The Weierstrass semigroup of a pair and moduli in \mathcal{M}_3

Jiryo Komeda (米田二良) (Collaboration with Seon Jeong Kim) Kanagawa Institute of Technology

0. Introduction

Let N be the additive semigroup of non-negative integers. A subsemigroup H of N is called a numerical semigroup if $\sharp(N\backslash H)<\infty$. The number $g(H):=\sharp(N\backslash H)$ is called the genus of H. A certain numerical semigroup of genus g is constructed from a pointed complete non-singular curve of genus g. In this paper we will define a subsemigroup of the additive semigroup $N\times N$ like a numerical semigroup. For such a subsemigroup of $N\times N$ we can also define its genus. Moreover, in the case where H is such a semigroup of genus 3 we will count the number of the moduli \mathcal{M}_H of curves with a pair of points whose semigroup is H.

1. Numerical semigroups and Weierstrass semigroups

In this section we will review some facts on numerical semigroups which are useful for defining a subsemigroup of $\mathbb{N} \times \mathbb{N}$ like a numerical semigroup. First we give the examples of numerical semigroups of lower genus. For elements $a_1, \ldots, a_n \in \mathbb{N}$ we denote by $\langle a_1, \ldots, a_n \rangle$ the semigroup generated by a_1, \ldots, a_n .

Example 1.1. The semigroup < 2, 3 > is only one numerical semigroup of genus 1.

Examples 1.2. The semigroups < 3, 4, 5 > and < 2, 5 > are the numerical semigroups of genus 2.

Examples 1.3. A numerical semigroup H of genus 3 is one of the following semigroups:

H	$\mathbf{N}\backslash H$
<4,5,6,7>	$\{1,2,3\}$
< 3, 5, 7 >	$\{1, 2, 4\}$
< 3, 4 >	$\{1,2,5\}$
< 2, 7 >	$\{1,3,5\}$

The following invariant of a numerical semigroup is important to define a subsemigroup of $N \times N$ like a numerical semigroup.

Definition 1.4. Let H be a numerical semigroup. We set

$$c(H) = \min\{c \in \mathbf{N} \mid c + \mathbf{N} \subseteq H\},\$$

This work has been supported by the Japan Society for the Promotion of Science and the Korea Science and Engineering Foundation (Project No. 976-0100-001-2).

which is called the *conductor* of H.

The number c(H) satisfies the following inequality:

Remark 1.5. $c(H) \leq 2g(H)$ (For example, see Lemma 2.1 (3) in Komeda [5]).

To describe a connection between numerical semigroups and pointed curves we introduce the following notations: Let C be a complete nonsingular irreducible algebraic curve of genus g over an algebraically closed field of characteristic 0, which is called a *curve* in this paper, and $\mathbf{K}(C)$ the field of rational functions on C. For any point P of C we define the set H(P) by

$$H(P) := \{ \alpha \in \mathbb{N} | \text{ there exists } f \in \mathbb{K}(C) \text{ with } (f)_{\infty} = \alpha P \}.$$

We have the following well-known fact:

Fact 1.6. H(P) is a numerical semigroup of genus g.

Hence, for a fixed numerical semigroup H we consider the moduli \mathcal{M}_H of curves with a point whose semigroup is H.

Definition 1.7. Let \mathcal{M}_g be the moduli variety of curves of genus g. For a numerical semigroup H of genus g we set

$$\mathcal{M}_H = \{ [C] \in \mathcal{M}_g \mid \text{there exists } P \in C \text{ such that } H(P) = H \}.$$

If $\mathcal{M}_H \neq \emptyset$, H is called a Weierstrass semigroup.

We have the following facts on what numerical semigroups are Weierstrass or not.

Fact 1.8. (1) If $g(H) \leq 3$, then H is Weierstrass (Classical).

