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JACOBI-TRUDI-TYPE IDENTITIES FOR
IDEAL-TABLEAUX

SERHE  BIHA (KAZUTO ASAT)

1. INTRODUCTION

The present article is concerned with the generating functions of certain tableaux
consisting of order ideals of finite odd-ary trees. Here, a tree is a connected digraph
without undirected cycles, which is identified with an ordered set in this way: z —y
(an edge from z to y exists) <= =z coversy (z > y and z >4z > y). On the
analogy of “binary tree”, an odd-ary tree is defined to be a tree with vertices of degree
1,2,4,6,..., where the degree of a vertex is the number of the edges incident into or
from the vertex. The main result of the paper is a superdeterminantal formula for
the above-mentioned generating function, which includes Wachs, Okada and Asai’s
extension of the Jacobi-Trudi identity [Wac85, Oka90, Asa98]. A superdeterminant is
a natural extension of a determinant defined for even dimensional square arrays. Our
result is the consequence of analogous Lindstrom’s theorem [Lin73] and the Gessel-
Viennot lattice paths [GV85, GV]. In the last section, we study the summation of the
weights of (partially) unbounded tree-g-paths by a superpfaffian, which corresponds to
Stembridge’s prominent technique to enumerate unbounded ordinary g-paths [Ste90].
It has a strong connection with the minor-summation formula of an arbitrary matrix
[Okag9].

We begin with elementary definitions. Let D = (V, E) = (V(D), E(D)) be a di-
graph. The number of edges from [resp. to] a vertex v is outdegree [resp. indegree]
of v. If D has no multiedges or loops, the edge from z to y is often written as zy.
For a given vertex set V, the (vertex-)induced subdigraph of D induced by V' is the
maximum digraph with the vertex set V. Similarly, given an edge set E, the edge-
induced subdigraph of D induced by F is the minimum subdigraph with the edge set
E. We assume that a path in a digraph is directed and has no vertex repetitions. An
undirected path is called a semipath.

A digraph F is called irreducible when it includes no isolated vertices and no vertices
of indegree = outdegree = 1. A reduction of D is a composition of the operations
of deleting an isolated vertex simply; or deleting a vertex z of degree 2 such that

y — N z, together with the edge f, and attaching e to 2 so that we may have
y —» z. The digraph F obtained by a reduction of D is called a reduced digraph of
D, and if F is irreducible, it is called the factor of D.
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FIGURE 1. Odd-ary tree O.

Let O be a finite odd-ary tree with edges E, and K = (K3,..., K,) be connected
induced subdigraphs of O, including all the edges incident into/from ramification ver-
tices (vertices of degree > 2) of O. As we note at the beginning, directed trees are
identified with ordered sets, and so we can consider the order ideals of K,;. Here, an
order ideal I of an ordered set S is defined as a subset of S such that, if x € I and
x >y, then y € I. Let J(K;) denote the ordered set of all order ideals of K; ordered
by inclusion. For I € J(K;) and I' € J(K;/), we define a (non-order) relation <,;; by
I = I' < INKy C I'NK;. Consider a tableau T with r rows and infinitely many
columns, whose (i, j)-entry T;; is an element of J(K;). Suppose that

T1: T;; increases weakly as j increases (¢t e [1,r)),
T2: Tz'j ji,i+1+l Ti+1+l,j+l (l € [0,7’ -1 — 1], 1€ [1,’1“ - 1], j € Z).
(If K; =0 (i =1,...,r), then (T2) is simply “T;; increases weakly as ¢ increases”.)

We call the tableau T an ideal-tableau of K.

The end vertices end(D) of a digraph D are defined to be the vertices of degree = 1.
Let a map B; from end(K;) to Z be fixed. Also take a map « from the edges of O
to the intervals of N (the set of nonnegative integers). Let T;(z) (z € V(K;)) denote
mm{] €Lz € TZJ} —1. Set E; = E(Kz), E;; = E; N E;. Define
O Tab(K, B, a) = {T : ideal-tableaux of K; T;(x) = B;(x)

(z € end(K;), i € [1,7]), T;(z) — Ti(y) € a(zy) (zy € E;, i € [1,7])}.

Let the weight w(T') of T be the following polynomial in the variables Y = (Y;3),
t=(t) (,jEZ,i—j€ale), ec E).

