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Abstract

The languages recognized by commutative asynchronous automata
are studied and described here. It turns out that over a finite nonvoid
alphabet $X$ with $|X|=k$ , the languages recognized by commutative
asynchronous automata constitute such a Boolean algebra which is
isomorphic to the Boolean algebra consisting of all subsets of the set
$\{0,1\}^{k}$ .

1 Introduction
The decomposition of commutative asynchronous automata is studied in [1]
and it is proved that every commutative asynchronous automaton can be
embedded isomorphically into a suitable quasi-direct power of a two-state
commutative asynchronous automaton. Moreover, the directable commuta-
tive asynchronous automata are also investigated in [1], and it is shown that
the exact bound for the maximal length of minimum-length directing words
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of commutative asynchronous automata of $n$ states is equal to $n-1,$ $i.e.$ ,
the exact bound is the same as in the commutative case (see $eg$ . [3] or [4]).
Surprisingly, the exact bound decreases drastically to $[\log_{2}(\mathrm{n})]$ if we consider
only such elements of this class which are generated by one element. Paper [2]
deals with the decomposition of commutative asynchronous nondeterminis-
tic automata. $\mathrm{H}\mathrm{e}\mathrm{r}\dot{\mathrm{e}}$ , we study now the languages recognized by conlmutative
asynchronous automata. It turns out that there are a few of them, and they
constitute a Boolean algebra under a fixed alphabet.

2 Preliminaries
We recall here a few notions and notation necessary in the sequal. Let $X$

be a nonempty alphabet with $|X|=k$ . Without loss of generality, we may
assume that $X=\{x_{1}, \ldots , x_{k}\}$ . Throughout this paper we shall work uder
this fixed alphabet $X$ . The set of all finite words over $X$ is denoted by $X^{*}$ .
For the length of a word $p\in X^{*}$ , we use the notation $|p|$ . For any $p\in X^{*}$ , let
us denote by alph$(p)$ the set of the all letters occuring in the word $p$ . One can
extend the function alph to languages in a natural way. The shuffle product
of two words $u,$ $v\in X^{*}$ is the set

$u\mathrm{o}v=\{w:w=u_{1}v_{1}\ldots u_{n}v_{n}, u=u_{1}\ldots u_{n}, v=v_{1}\ldots v_{n}, u_{i}.v_{j}\in X^{*}\}$.

The shuffle product can be extended to languages as well. We use the Parikh
mapping denoted by $\Psi$ . For its definitions, let $N=\{0,1,2, \ldots\}$ , and let us
define the mapping $\Psi$ : $X^{*}arrow N^{k}$ , by

$\Psi(u)=(\mu_{x_{1}}(u), \ldots, \mu_{x_{k}}(u))$ ,

where $\mu_{x_{j}}(u)$ denotes the number of the occurrences of $x_{j}$ in $u$ , for every $j$ ,
$j=1,$ $\ldots,$

$k$ .
By automaton or $X$-automaton we mean a system $\mathrm{A}=(A, X)$ , where $A$

is the finite nonvoid set of states, $X$ is the finite nonempty set of input signs,
and every input sign $x\in X$ is realized as a unary operation $x^{\mathrm{A}}$ : $Aarrow A$ .
The automaton $\mathrm{A}=(A, X)$ is commutative if $a(xy)^{\mathrm{A}}=a(yx)^{\mathrm{A}}$ is valid, for
all $a\in A$ and $x,$ $y\in X$ . Another particular automata are the asynchronous
ones. A is called asynchronous if $ax^{\mathrm{A}}=a(xx)^{\mathrm{A}}$ , for all $a\in A$ and $x\in X$ .
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Some particular commutative asynchronous automata introduced in [1]
will be used in the following section.

