $t^{a_1}s, t^{a_2}s, \ldots, t^{a_N}s$. Let $A = K[x_1, x_2, \ldots, x_N]$ denote the polynomial ring over K and write $I (\subset A)$ for the kernel of the surjective homomorphism $\pi : A \rightarrow R$ defined by setting $\pi(x_i) = t^{a_i}s$ for all i. The ideal I, called the \textit{toric ideal} of R, is generated by binomials. We are interested in the questions when the toric ideal of an affine semigroup ring is generated by quadratic binomials as well as when the toric ideal of an affine semigroup ring possesses a quadratic initial ideal. Consult, e.g., [3] and [4].

Let $\Phi \subset \mathbb{Z}^n$ be one of the root systems B_n, C_n, D_n and BC_n ([2, pp. 64 – 65]) and write R_Φ for the affine semigroup ring associated with the finite set consisting of all positive roots of Φ together with the origin of \mathbb{R}^n. The purpose of the present paper is to show the existence of a squarefree quadratic initial ideal of the toric ideal I_Φ of R_Φ. In particular, the convex polytope which is the convex hull of the positive roots of Φ together with the origin of \mathbb{R}^n possesses a regular unimodular triangulation and, in addition, the affine semigroup ring R_Φ is Koszul. We refer the reader to [1] for related results on the root system A_{n-1}.

To begin with, we discuss the toric ideal of the root system BC_n. The affine semigroup ring associated with (the finite set consisting of the origin of \mathbb{R}^n together with the positive roots of) the root system BC_n is the subalgebra R_{BC_n} of $K[t, t^{-1}, s]$ generated by the monomial s together with the monomials $t_1 t_j s$ with $1 \leq i \leq j \leq n$, $t_i t_j^{-1}s$ with $1 \leq i < j \leq n$, and $t_i s$ with $1 \leq i \leq n$. Let A_{BC_n} denote the polynomial rings

$$A_{BC_n} = K\{x\} \cup \{y_i\}_{1 \leq i \leq n} \cup \{e_{i,j}\}_{1 \leq i \leq j \leq n} \cup \{f_{i,j}\}_{1 \leq i < j \leq n}$$

over K and write $\pi : A_{BC_n} \rightarrow R_{BC_n}$ for the surjective homomorphism defined by setting $\pi(y_i) = t_i s$, $\pi(e_{i,j}) = t_i t_j$s and $\pi(f_{i,j}) = t_i t_j^{-1}s$. Let I_{BC_n} denote the kernel of π and call I_{BC_n} the toric ideal of R_{BC_n}.

We fix the reverse lexicographic monomial order $<_\text{rev}$ on the polynomial ring A_{BC_n} induced by the ordering of the variables

$$y_1 < y_2 < \cdots < y_n < x < f_{1,n} < f_{1,n-1} < \cdots < f_{1,2} < f_{2,n} < \cdots < f_{n-1,n}$$

$$< e_{1,n} < e_{1,n-1} < \cdots < e_{1,2} < e_{2,n} < \cdots < e_{n-1,n} < e_{n-1,n-1} < e_{n,n}.$$

To simplify the notation below, we understand $e_{j,i}$ if $i < j$. First of all, the quadratic binomials

1. $e_{i,j} e_{k,\ell} - e_{i,\ell} e_{j,k}$, $i \leq j < k \leq \ell$;
2. $e_{i,k} e_{j,\ell} - e_{i,\ell} e_{j,k}$, $i < j \leq k$;
3. $f_{i,k} f_{j,\ell} - f_{i,\ell} f_{j,k}$, $i < j < k < \ell$;
4. $f_{i,j} f_{j,k} - x f_{i,k}$, $i < j < k$;
5. $f_{i,j} e_{k,\ell} - f_{i,k} e_{j,\ell}$, $i < j < k$;
6. $f_{i,j} e_{j,k} - y_i y_k$, $i < j$;
7. $y_j e_{i,k} - y_i e_{i,k}$, $i < j$;
8. $y_j f_{i,k} - y_i f_{j,k}$, $i < j < k$;
\(y_j f_{i,j} - y_i x_i \), \(i < j \);
\(x e_{i,j} - y_j y_j \), \(i \leq j \),
belong to \(I_{BC_n} \) and their initial monomials
\(e_{i,j} e_{k,l} \), \(i \leq j < k \);
\(f_{i,j} f_{j,k} \), \(i < j < k \);
\(e_{i,k} e_{j,l} \), \(i < j \leq k \);
\(f_{i,k} f_{j,l} \), \(i < j < k < \ell \);
\(e_{i,j} e_{j,k} \), \(i < j \);
\(y_j e_{i,k} \), \(i < j \);
\(y_j f_{i,j} \), \(i < j \);
\(x e_{i,j} \), \(i \leq j \).