(2) w(@) = [[wi@s) - T] 1Y) 1)l ey @D = 11 tew-

(4,9) zyeE zy€E;
zgIdy

Here (i, j) runs over [1,7] x Z, and for i — j ¢ a(e), V;5 := 0. Also, the determinant of
the empty matrix is defined as 1. The first factor of w(T'), denoted by tT  is called the
power weight of T', and the second one, denoted by Y (T'), the determinantal weight of
T. We consider the ideal-tableau-generating function g(K, B, a) given by

(3) g(K,B,a)= > w(T).

TeTab(K,B,a)
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-1 0 1 2 3 4 5
0 0 {gk} {fgjk} {adefgjkn} {abdefgijkn} K
0 0 {3} Afi}  A{defign} K Ky
0 {k} {jk} {efgjk} {defgijkn} {adefghijkmn} Kj

Let O = {a,b,c,d,e, f,g,h,1,4,k,1,m,n} be the odd-ary tree depicted in Figure 1.
Let K; = K3 = O, Ky = {d, e, f, h,i,j,m,n} be subtrees. Let T be the ideal-tableau
of K displayed above. Set a(e) = N for all e € E. Then the weight w(T) = tTY(T) is
what follows.

Y(T) = A% (ba) A5 (cb) A3 (cd) 32 1 (de) ATo 1 (ef) Ag 71 (f9) AgTo(hi)
- A% (i) AT L5 (e5) Ag T3 (k) AL (Im) AgTo(md) Asig (in),

Yey ymy
me Y““‘y

Let the end vertlces of O be a® (k=1,...,5). As O isodd-ary, s is even. There exists
a unique end vertex a® of K that can be linked to a* by semipath in O passing through
no ramification vertices. For any sequence i1, ...,is in [1,7], there exists the one and
only connected induced subdigraph (tree) of O with end vertices af (k=1,...,s). Let
us denote it by K;, . ;.. Let Bil__,is be a map end(K;, . ;,) — Z such that B’il i (afk) =
B;, (a¥). Consider the totality ]5zlz of the maps p : V(K;,. . ;,) — Z satisfying

Tk B
plaf) = Bi,..i,(af) (k=1,...,s) and p(z) — p(y) € a(zy) (zy € E(K,..;,)). Now
define

(4) P(Ki, i,y Biy. iy a) = | Z H v p(y)tzm);w) -p(y)
pepil...is zy€E(K;;...i)

where APd(zy) := , etc., and t7 = 13 teptogtaet? st poth it te;tsitimtoitin:

hivievej

Let S, denote the set of all permutations of {1,...,7}. We introduce an s-determinant
(superdeterminant) by the formula:

1 ™
s =y > sgn(o1...04) [ [ Moy i), .00)-

T 01,...,0,ES8, =1

(5) |M:, s,

It is easy to show that, for odd s and r > 2, |M;,. ;. |s,» = 0. Next we assume that the
maps a and F satisfy the following.

Assumption 1. Let a(e) = [m.,ne] and zo, ..., z. be the semipath (edges omitted)
from a¥ to a¥ in O. Then, forall 1 <i<¢ <r, k=1,...,s,

(6) Bl(a’f) — By (af’) 2 Z Ng;zj, — Z My, qz;

0<j<c—1 0<j<c—1
Tj>T 41 Zj<Tjt1

Note that this assumption is equivalent to the seemingly weaker one: “(6) holds for all
(,i) = (1,2),(2,3),...,(r — 1,r) and k = 1,...,s”. Finally, we can state our main
result.
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Theorem 1. (Jacobi—Trudi-type identity) It holds that
(7) 9(K,B,a)= IP(Kil...is7Bil.‘.isaa’)ls,r = |g(Ks,..i., Biy..iu> )|

s,r’

Remark. The tool “s-determinant” is considered as a tensor invariant. Indeed, let
s = 2m and M be the transformation on a tensor space E®™ of an r-dimensional linear
space E. For the basis (eq,...,er), let M(e;, ® - - ®e;, ) = M "/me;; ® - ®e¢;j,

with Einstein’s convention. Then the s-determinant of [Mfllzj:] depends only on M
but not the choice of the basis.