For every $n\geq 1$ , let us define the automaton $\mathrm{H}_{n}=(\{0,1\}^{n}, \{x_{1}, \ldots, x_{n}\})$

in the following way. For all $(i_{1}, \ldots, i_{n})\in\{0,1\}^{n}$ and $x_{j}\in\{x_{1}, \ldots , x_{n}\}$ , let

$(i_{1}, \ldots, i_{n})x_{j}^{\mathrm{H}_{n}}=\{$

$(i_{1}’, \ldots , i_{n}’)$ if $i_{j}=0$ , where $i_{t}’=i_{t},$ $t=1,$ $\ldots$ , $n,$ $t\neq j$ ,
and $i_{j}’=1$ ,

$(i_{1}, \ldots , i_{n})$ otherwise.

The automaton $\mathrm{H}_{n}$ can be visualized as follows. Its states are the vertices of
the $n$-dimensional hyper-cube and any input sign takes the automaton from
a vertex into its neighbour or fixes the state given. Moreover, $x_{j}$ changes
only the $j\mathrm{t}\mathrm{h}$ component. By the definition of $\mathrm{H}_{n}$ , it is easy to see that $\mathrm{H}_{n}$

is commutative and asynchronous.
A recognizer or $X$-recognizer is a system $A=(\mathrm{A}, a_{0}, F)$ which consists of

an $X$-automaton $\mathrm{A}$ , an initial state $a_{0}\in A$ , and a set $F(\subseteq A)$ of final states.
The language recognized by $A$ is

$L(A)=$ { $w:w\in X^{*}$ and $a_{0}w^{\mathrm{A}}\in F$ }.
It is also said that $L(A)$ is recognizable by the automaton A.

3 Results
For every $k$ dimensional binary vector $\mathrm{i}=(i_{1}, \ldots, i_{k})$ , a language $L_{\mathrm{i}}$ over $X$

can be defined as follows. Let

$L_{\mathrm{i}}=\Psi^{-1}(\mathrm{i})0$ (alph $(\Psi^{-1}(\mathrm{i}))^{*}$ .
Moreover, if $B\subseteq\{0,1\}^{k}$ , then we can define the language $L_{B}$ by

$L_{B}= \bigcup_{\mathrm{i}\in B}L_{\mathrm{i}}$ .

The languages $L_{B},$ $B\subseteq\{0,1\}^{k}$ are strongly related to the languages
recognizable by commutative asynchronous $X$-automata. This strong rela-
tionship is presented by the following statement.

Proposition 1. A language $L\subseteq X^{*}$ is recognized by a commutative asyn-
chronous $X$ -automaton if and only if $L=L_{B}$ for some $B\subseteq\{0,1\}^{k}$ .
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Proof. Let $L\subseteq X^{*}$ be an arbitrary language and let us suppose that $L$ can

be recognized by a recognizer $A=(\mathrm{A}, a_{0}, F)$ , where $\mathrm{A}=(A, X)$ is a commu-
tative asynchronous $X$-automaton. Let us observe that $ap^{\mathrm{A}}=a(x_{i_{1}}\ldots x_{i\mathrm{e}’\vee}.)^{\mathrm{A}}$ ,
1 $\leq s\leq k$ is valid for every $p\in X^{*}$ with alph $(p)=\{x_{i_{1}}, \ldots, x_{i_{9}}.\}\mathrm{s}\mathrm{l}\mathrm{n}\mathrm{c}\mathrm{e}$

A $=(A,X)$ is commutative and asynchronous. By the commutativity, we
may suppose that $i_{1}<i_{2}<\ldots<i_{s}$ . Therefore, for every $p\in L$ , there ex-
ists a uniquely determined word $x_{i_{1}}\ldots x_{i_{S}}$ such that $a_{0}p^{\mathrm{A}}=a_{0}(x_{i_{1}}\ldots x_{i\epsilon’\vee})^{\mathrm{A}}$ .

Now, let us denote by $K$ the subset of $\mathrm{L}$ which consists of all words $q$ in $L$

for which $|q|=|\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}(q)|$ and if $q=x_{i_{1}}\ldots x_{i\mathrm{q}}.$ ’ then $i_{1}<i_{2}<\ldots<i_{s}$ . Then
it is easy to see that

$L= \bigcup_{q\in K}(\Psi^{-1}(\Psi(q)))\mathrm{o}(\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}(q))^{*}$
.