Theorem 1. The initial ideal \(\text{in}_{<_{rev}}(I_{BC_n}) \) of the toric ideal \(I_{BC_n} \) with respect to the reverse lexicographic monomial order \(<_{rev} \) is generated by the quadratic monomials (1') - (10') listed above.

Proof. Let \(G \) denote the set of standard monomials of \(R_{BC_n} \) with respect to the ideal generated by the quadratic monomials (1') - (10') listed above. Thus a monomial
\[u = s^\alpha(t_{k_1} s) \cdots (t_{k_r} s)(t_{a_1} t_{b_1} s) \cdots (t_{a_p} t_{b_p} s)(t_{i_1} t_{j_1}^{-1} s) \cdots (t_{i_q} t_{j_q}^{-1} s), \]
of \(R_{BC_n} \), where
\[y_{k_1} \leq_{rev} \cdots \leq_{rev} y_{k_r} \leq_{rev} f_{i_1,j_1} \leq_{rev} \cdots \leq_{rev} f_{i_q,j_q} \leq_{rev} e_{a_1,b_1} \leq_{rev} \cdots \leq_{rev} e_{a_p,b_p}, \]
belongs to \(G \) if and only if the following conditions are satisfied:

(BC-1) \(a_1 \leq a_2 \leq \cdots \leq a_p \leq b_p \leq \cdots \leq b_2 \leq b_1 \);

(BC-2) If \(\xi < \eta \) then either \(i_\xi \leq i_\eta \leq j_\eta \leq j_\xi \) or \(i_\xi < j_\xi < i_\eta < j_\eta \);

(BC-3) \(i_q \leq a_1 \);

(BC-4) \(k_1 \leq \cdots \leq k_r \leq a_1 \);

(BC-5) \(i_\xi < j_\xi \leq j_\eta \) for no \(\xi \) and no \(\eta \);

(BC-6) \(\{k_1, \ldots, k_r, a_1, \ldots, a_p, b_1, \ldots, b_p\} \cap \{j_1, \ldots, j_q\} = \emptyset \);

(BC-7) If \(\alpha \neq 0 \), then \(p = 0 \).

To obtain the required result, what we must prove is that if the monomial \(u \) above and
\[u' = s^{\alpha'}(t_{k'_1} s) \cdots (t_{k'_r} s)(t_{a'_1} t_{b'_1} s) \cdots (t_{a'_p} t_{b'_p} s)(t_{i'_1} t_{j'_1}^{-1} s) \cdots (t_{i'_q} t_{j'_q}^{-1} s) \]
belong to \(G \) and if \(u = u' \) in \(R_{BC_n} \), then
\[\alpha = \alpha', r = r', p = p', q = q', \]
\[k_1 = k'_1, \ldots, k_r = k'_r, \]
\[a_1 = a'_1, \ldots, a_p = a'_p, b_1 = b'_1, \ldots, b_p = b'_p, \]
$i_1 = i'_1, \ldots, i_q = i'_q, j_1 = j'_1, \ldots, j_q = j'_q.$

If one has $q = q', \alpha + r + p = \alpha' + r' + p'$ and $r + 2p = r' + 2p'$. Hence, if
$\alpha = \alpha' = 0$, then $p = p'$ and $r = r'$. If $\alpha \geq \alpha' > 0$, then $p = p' = 0$ by (BC-7); thus
$r = r'$ and $\alpha = \alpha'$. If $\alpha = 0$ and $\alpha' > 0$, then $r + p = \alpha' + r'$ and $r + 2p = r'$. Thus
$\alpha' + p = 0$, a contradiction.