2. TREE-T-PATHS AND LINDSTROM’S THEOREM

Here we show that there exists an odd-ary-tree-path-analogue of Lindstrom-Gessel-
Viennot method [Lin73, GV85, GV] on which the main theorem is based.

While F-paths are dealt with for F' = an odd-ary tree, the difficulty does not increase
in giving general definition. If F' is a digraph o—o, then an F-path is an ordinary
path. In general, F' should be irreducible.

An F-path in D is defined to be a pair of maps p = (p®,p); p* : V(F) — V(D),
p: E(F) — {paths in D}, such that p(zy) is a path from p*(z) to p*(y). Fore € E(F),
the e-section of p is the path p(e). Note that a section could be a path of length 0,
that is, a vertex. The union of all underlying vertices of all sections of p is denoted
by v(p). An element of the set {(z,e) € V(D) x E(F); p(e) passes through z, z is
not an end of p(e)} U {(p®*(v),v); v € V(F)} is called a vertex of p. In this sense,
an F-path has no vertex repetitions. For convenience, the vertex (x,v) is also written
as (z,e), where e is incident with v. As in the case of ordinary paths, if one needs a
bounded F-path, i.e. need to specify the end vertices of an F-path, one may designate
the boundary map 7 = p®|ena(r). The vertices 7(end(F')) are called the boundary of p.
An (F,r)-path is an r-tuple (p1,...,p,) of F-paths. In this case, the boundary map
(if needed) is an r-tuple (7y,...,7.). A (o—>o,r)-path is nothing but an r-path. An
(F,r)-path is called locally disjoint (loc. disj. ) if, for all 1 < i < j < r and e € E(F),
the e-sections of p; and p; have no common vertices. “An F-path locally intersects
another” means that they are not locally disjoint. A disjoint (F,r)-path is defined to
have the disjoint sets v(p1),...,v(p,).

Let I be a finite irreducible odd-ary tree and end(F) = {a!,...,a®}. Let (bF)
(i € [1,7], k € [1,5]) be vertices of D such that bf # b;? for all £ and distinct i, j.
We denote by PATH;, . ;. the totality of F-paths in D with the boundary map 7;, ., :
a® — bf (k € [1,s]). Now define, for o0 = (01,...,0,-1) € Ss—1) using abbreviation

a(i) = (01(3),...,05-1(3)),
(8) PATH(o) = {(F, r)-paths in D with the boundary map (71 4(1),- - -, Tr,g(r))},

and denote by PATH®(c) [resp. PATH* ()] the subset composed of all locally disjoint
[resp. non locally disjoint] elements.

Assume D is acyclic and has finitely many bounded F'-paths for each boundary map.
Assign a weight w(e) to each edge of D. Let the weight of an F-path be the product of
those of all the underlying edges and the weight of (F,r)-path the product of those of
the components. The weight of a set Q of (F, r)-paths is defined to be the sum of those
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of all elements, which is considered as the generating function for Q denoted by glQ].
For 0 € 5571, sgn(o) is defined to be the signature of the product of the components
of 0. The following is an analogue of Lindstrom’s theorem.

Theorem 2. The signed generating function of loc. disj. paths is evaluated by

(9) > sgn(o) g[PATH (o) ] = | g[ PATH;, i, ]l
aES,f_l

Proof. By definition, the right-hand side is written as __sgn(c)g[PATH(c)], thus
it suffices to construct a weight-preserving involution * : PATHX — PATH*, where
PATHX = ], PATH* (o), such that if p € PATH* () and p* € PATH* (p), then sgn(c) =
—sgn(p). For each F-path q, we can construct the unique order <4 on the vertices of
q as follows.

(i) The maximum element is (¢*(al),al).
(i) The cover relation exists only between the vertices (z, €), (y, €) such that z,y are
adjacent in G(e).
(iii) The vertices with the fixed second component e are totally ordered.