On the other hand, by the definition of $K$ , the mapping $\mu$ which is defined by
$\mu$ : $qarrow\Psi(q),$ $q\in K$ , is a one-to-one mapping of the language $K$ into $\{0,1\}^{k}$ .
Consequently, if the image of $K$ under $\mu$ is denoted by $B$ , then $B\subseteq\{0,1\}^{k}$ ,
moreover,

$L= \bigcup_{q\in \mathrm{A}^{\wedge}}(\Psi^{-1}(\Psi.(q)))\mathrm{o}(\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}(q))^{*}=\bigcup_{\mathrm{i}\in B}\Psi^{-1}(\mathrm{i})\mathrm{o}(\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}(\Psi^{-1}(\mathrm{i}))^{*}=\bigcup_{\mathrm{i}\in B}L_{\mathrm{i}}=L_{B}$

.

and consequently, $L=L_{B}$ . In particular, if $L=\emptyset$ , then $B=\emptyset$ .

Conversely, let $L=L_{B}= \bigcup_{\mathrm{i}\in B}L_{\mathrm{i}}$ for some $B\subseteq\{0,1\}^{k}$ . Then it is easy
to prove that the commutative asynchronous automaton $\mathrm{H}_{k}$ based on the
$k$ dimensional hyper-cube recognizes $L$ by $(\mathrm{H}_{k}, (0,0, \ldots, 0), B)$ , and thus, $L$

can be recognized by a commutative asynchronous X-automaton.

From the description of the languages over $X$ , recognized by commutative
asynchronous $X$-automata, it follows that these languages are closed under
the union and intersection. What is more that is presented by the following
assertion.
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Proposition 2. The number of the languages over $X=\{x_{1}, \ldots, x_{k}\}$ , which
can be recognized by commutative asynchronous $X$ -automata, is equal to $2^{2^{k}}$

$l$

moreover, these languages constitute a Boolean algebra which is isomorphic
to the Boolean algebra consisting of all the subsets of the set $\{0,1\}^{k}$ .

Proof. Let us denote by $\mathcal{L}_{X}$ the set of languages, recognized by commu-
tative asynchronous $X$-automata. Let $L\in \mathcal{L}_{X}$ be an arbitrary language. By
the proof of Proposition 1, there exists a $B\subseteq\{0,1\}^{k}$ such that $L=L_{B}$ .
Therefore, to every language $L\in \mathcal{L}_{X}$ , we can assign a subset $B$ of $\{0,1\}^{k}$ .
Let us denote this mapping by $\varphi$ . Then $\varphi$ is a mapping of $\mathcal{L}_{X}$ into $\{0,1\}^{k}$ .
On the other hand, in the proof of Proposition 1 it is shown that for every
$B\subseteq\{0,1\}^{k}$ , there exists a language $L\in \mathcal{L}_{X}$ such that $L=L_{B}$ , and there-
fore, $\varphi$ is surjective. Finally, it is easy to see that if $L_{1}\neq L_{2}\in \mathcal{L}_{X}$ , then
$L_{1}\varphi\neq L_{2}\varphi$ .

Consequently, $\varphi$ is a one-to-one mapping of $\mathcal{L}_{X}$ onto $\{0,1\}^{k}$ . Moreover,
it is evident that $(L_{1}\cup L_{2})\varphi=L_{1}\varphi\cup L_{2}\varphi,$ $(L_{1}\cap L_{2})\varphi=L_{1}\varphi\cap L_{2}\varphi$ , and
$\overline{L}_{1}\varphi=\overline{L_{1}\varphi}$ , for all $L_{1},$ $L_{2}\in L_{X}$ , where $\overline{L}$ and $\overline{L}\varphi$ , denotes the correspond-
ing complements, respectively. Consequently, $\varphi$ is an isomorphism. This
isomorphism provides that $|\mathcal{L}_{X}|=2^{2^{k}}$ This ends the proof of Proposition 2.
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