Second, in case $\alpha = \alpha' = 0$ and $q = q' > 0$, we prove $i_q = i'_q$ and $j_q = j'_q$. Let
$i'_q < i_q$. Then $j'_q \leq j_q$ by (BC-2). Thus by (BC-5) there is no k'_q with
$i'_q < k'_q \leq j_q$ ($= j'_q$ for some η). Hence there is no k'_q with
$k'_q = i_q$. Note, in particular, that $i'_q = i_q$ if $p = p' = 0$. Thus either $a'_q = i_q$ or $b'_q = i_q$ for some ξ. Hence by (BC-2), (BC-3),
(BC-4) and (BC-5) one has $k'_q \leq i'_q \leq i'_q \leq a'_1 \leq i_q < j_q = j'_q$. Since $i'_q \leq i'_q (< i_q)$ for all μ, the total number of variables t_δ with $\delta \geq i_q$ appearing in u' is at most $2p$.
Since $i_q \leq a_1$, the total number of variables t_δ with $\delta \geq i_q$ appearing in u is at least
$2p + 1$. This contradicts $u = u'$ in R_{B_n}. Hence $i'_q = i_q$. Suppose $i_q = i'_q < j'_q < j_q$.
If t_δ^{-1} appears in u, then either $\delta \geq j_q$ or $\delta < i_q$. Thus t_δ^{-1} never appears in u', a
contradiction. Hence $j'_q = j_q$. Thus one has $i_q = i'_q$ and $j_q = j'_q$, as desired. It follows by
induction (on q) that $i_1 = i'_1, \ldots, i_q = i'_q, j_1 = j'_1, \ldots, j_q = j'_q$. If $\alpha = \alpha' = 0$
and $q = q' = 0$, then (BC-1), (BC-4) together with $p = p', r = r'$ guarantee that
$k_1 = k'_1, \ldots, k_r = k'_r$ and $a_1 = a'_1, \ldots, a_p = a'_p, b_1 = b'_1, \ldots, b_p = b'_p$.

Finally, when $\alpha = \alpha' > 0$, since $p = p' = 0$, in the discussion above we already
know $i'_q = i_q$ and, in addition, $j'_q = j_q$. Moreover, if $\alpha = \alpha' > 0$, $p = p' = 0$
and $q = q' = 0$, then obviously $k_1 = k'_1, \ldots, k_r = k'_r$, as required. \qed

We now turn to the study of the toric ideal of the root system B_n. With the same
notation as in the discussion of $in_{rev}(I_{B_n})$, just note that none of $t_1^2 s, \ldots, t_n^2 s$
appears in R_{B_n} and that none of $e_{1,1}, \ldots, e_{n,n}$ appears in A_{B_n}.

Theorem 2. The initial ideal $in_{rev}(I_{B_n})$ of the toric ideal I_{B_n} with respect to the
reverse lexicographic monomial order $<_{rev}$ is generated by the quadratic monomials
listed below:

\begin{itemize}
 \item[(1st)] $e_{i,j} e_{k,l}, \ i < j < k < \ell$;
 \item[(2nd)] $e_{i,k} e_{j,l}, \ i < j < k < \ell$;
 \item[(3rd)] $f_{i,k} f_{j,l}, \ i < j < k < \ell$;
 \item[(4th)] $f_{i,j} f_{j,k}, \ i < j < k$;
 \item[(5th)] $f_{j,k} e_{i,l}, \ i < j < k, i \neq \ell, j \neq \ell$;
 \item[(6th)] $f_{i,j} e_{j,k}, \ i < j, j \neq k$;
 \item[(7th)] $y_j e_{i,k}, \ i < j, i \neq k, j \neq k$;
 \item[(8th)] $y_j f_{i,k}, \ i < j < k$;
 \item[(9th)] $y_j f_{i,j}, \ i < j$;
 \item[(10th)] $x e_{i,j}, \ i < j$.
\end{itemize}

Proof. Since our work is to modify the proof of Theorem 1, only a brief sketch will
be given below. With the same notation as in the proof of Theorem 1, a monomial
u belongs to G if and only if the following conditions are satisfied:
(B-1) Either $a_1 \leq a_2 \leq \cdots \leq a_p < b_p \leq \cdots \leq b_2 \leq b_1$ or
$a_1 \leq a_2 \leq \cdots \leq a_{p_1} < b_{p_1} = \cdots = b_2 = b_1$
$= a_{p_1+1} = a_{p_1+2} = \cdots = a_p < b_p \leq b_{p-1} \leq \cdots \leq b_{p_1+1};$
(B-2) If $\xi < \eta$ then either $i_\xi \leq i_\eta < j_\eta \leq j_\xi$ or $i_\xi < j_\xi < i_\eta < j_\eta$;
(B-3) Either $i_\xi \leq a_1$ or
$i_{q_1} \leq a_1 \leq a_2 \leq \cdots \leq a_{p_1} < i_{q_1+1} = i_{q_1+2} = \cdots = i_q = b_{p_1} = \cdots = b_2 = b_1$
$= a_{p_1+1} = a_{p_1+2} = \cdots = a_p < b_p \leq b_{p-1} \leq \cdots \leq b_{p_1+1};$
(B-4) Either $k_1 \leq \cdots \leq k_r \leq a_1$ or
$k_1 \leq \cdots \leq k_{r_1} \leq a_1 \leq a_2 \leq \cdots \leq a_{p_1} < k_{r_1+1} = k_{r_1+2} = \cdots = k_r$
$= b_{p_1} = \cdots = b_2 = b_1 = a_{p_1+1} = a_{p_1+2} = \cdots = a_p < b_p \leq b_{p-1} \leq \cdots \leq b_{p_1+1};$
(B-5) $i_\xi < k_\xi \leq j_\eta$ for no ξ and no η;
(B-6) $\{k_1, \ldots, k_r, a_1, \ldots, a_p, b_1, \ldots, b_p\} \cap \{j_1, \ldots, j_q\} = \emptyset$;
(B-7) If $\alpha \neq 0$, then $p = 0.$