- (2) If g(H) = 4, then H is Weierstrass (Lax [7]).
- (3) If $5 \le g(H) \le 7$, then H is Weierstrass (Komeda [6]).
- (4) For any $g \ge 16$ there exists a non-Weierstrass numerical semigroup of genus g (Buchweitz [2]).

2. Numerical semigroups of a pair

In this section we define a subsemigroup of $N \times N$ like a numerical semigroup.

Definition 2.1. A subsemigroup H of $N \times N$ is called a *numerical semigroup of a pair of genus g* if it satisfies the following three conditions:

- (1) $\mathbb{N}\setminus\{\gamma\in\mathbb{N}|(\gamma,0)\notin H\}$ and $\mathbb{N}\setminus\{\delta\in\mathbb{N}|(0,\delta)\notin H\}$ are numerical semigroups of genus q,
- (2) for any $(h_1, h_2) \in \mathbb{N} \times \mathbb{N}$ with $h_1 + h_2 \geq 2g$, we have $(h_1, h_2) \in H$, and
- (3) we have a bijection

$$\sigma: \{\gamma \in \mathbf{N} | (\gamma, 0) \not\in H\} \longrightarrow \{\delta \in \mathbf{N} | (0, \delta) \not\in H\}$$

such that

$$\mathbf{N} \times \mathbf{N} \backslash H = \bigcup_{\alpha \in \{\gamma \in \mathbf{N} | (\gamma, 0) \notin H\}} \left(\{ (\alpha, \beta) | \beta = 0, 1, \dots, \sigma(\alpha) - 1 \} \right)$$

$$\cup \{(\mu,\sigma(lpha)|\mu=0,1,\ldots,lpha-1\}\Big).$$

In this case the set $\{(\alpha, \sigma(\alpha)) | \alpha \in \{\gamma | (\gamma, 0) \notin H\}\}$ is called the *generating set* of H, which is denoted by Γ_H . Thus, if $\pi_i : \mathbf{N} \times \mathbf{N} \longrightarrow \mathbf{N}$ is the i-th projection for i = 1, 2, then $\mathbf{N} \setminus \pi_1(\Gamma_H)$ and $\mathbf{N} \setminus \pi_2(\Gamma_H)$ are numerical semigroups of genus g.

Example 2.2. (1) The semigroup H with generating set $\Gamma_H = \{(1,1)\}$ is only one numerical semigroup of a pair of genus 1.

(2) A numerical semigroup H of a pair of genus 2 is one of the following types:

Type	Γ_H	$\mathbf{N}ackslash\pi_1(\Gamma_H)$	$\mathbf{N} \setminus \pi_2(\Gamma_H)$
I II III IVa IVb	$\{(1,3),(3,1)\}$ $\{(1,2),(3,1)\}$ $\{(1,3),(2,1)\}$ $\{(1,1),(2,2)\}$ $\{(1,2),(2,1)\}$	<2,5> <2,5> <3,4,5> <3,4,5> <3,4,5>	<2,5> <3,4,5> <2,5> <3,4,5> <3,4,5> <3,4,5>

Fact 2.3.(Kim [3]) Let C be a curve of genus g and P, Q two distinct points of C. We define

$$H(P,Q) = \{(\alpha,\beta) \in \mathbb{N} \times \mathbb{N} | \text{ there exists } f \in \mathbb{K}(C) \text{ with } (f)_{\infty} = \alpha P + \beta Q \}.$$

Then H(P,Q) is a numerical semigroup of a pair of genus g.

Definition 2.4. Let H be a numerical semigroup of a pair of genus g. We set

$$\mathcal{M}_H = \{ [C] \in \mathcal{M}_q \mid \text{there exist two distinct points } P \text{ and } Q \text{ of } C \}$$

such that
$$H(P,Q) = H$$
.

If $\mathcal{M}_H \neq \emptyset$, H is called a Weierstrass semigroup of a pair.

Fact 2.5. If H is a numerical semigroup of a pair of genus ≤ 2 , then it is Weierstrass (Kim [3]).

In the case of genus 3 the statement like Fact 2.8 does not hold.