Next, we fix an arbitrary total order on V(D) x E(F) and @ = {(i,5) € [I,7] x
[1,7];i < j}. For given p € PATH* (0), we can take the least local intersection (v, e) €
V(D) x E(F). (If a local intersection of two F-paths has several distinct expressions,
we promise to use the least one.) Then choose 2 components (p;,p;) intersecting at
(v,e) with the least pair (,7) € Q. Now define p* € PATHX(p) as follows: (i) Py = Dk
for all k # i, j; (ii) the vertices of p} consist of the vertices of p; greater or equal to
(v,e) in the order <,, and the vertices of p; less than (v,e) in the order <p,; (iii) the
vertices of p; consist of the vertices of p; greater or equal to (v,e) in the order <p,
and the vertices of p; less than (v,e) in the order <,,. Let us certify * satisfies the
condition. Since D is acyclic, the components of p* have no self-intersecting sections,
and so p* is certainly an (F, r)-path contained in PATH* (p). This ensures that the set of
intersection vertices in each section are preserved under the operation *, and therefore
* is an involution. The rest is (#) : sgn(o) = —sgn(p). By the effect of *, the end
vertices of p;,p; corresponding to the identical a* are replaced each other whenever
a® is opposite to a! with respect to the edge e. Thus sgn(o)) = —sgn(px). As F is
odd-ary, the number of those k’s is always odd. Hence (#) holds. O

3. THE LATTICE PATH METHOD FOR THEOREM 1

While O has already been regarded as an ordered set, we define O’ by reordering
with an order <’, which is similar to <. Let the vertex a' be the maximum element,
and give cover relation between two vertices iff they are adjacent, that determines the
order uniquely. The O’ is naturally regarded as a digraph. Let F be the factor of O'.
By the assumption for K;, the F' is also isomorphic to the factor of K! made of K;
with the order <’. To give a proof of Theorem 1, we construct a bijection between
Tab(K, B, o) and a set of bounded (F,r)-paths in a certain acyclic digraph D without
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multiedges. Now define D by
V(D) =V (0') x Z,
(10) E(D) ={(z,i)(y,j); zy € E(O"), i —j € a(xy) (zy € E),
j—1i¢€ayz) (yz € E)}.

Next let b* = (a¥, B;(a¥)) (k € [1,s], ¢ € [1,r]). Take the boundary map 7 =
(t1,...,7), i : end(F) — V(D), defined by 7;(a*) = b¥. Since K is a tree, one sees
that a bounded F-path p; in D with 7; is nothing else than the map (p;) : V(K!) — Z
defined by (z, (p;)(x)) € v(p;). We denote by PATHZ the totality of bounded (F,r)-
paths p = (p1,...,p) in D with 7 such that, for all i < ¥, (z,5) € v(p;) and
(x,7") € v(pys) imply j > j', which means intuitively that they are assumed to be
disjoint and have no edge-intersection.

Lemma 1. There ezists a bijection ¢ : Tab(K, B,a) — PATHZ : T +— p defined by
(pi)(z) = Ti(z) (= € V(Ki), i € [L,7]).

Proof. We may give the inverse ¢! : p— T by Ti; = {z € V(K); (ps)(z) + ¢ < j}
((,7) € [1,7] x Z). By definition (10), we see that this T;; is an order ideal of Kj.
Now what should be proved is (i): ¢(Tab(K, B, a)) C PATHZ and (ii): ¢~'(PATHY) C
Tab(K, B,a). In a proof of (i), the rest of (a): “For all i < ¢, (x,j) € v(p;) and
(x,7") € v(py) imply j > j'” is clear. Similarly, to show (ii), we only need to see (b):
Tij N Ky C Tyt jyir—ie1 N K; (i < i'). They are deduced from the equivalence:

(a) — TZ(.’E) —1>1T (a:) (Z < ’l:/, x € V(Kz) N V(Kll))
<= min{j;z € T;;} > min{j;z € T;;;} —i' +i+1 < (b). O

Proof of Theorem 1.  Let the weight Y;;¥t, 7 be given to each edge (x,%)(y,j) of
D. Apply Theorem 2 for the above-mentioned F', D and the boundary maps 7, . ;, :
af — b% (k € [1,5]). From the property of D and (b}), it follows that PATH®(c) on
the left-hand side of (9) may be replaced with the subset PATH®(o) consisting of all
disjoint (F,r)-paths. Then we call this (9)’.