Now, suppose that u and u' belong to G with $u = u'$ in R_{B_n}. Then one has $\alpha = \alpha', r = r', p = p'$ and $q = q'$. In case $\alpha = \alpha' = 0$ and $q = q' > 0$, we prove $i_q = i'_q$ and $j_q = j'_q$. Let $i'_q < i_q$. Then $i'_q \leq i_q < j_q = j'_q$. Hence there is no k'_μ with
$i_q \leq k'_\mu < j_q$. Thus $a'_1 \leq i_q$. First, if $a_1 < i_q$, then by (B-3) for each ξ either $a_\xi = i_q$ or $b_\xi = i_q$. Thus the total number of the variable i_ξ appearing in u is at least $p + 1$;
while the total number of variable t_{i_ξ} appearing in u' is at most p since $k_\mu = i_q$ for no μ. Second, let $i_q \leq a_1$. If $k'_r < i_q$, then the total number of variables t_{i_ξ} with $\xi \geq i_q$
appearing in u (resp. u') is at least $2p + 1$ (resp. at most $2p$). Let $(i'_q <) i_q \leq k'_r$. Then $(j'_q =) j_q < k'_r$. In addition, if $k'_\mu < k'_r$, then $k'_\mu \leq i_\eta$ since $k'_\mu \neq a'_1 < j'_\eta$. Hence the total number of variables t_{i_ξ}
with $k'_r \neq \xi \geq i_q$ appearing in u' is at most p. Since either $i_q \leq a_\eta \neq k'_r$ or $i_q \leq b_\eta \neq k'_r$
for each η, the total number of variables t_{i_ξ} with $k'_r \neq \xi \geq i_q$ appearing in u is at least $p + 1$. This complete the proof of $i_q = i'_q$. Hence
$j_q = j'_q$ by the same reason as in the case of BC_n. Let $\alpha = \alpha' = 0$ and $q = q' = 0$. If $k_1 \leq a_1$ and $k'_1 \leq a'_1$, then $k_1 = k'_1$. If $a_1 < k_1$, then by (B-4) the total number of the variable t_{k_1}
appearing in u is $r + p$. Hence $k_1 = k_1$. Let $\alpha = \alpha' = 0$, $r = r' = 0$
and $q = q' = 0$. If $t_{\xi} \divides u$ for no ξ, then $a_1 \leq \cdots \leq a_p < b_p \leq \cdots \leq b_1$. If, for some ℓ, $t_{\xi} \divides u$, then either $a_\xi = \ell \leq b_\xi$ or $a_\xi < \ell = b_\xi$ for each ξ. Hence $a_\eta = a'_\eta$ and $b_\eta = b'_\eta$ for all η. The final step of the proof is completely analogous to
that of the proof given for $in_{<rev}(I_{BC_n})$.

The study of the initial ideal $in_{<rev}(I_{C_n})$ (resp. $in_{<rev}(I_{D_n})$) of the root system C_n
(resp. D_n) is much easier than that of BC_n (resp. B_n); only ignoring the variables
y_1, y_2, \ldots, y_n in the polynomial ring A_{BC_n} (resp. A_{B_n}) and ignoring $t_1 s, t_2 s, \ldots, t_n s$
in the affine semigroup ring R_{BC_n} (resp. R_{B_n}).

Theorem 3. The initial ideal $in_{<rev}(I_{C_n})$ of the toric ideal I_{C_n} with respect to the
reverse lexicographic monomial order $<_n$ is generated by the quadratic monomials
$(1') - (6')$ listed above.

Theorem 4. The initial ideal $in_{<rev}(I_{D_n})$ of the toric ideal I_{D_n} with respect to the
reverse lexicographic monomial order $<_n$ is generated by the quadratic monomials
$(1'') - (6'')$ listed above.
We conclude the present paper with a remark that the role of the origin of \mathbb{R}^n, i.e., the variable x of the polynomial ring is essential in our discussions. In fact, the toric ideal of the affine semigroup ring associated with the set of positive roots of each of the root systems A_{n-1}, B_n, C_n, D_n and BC_n with $n \geq 6$ is not generated by quadratic binomials.

REFERENCES