Counterexample 2.6. The numerical semigroup H of a pair of genus 3 with $\Gamma_H = \{(1,5), (3,2), (5,1)\}$ is not Weierstrass.

Proof. We note that $\mathbb{N}\backslash\pi_1(\Gamma_H)=<2,7>$ and $\mathbb{N}\backslash\pi_2(\Gamma_H)=<3,4>$. Suppose that H were Weierstrass. Then there exist a curve C and its two distinct points P,Q such that $H(P,Q)=H\supset (<2,7>\times\{0\})\cup (\{0\}\times<3,4>)$. Thus, H(P)=<2,7>, hence C is hyperelliptic, and H(Q)=<3,4>, hence C is non-hyperelliptic. (It means that

$$\mathcal{M}_{\mathbf{N} \setminus \pi_1(\Gamma_H)} \cap \mathcal{M}_{\mathbf{N} \setminus \pi_2(\Gamma_H)} = \mathcal{M}_{<2,7>} \cap \mathcal{M}_{<3,4>} = \emptyset.)$$

This is a contradiction.

Q.E.D.

But we obtain the following result:

Theorem 2.7. Let H be a numerical semigroup of a pair of genus 3 such that

$$\mathcal{M}_{\mathbf{N}\setminus\pi_1(\Gamma_H)}\cap\mathcal{M}_{\mathbf{N}\setminus\pi_2(\Gamma_H)}\neq\emptyset.$$

Then the semigroup H is Weierstrass.

Proof. If $\mathbb{N}\backslash\pi_i(\Gamma_H) = <2,7>$ for some i, this result is due to Kim [3]. Suppose that $\mathbb{N}\backslash\pi_i(\Gamma_H) \neq <2,7>$ for i=1,2. Then we have the following table up to symmetries.

Type	Γ_H	$\mathbf{N}ackslash\pi_1(\Gamma_H)$	$\mathbf{N}ackslash\pi_2(\Gamma_H)$
			4 4 ,
I	$\{(1,5),(2,2),(5,1)\}$	< 3, 4 >	< 3, 4 >
IIa	$\{(1,2),(2,4),(5,1)\}$	<3,4>	< 3, 5, 7 >
IIb	$\{(1,4),(2,2),(5,1)\}$	< 3, 4 >	< 3, 5, 7 >
IIIa	$\{(1,2),(2,3),(5,1)\}$	< 3, 4 >	<4,5,6,7>
IIIb	$\{(1,3),(2,2),(5,1)\}$	< 3, 4 >	<4,5,6,7>
IVa	$\{(1,2),(2,4),(4,1)\}$	< 3, 5, 7 >	< 3, 5, 7 >
IVb	$\{(1,4),(2,2),(4,1)\}$	< 3, 5, 7 >	< 3, 5, 7 >
Va	$\{(1,3),(2,1),(4,2)\}$	< 3, 5, 7 >	<4,5,6,7>
Vb	$\{(1,2),(2,3),(4,1)\}$	< 3, 5, 7 >	<4,5,6,7>
Vc	$\{(1,3),(2,2),(4,1)\}$	< 3, 5, 7 >	<4,5,6,7>
VIa	$\{(1,2),(2,1),(3,3)\}$	<4,5,6,7>	<4,5,6,7>
VIb	$\{(1,3),(2,1),(3,2)\}$	<4,5,6,7>	<4,5,6,7>
VIc	$\{(1,3),(2,2),(3,1)\}$	<4,5,6,7>	<4,5,6,7>
VId	$\{(1,1),(2,2),(3,3)\}$	<4,5,6,7>	< 4, 5, 6, 7 >

We note that every non-hyperelliptic curve of genus 3 can be expressed by a non-singular curve of degree 4 in the projective 2-space Proj k[x, y, z] through a canonical embedding. For curves C with its points P and Q in the below table we have H = H(P,Q). In fact, the case of Type VIc is trivial, for example, due to Arbarello, Cornalba, Griffiths and Harris [1, VIII Exercises B.7]. Using the Bertini's theorem and elementary calculation, we can easily prove that each curve

is nonsingular for general constants a and b, and that the given points P and Q satisfy H = H(P,Q). Note that the canonical series on each curve in the table are cut out by lines on the plane.