For each element p € PATHD and z € V(0’'), let p*(z) [resp. p~(x)] denote
the sequence (z,(p1)(z)),...,(z, (p-)(x)), where the ith terms with z ¢ V(K;) —
{a2,...,al} [resp. = ¢ V(K;) — al] are omitted. Note that, for zy € E(O'), |pt(z)| =
Ip~ (y)|- The cardinality is denoted by k(zy). For p € S;, and vertices (z1,...,x:),
set p(x1,...,2¢) = (Tp)s---»Tpr)). Define D*¥(p) = the induced subdigraph of D
with the vertices p*(z)[[p~(y), and PATH®(zy, p,p) = the set of all vertex-disjoint
k(zy)-paths from p*(z) to p(p~(y)) in D*¥(p). By the definition of the boundary
map 7, Assumption 1 assures that for all p € PATH®(0), i < i < i’ and k, we have
(pir)(a®) > (p;)(a¥) > (pi)(aF) (for the defined left and/or right-hand side). This
enables us to have the weight preserving bijection:

(11) b: [[ patw(c) — ] II II PATE (e, pesp)-

ceseT?! pEPATHD e€E(O') pe €Sc(e)
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Since F' is odd-ary, the signs of the corresponding terms on both sides of (11)
coincide. Thus, taking the weights with signs of both sides and combine it with (9)’,
we obtain Theorem 1. O

4. SPECIALIZATION OF THE WEIGHTS

In Theorem 1, rather complicated determinantal weights creep into the formula,
while most Jacobi—Trudi identities are more simple. The reason is that Theorem 1
never imposes strong conditions such as “row-strict”, “column-strict”, etc. on the
ideal-tableaux. Here we intend to simplify the formula. First of all, we define the
e-shape of an ideal-tableau T for each e € E. Set j(e) = {i € [1,r];e € E(K);}<. For
€ =v40_, define (Ti(U:I:))z'Ej(e) = (Tiei - i)ie[l,!j(e)l]-

By Lemma 1, for i < j such that V(K;),V(K;) > «, Ti(z) > Tj(z). So (TF%)
decrease weakly, and one sees Tt > T7~. Now let T° denote the diagram in [1,7] x Z:
{(i,5); Tf~ < j < TFt). Tt is called the e-shape of T'. If we drag it along the j-axis until
it enters the right-hand side of ¢-axis, it becomes a skew diagram A \ p. Then we use
the notations s(7) and s(T"*') for the skew S-functions sy,, and s)s/,, respectively.

Returning to Theorem 1, divide E into L, M. Suppose a(e) = [0,n] for all e € L
and a(e) = N for all e € M. Let eg and hy denote the elementary and the complete
symmetric functions, respectively. Now set Y5 = e;_; (z1,...,2,) when e € L, and
Y5 = hij (21,...,%n), otherwise. Then we immediately see that the determinantal
weight of T is written as [[.c; s(T¢)(x) - [[.car $(T°)(x). Next we define a set of
(L, M )-semistandard ideal-tableaux of trees and a certain function of ¢t = (t.)ecp-

SSTm (K, B) = {T : ideal-tableaux of K; T;(z) = B;(z) (z € end(K;),
i € [1,7]), T* : vertical [resp. horizontal] strip (e € L [resp. M])},

(12)

(13) Poa(Kiy. iy Biy a,)(t) = [P(Kil...is,Bil...isaa’)]Ye_ e
ij—e 1,7,€
Here, €(i, j, €) is defined to be 1 whenever e € Mor i—j € [0,1], and to be 0, otherwise.
By putting z; = 1 and o = 23 = --- = 0, (7) becomes a simple formula, which
turns into the one for (L, M)-partially strict tableaux with bounded entries in each
row, when K is an r-tuple of chains [Oka90, Wac85].

Corollary 1. The power weight sum of semistandard ideal-tableaux of trees is expressed
as

(14) Z tT = |PLM(Ki1...iS,Bil...is)(t)
T€eSST LM (K,B)

