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A note on the languages recognized
by commutative asynchronous
automata*®

B. Imreh! M. Ito? A. Pukler$

Abstract

The languages recognized by commutative asynchronous automata,
are studied and described here. It turns out that over a finite nonvoid
alphabet X with |X| = k, the languages recognized by commutative
asynchronous automata constitute such a Boolean algebra which is -
isomorphic to the Boolean algebra consisting of all subsets of the set

{0,1}*.

1 Introduction

The decomposition of commutative asynchronous automata. is studied in [1]
and it is proved that every commutative asynchronous automaton can be
embedded isomorphically into a suitable quasi-direct power of a two-state
commutative asynchronous automaton. Moreover, the directable commuta-
tive asynchronous automata are also investigated in [1], and it is shown that
the exact bound for the maximal length of minimum-length directing words
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of commutative asynchronous automata of n states is equal to n — 1, e,
the exact bound is the same as in the commutative case (see eg. [3] or [4]).
Surprisingly, the exact bound decreases drastically to [loga(n)] if we consider
only such elements of this class which are generated by one element. Paper [2]
deals with the decomposition of commutative asynchronous nondeterminis-
tic automata. Here, we study now the languages recognized by commutative
asynchronous automata. It turns out that there are a few of them, and they
constitute a Boolean algebra under a fixed alphabet.

2 Preliminaries

We recall here a few notions and notation necessary in the sequal. Let X
be a nonempty alphabet with |X| = k. Without loss of generality, we may
assume that X = {z;,...,zt}. Throughout this paper we shall work uder
this fixed alphabet X. The set of all finite words over X is denoted by X™.
For the length of a word p € X*, we use the notation |p|. For any p € X, let
us denote by alph(p) the set of the all letters occuring in the word p. One can
extend the function alph to languages in a natural way. The shuffle product
of two words u,v € X* is the set

. — —_— — . . * .
UOV = {W:W=UV1 ... UpUp, U= Up...Upn, V="01...0n, %.; € X"}.

The shuffle product can be extended to languages as well. We use the Parikh
mapping denoted by W. For its definitions, let N = {0,1,2,...}, and let us
define the mapping ¥ : X* — N¥ by

‘Ij(u) = (fiay (), - - ?Mzk(u))’

where p,.(u) denotes the number of the occurrences of z; in u, for every j,
j=1,...,k.

By automaton or X-automaton we mean a system A = (A, X), where A
is the finite nonvoid set of states, X is the finite nonempty set of input signs,
and every input sign z € X is realized as a unary operation z# : A — A.
The automaton A = (A, X) is commutative if a(zy)* = a(yz)* is valid, for
all a € A and z,y € X. Another particular automata are the asynchronous
ones. A is called asynchronous if az® = a(zz)*, for alla € A and z € X
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Some particular commutative asynchronous automata introduced in [1]
will be used in the following section.

For every n > 1, let us define the automaton H, = ({0,1}", {z1,...,zn})
in the following way. For all (44,...,4,) € {0,1}" and z; € {z1,...,z,}, let

(¢h,...,) ifi; =0, where ¢, =i;,t =1,...,n,t# 7,
. . H, _ o
(b1, yin)z ™ = . ' and 7 = 1,

(t1,...,%,) otherwise.

The automaton H,, can be visualized as follows. Its states are the vertices of
the n-dimensional hyper-cube and any input sign takes the automaton from
a vertex into its neighbour or fixes the state given. Moreover, z; changes
only the jth component. By the definition of H,, it is easy to see that H,,
is commutative and asynchronous.

A recognizer or X-recognizer is a system A = (A, ag, F ) which consists of
an X-automaton A, an initial state ag € A, and a set F(C A) of final states.
The language recognized by A is

L(A) = {w:w € X* and qouw™ € F}.
It is also said that L(.A) is recognizable by the automaton A.

3 Results

For every k dimensional binary vector i = (7y,...,1), a language L; over X
can be defined as follows. Let

L; = ¥~'(i) o (alph(¥ 1 (i))*.
Moreover, if B C {0,1}*, then we can define the language Lp by

Lp = UiepL;.

The languages Lg, B C {0,1}* are strongly related to the languages
recognizable by commutative asynchronous X-automata. This strong rela-
tionship is presented by the following statement.

Proposition 1. A language L C X* is recognized by a commutative asyn-
chronous X -automaton if and only if L = Ly for some B C {0,1}*.



Proof. Let L C X* be an arbitrary language and let us suppose that L can
be recognized by a recognizer A = (A, ag, F'), where A = (A, X) is a commu-
tative asynchronous X-automaton. Let us observe that ap® = a(zi, ...z, )™,
1 < s < k is valid for every p € X* with alph(p) = {zi,...,2:,} since
A = (A, X) is commutative and asynchronous. By the commutativity, we
may suppose that iy < i, < ... < 1,. Therefore, for every p € L, there ex-
ists a uniquely determined word z;, ...x;, such that agp® = ao(z, T L
Now, let us denote by K the subset of L which consists of all words ¢ in L
for which |g| = |alph(¢)] and if ¢ = z;, ... s, then 7y < iy < ... < ;. Then
it is easy to see that

L= (¥7(¥(q))) o (alph(q))"-

: q€K
On the other hand, by the definition of K, the mapping p which is defined by
i q — U(q), ¢ € K, is a one-to-one mapping of the language K into {0,1}*.
Consequently, if the image of K under x is denoted by B, then B € {0, 1}*,

moreover,
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L= [ (¥ ((q)))elalph(g)” = | ¥~ ()o(alph(¥ (1)) = UieaLs = Ls.

qeK’ ieB

and consequently, I = Lp. In particular, if L = 0, then B = 0.

Conversely, let L = Lg = UjepL; for some B C {0, 1}*. Then it is easy
to prove that the commutative asynchronous automaton Hy based on the
k dimensional hyper-cube recognizes L by (Hg, (0,0,...,0), B), and thus, L
can be recognized by a commutative asynchronous X-automaton.

From the description of the languages over X, recognized by commutative
asynchronous X-automata, it follows that these languages are closed under
the union and intersection. What is more that is presented by the following
assertion.
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Proposition 2. The number of the languages over X = {zy,...,z;}, which
can be recognized by commutative asynchronous X -automata, is equal to 22,
moreover, these languages constitute a Boolean algebra which is isomorphic
to the Boolean algebra consisting of all the subsets of the set {0,1}*.

Proof. Let us denote by Lx the set of languages, recognized by commu-
tative asynchronous X-automata. Let L € Lx be an arbitrary language. By
the proof of Proposition 1, there exists a B C {0,1}* such that [ = Lg.
Therefore, to every language L € Lx, we can assign a subset B of {0, 1}*.
Let us denote this mapping by . Then ¢ is a mapping of Lx into {0, 1}*.
On the other hand, in the proof of Proposition 1 it is shown that for every
B C {0,1}*, there exists a language L € Lx such that L = Lp, and there-
fore, ¢ is surjective. Finally, it is easy to see that if L; # L, € Lx, then
ngo 7£ ngo

Consequently, ¢ is a one-to-one mapping of Lx onto {0,1}*. Moreover,
it is evident that (L U Ly)p = Lip U Ly, (L1 N Lz)p = Lip N Ly, and
Lip = Ly, for all Ly, Ly € Lx, where L and L, denotes the correspond-
ing complements, respectively. Consequently, ¢ is an isomorphism. This
isomorphism provides that |Lx| = 22" This ends the proof of Proposition 2.
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