Type	C	P	$_{_{0}}Q$
Ι	$y^3z - yz^3 - x^4 = 0$	(0:0:1)	(0:1:0)
IIa	$-x^4 + xy^3 + 2yz^3 = 0$	(0:0:1)	(0:1:0)
IIb	$-(x-z)^4 + xy^3 + 2yz^3 = 0$	(1:0:1)	(0:1:0)
IIIa	$yz^3 - x^4 + xy^3 - 2y^2z^2 = 0$	(0:0:1)	(0:1:0)
IIIb	$a(yz^3 - (x-z)^4) + b(xy^3 + y^2z^2) = 0$	(1:0:1)	(0:1:0)
IVa	$-x^3z + xy^3 + 2yz^3 = 0$	(0:0:1)	(0:1:0)
IVb	$-(x-z)^3z + xy^3 + 2yz^3 = 0$	(1:0:1)	(0:1:0)
Va	$a(yz^3 - x^3(x - z)) + by^4 = 0$	(0:0:1)	(1:0:1)
Vb	$a(yz^3 - x^3z) + b(xy^3 + y^2z^2) = 0$	(0:0:1)	(0:1:0)
Vc	$a(yz^3 - (x-z)^3z) + b(xy^3 + y^2z^2) = 0$	(1:0:1)	(0:1:0)
VIa	$a(yz^3 - x^2(x-z)^2) + by^4 = 0$	(0:0:1)	(1:0:1)
VIb	$a(yz^3 - x^2(x-z)(x-2z)) + by^4 = 0$	(0:0:1)	(1:0:1)
VIc	any curve	general	general

Q.E.D.

Theorem 2.8. We can count the dimension of the moduli \mathcal{M}_H of curves of genus 3 with a fixed Weierstrass semigroup H of a pair as follows:

Type	Γ_H	$\dim\mathcal{M}_H$

Ι	$\{(1,5),(2,2),(5,1)\}$	4
IIa	$\{(1,2),(2,4),(5,1)\}$	4
IIb	$\{(1,4),(2,2),(5,1)\}$	5
IIIa	$\{(1,2),(2,3),(5,1)\}$	5
IIIb	$\{(1,3),(2,2),(5,1)\}$	5
IVa	$\{(1,2),(2,4),(4,1)\}$	5
IVb	$\{(1,4),(2,2),(4,1)\}$	6
Va	$\{(1,3),(2,1),(4,2)\}$	6
Vb	$\{(1,2),(2,3),(4,1)\}$	6
Vc	$\{(1,3),(2,2),(4,1)\}$	6
VIa	$\{(1,2),(2,1),(3,3)\}$	6
VIb	$\{(1,3),(2,1),(3,2)\}$	6
VIc	$\{(1,3),(2,2),(3,1)\}$	6
VId	$\{(1,1),(2,2),(3,3)\}$	5

Proof. See Kim-Komeda[4].

References

- [1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, *Geometry of algebraic curves* Vol.I, Springer-Verlag, 1985.
- [2] R.O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable monomial curves, preprint 113, University of Hannover, 1980.
- [3] S.J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. 62 (1994), 73-82.
- [4] S.J. Kim and J. Komeda, The Weierstrass semigroup of a pair and moduli in \mathcal{M}_3 , preprint.
- [5] J. Komeda, On Weierstrass points whose first non-gaps are four, J. reine angew. Math. **341** (1983), 68-86.
- [6] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8, J. Pure Appl. Algebra 97 (1994), 51-71.
- [7] R.F. Lax, Gap sequences and moduli in genus 4, Math. Z. 175 (1980), 67-75.