ER

5. SUPERPFAFFIANS FOR LOCALLY DISJOINT TREE-g-PATHS

Okada gave a remarkable pfaffian formula for the minor sum of a matrix [Oka89],
and Stembridge developed a useful technique for calculation of the weights of (partially)
unbounded vertex-disjoint r-paths with pfaffians [Ste90]. Lindstrom’s theorem shows
a strong connection between them. It is also known that a symmetric analogue of
Okada’s result exists. In this section, we generalize those theories on tree-g-paths.
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We introduce (\,n)-pfaffians (superpfaffians). Let g,n be positive integers and
A = (A1,..., ) be a partition of g. The multiplicity of the i-parts in A is denoted
by m(i), say, A = (1™ 2™ ) in increasing order. We set g; = Ay + -+~ + A; for
alli =1,...,7, and go = 0. Let G, denote the set of permutations p of {1,...,g}
satisfying p(gi_1 +1) < p(gi—1 +2) < --- < p(g;) (i = 1,...,7), and F) denote the
subset of Gy consisting of p such that p(g;—1 + 1) < p(g; + 1) whenever A\; = Aiy1.
Define

1
pf/\,n [Mil"'iP"]1-<—iPk+1<"'<’ipk+pSg — %__‘_ Z Sgn(U)PO-
(15) (k=0,...,n—1) pEOA A} ' €0t
P(Cf1,...,an) = H M01(gi_1+1),...,crl(g,-),...,crn(gi_1+1),...,an(gi)7
1<<r
where m! = m(1)! m(2)!.... Let d be the number of distinct parts of A\. By definition,

the array on the left-hand side is a d-tuple of different dimensional arrays. For A = (27),
n = 1, the above expression is led to an ordinary pfaffian for 2r x 2r skew-symmetric
matrix; while for A = (1"), n = s — an s-determinant. Furthermore, for odd n and A
such that m(¢) > 1 for some odd ¢, that vanishes.

For example, take A = (2,1) and n = 2. We have

Pf(2,1),2| [Mi .00 1<is <in <35 [Mjk] 1<) k<3
1<i3<i4<3

=Mi919M33 — M1213M39 + Mi223M31 — M1312M23
+Mi313Mas — Mi3a3May + MagioMi3 — Mazi3Mig + Mazaz M.

As in §2, we assume that F' is a finite irreducible odd-ary tree with the end vertices
{a,...,a*} (s: even), and D is an acyclic digraph with finitely many F-paths for
each boundary map. Next let X be chosen so that m(i) < 1 for all odd i. Let V! be
an arbitrary finite set of at least g vertices of D; and V2,...,V* ones of g vertices.
Assume for each k € [1, s], that V* is totally ordered irrespective of the structure of D
and the other V!,

Assumption 2. All F-paths p, q satisfying that p®(a*) < ¢*(a*) in V* and p*(a') >
¢*(a') in V! for some k, I € [1, s] intersect locally.

Let us fix a set A of subsets of V! which contains at least m(i) disjoint i-subsets
whenever m(i) > 0, and no i-subsets otherwise. Let I be a subset of V. For every
k € [2, 5], denote by v* = (vF,. .., v;f), an arbitrary arrangement of all elements of V*.
Now define

PATH,(I,%,...,v°) = {p: (F, g)-paths in D; {p}(a'),... ,p;(al)} =1,
pi(a®) =i ((i,k) € [1,9] x [2,)},

and PATH;(I,v) = PATHg(] ,v2,...,v°) to be the subset which contains exactly all
locally disjoint elements as usual. For p € S,, set p(v*) = (v’;(l), ... ,v’;(g)). Let [ =

(16)

{vl,...,vl}< and assume that v* is ordered increasingly for each k. The \-generating
function gy [ PATH (I, v) ] for PATHS(Z, v) is defined as the product: €(I)-g[PATHg (I, v)],
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e(I) = > sgn(p); where the summation runs over all p € F, such that, for every
i € [L,7], {v}j)}ielgis+1,6:) belongs to A.

Next, we set PATHy(v?,...,v°) = [[;cy1 PATHg(I,v) and consider the subset con-
sisting of all locally disjoint elements: PATHZ(vZ, .oy 0°) = [1;cy1 PATHG (I, v). Define

gA[PATHS (v?,...,v°) ] = > ga[ PATHS (I, ) ].
Theorem 3. The \-generating function is expressed by a superpfaffian, say,

(17) ga[PATHS(v?,...,v%)] =

2 2
pfA,s—l[g(P)[PATH;((vil gy ’Uz'p)a R (vfu Tt ’Ufp))] 1Si1<"'<ip§g7"":l
1<l1<-+<lp<g pE{A1,.-,Ar}

Proof. For 0 = (03,...,05) € G5!, we use the notation: a(v) = (02(v?),..., 0s(v*)).
We put PATH} (¢(v)) = PATH, (0 (v)) — PATH; (0 (v)) and set

PATH] (0(v)) = {p € PATH) (0(v)); (Pgi_141---3Dg;) is locally

(18) . .. . 1 . 1 .
disjoint and {p},_ ,(a'),...,p},(a")} € Afor all i € [1,r]}.

By (15), we may translate the pfaffian (multiplied by m!) on the right-hand side
of (17) to the signed weight of (F,g)-paths p such that (i): for all ¢ € [1,7], p; =
(Pgi_141,---,Pg;) is locally disjoint, (ii): the components of p; are arranged so that
the boundaries corresponding to a® are increasing for each k € [1, s], (iii): the bound-
aries of p; corresponding to a! form an element of A, and (iv): the boundaries of
p corresponding to a* form V* for all k € [2,s]. If p is locally disjoint, Assump-
tion 2 implies that there exists v € Gy such that for every k € [1,s], p;_l(l)(ak) <

e < p;_l(g)(ak). Thus, the same weights, except signs, are arising from (F, g)-paths
{(gpc1ys- - -»qp(g))} Where ¢ = v~1(p) and p runs over all permutations in G, such that
{q;(gi_lﬂ)(al),...,q;(gi)(al)} € A for all ¢ € [1,7]. From this, it follows that the
weight of locally disjoint (F, g)-paths appearing in the pfaffian is equal to the left-hand
side of (17). Therefore, dividing by m!, the right-hand side of (17) is written as
(19) gA[PATH (v2,...,v%) ] + 7—7% )" sgn(o) g[ PATH] (o(v)) .

oegs!

So we prove that the second term of (19) vanishes. To do this, as in the proof
of Theorem 2, we take an involution * on PATHY = Haegi—-l PATHS (0(v)) such that
w(p*) = w(p), sgn(p) = —sgn(o) (p € PATHY(0(v)), p* € PATHI(p(v))). For this
involution, we can use a slight deformation of % in the proof of Theorem 2. The
modified point is to choose the least local intersection (v,e) € V(D) x E(F) such that
each component p; of p with local intersection (v, e) has no local intersection less than
(v,e) with respect to the order <,,. In virtue of this, locally disjointness of p; (i) is
preserved by this deformed *, and therefore (ii) is also satisfied (Assumption 2). The
rest (iii),(iv) are preserved clearly. Hence PATHS is *-invariant. We can confirm the
other properties of * as in the proof of Theorem 2. ]
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Remarks. Depending on the structure of A, Theorem 3 gives various weight-sums
of loc. disj. tree-g-paths. For example, let v} < --- < vy, be all vertices in V! and
set A = {{v}, vl },{vd,vh, 1}, o {vtvi 1t} Let A = (27), g = 2r. The left-
hand side of (17) becomes the “symmetric” sum: )., g[PATHS(/,v)], where I runs
over all g-subsets of V! such that v} € I = vj_,,, € I. Similarly, for a given A
in Theorem 3, let A = (A1,...,As) = (1™, 27 ) be a partition of n = [V
such that, for all nonzero m(i), m(i) > m(i) > 1. Set g; = A+ -4+ A Let A be
a partition of V! = {v},...,v1}< of type A consisting of the cells {v} ;... 03
(i = 1,...,7). Now Theorem 3 gives the weight-sum of loc. disj. tree-g-paths p with
coefficients e(I) = 1, where the set of boundaries {p}(a'),... ,p3(at)} corresponds to
the collection of the cells of A consisting of m(i) i-cells.

Another example is an ordinary summation formula, which is the most natural. Let
A = (2") and A = {all 2-subsets of V'}. This case enumerate the sum of all weights
S g[PATH(1,v) ] with coefficients= 1. In general, let A be a partition with no odd
parts, and A = {all i-subsets of V1;m(i) > 1}. In that case we can show by induction

that e(I) = m(2)!(2m((€1/))2!)(!3m(6))!... I Licven HTz(;) (@ /22)1 ') irrespective of I. Thus, the

case also gives the weight-sum of all loc. disj. tree-g-paths.
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